

Towards a e⁺e⁻ collider: Higgs factories

23 Sep-4 Aug2021

1

The e⁺e⁻ Higgs factories

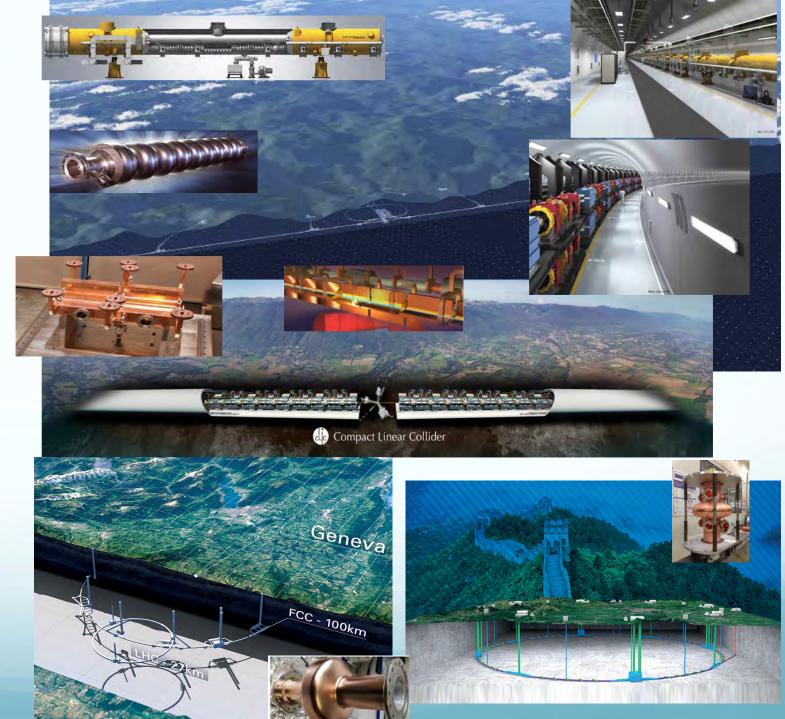
The e⁺e⁻ Higgs factories

Note: H. Abramowizc ESG January 2020.

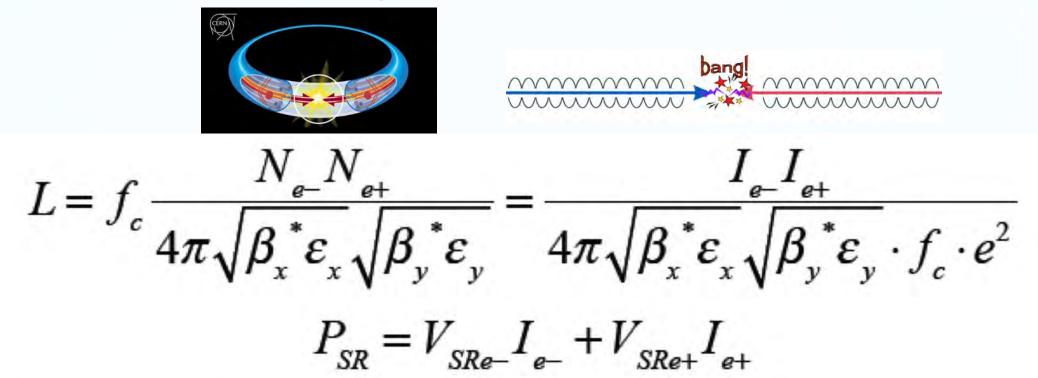
Lab CMIS

2 Infini

IN2P3 doux infini


Note.	H. Abramowize ESG Jar	luary 2020.		Physic	as Detectors
European Strategy	2020 Stra	tegy Statements		e-Main Linac e+ Sou	urce 8,000 SRF cavities
A Constant	Guide through the	e statements			Beam delivery system (BDS) e- Source
 a) Maintain focus on successful b) Maintain support for long-bo US and the Neutrino Platfor 	aseline v experiments in Japan and rm	 4 statements on Other essential scientific activities a) Support for high-impact, financially viable, experimental initiatives world-wide b) Acknowledge the essential role of theory c) Support for instrumentation R&D - through roadmap 		Damping Rin	B Total 20.5 Lm
community b) Strengthen the European PP c) Acknowledge the global natu 2 statements on High-priority a) Higgs factory as the highe investigation of the technic future hadron collider at C b) Vigorous R&D on innovative	CERN for success of European PP P ecosystem of research centres ure of PP research future initiatives est-priority next collider and cal and financial feasibility of a CERN	 d) Support for computing and software infrastructure 2 statements on Synergies with neighbouring fields a) Nuclear physics - cooperation with NuPECC b) Astroparticle - cooperation with APPEC 3 statements on Organisational issues a) Framework for projects in and out of Europe b) Strengthen relations with European Commission c) Play active role in supporting Open Science 4 statements on Environmental and society impact a) Mitiaate environmental impact of principal physics b) Physics c) Play active role in supporting Open Science 	Legend - CERN existing LIC CENTRAL strategy and the str		е+ Аластори (и слоит такар. опотаесент такар. очити веди пласа ини веди пласа и сласа и сла
	hnolog	IY IS wer-Eff. Cost			
NB ₈ Sn	ready	CONIUCI 123 DEV *		Geneva	CEPC
12-14T Nb ₃ Sn Short-model R&D Proto/Pre-series 9~12T Nb ₅ Sn Mode/Proto/P re-series Construction 6~8T NoTi Proto/ Pre-series Construction	and the second second	LIC 125 GeV ? ? F1 "Technology F2 "Energy Efficiency" F3 "Cost" : Readinees" : Green - TDR Green : 100-200 MW Green : <lhc Yellow - CDR Red : >400 MW Red : >400 MW Red : >2x LHC</lhc 		² CC • 100km	
23 Sep-4 Aug2021		INFIERI 202	1		3

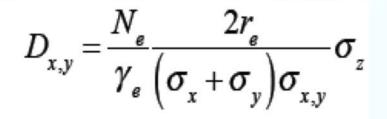
Outline

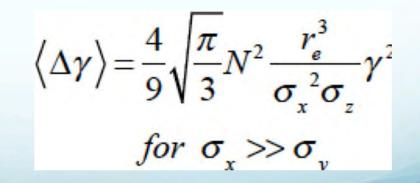

Luminosity issues

- The e⁺e⁻ Linear colliders
 - ILC-IDT: Technology update
 - CLIC: Technology update
- ➤ The e⁺e- Circular colliders
 - FCCee: Technology update
 - CepC: Technology update (J. Gao's talk)
- Summary and Perspectives

Luminosity recipe: linear vs circular

The way to reduce SR power is to reduce beam currents in both electron and positron beam. To keep luminosity high, one would need to reduce one, two or all in

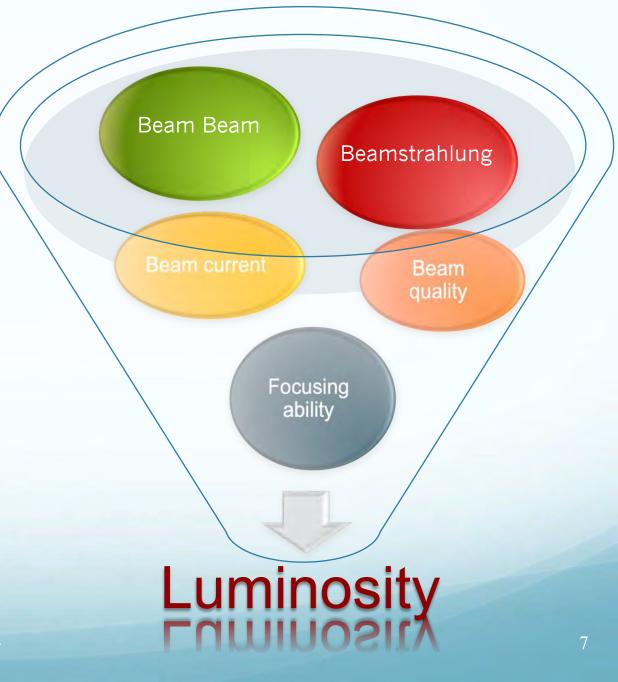

$$\sqrt{\beta_x^*\beta_y^*}\cdot\sqrt{\varepsilon_x\varepsilon_y}\cdot f_c$$



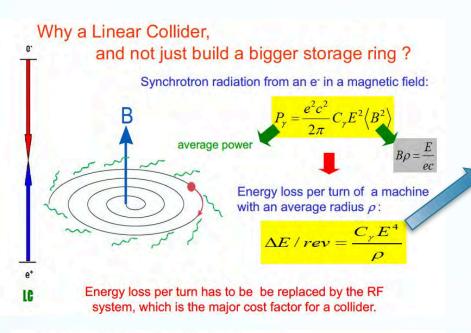
Luminosity recipe: linear vs circular

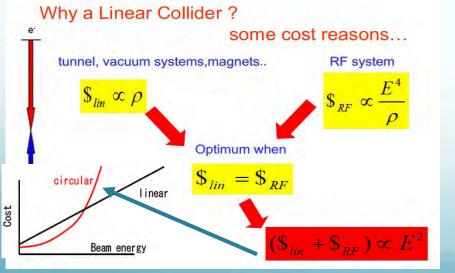
- In storage rings additional limitations appear: beam-beam tune shift and IP chromaticity (small β_y*) which favors high beam currents, large emittance and high collision frequencies
- In linear the relevant number is the disruption parameter
- At high-energies the most dangerous effect is beamstrahlung: SR in strong EM field of opposing beam during collision. It can cause significant amount of energy loss, induce large energy spread and loss of the particles. Using very flat beams is the main way of mitigating this effect

$$\xi_{x,y} = \frac{N r_0 \beta_{x,y}^*}{2\pi \gamma \sigma_{x,y} (\sigma_x + \sigma_y)} < 0.1 - 0.5$$

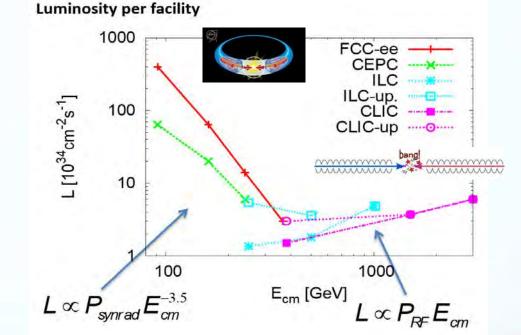


Luminosity recipe


Luminosity cannot be fully demonstrated before project implementation:


- Luminosity is a feature of the facility not the individual technologies
- Relying in experience, theory and simulations
- Foresee margins

Other linear vs circular....


> Energy dependence:

At **low energies circular** colliders surpass

 Reduction at high energy due to SR

At **high energies linea**r colliders excel

 Luminosity per beam power roughly constant

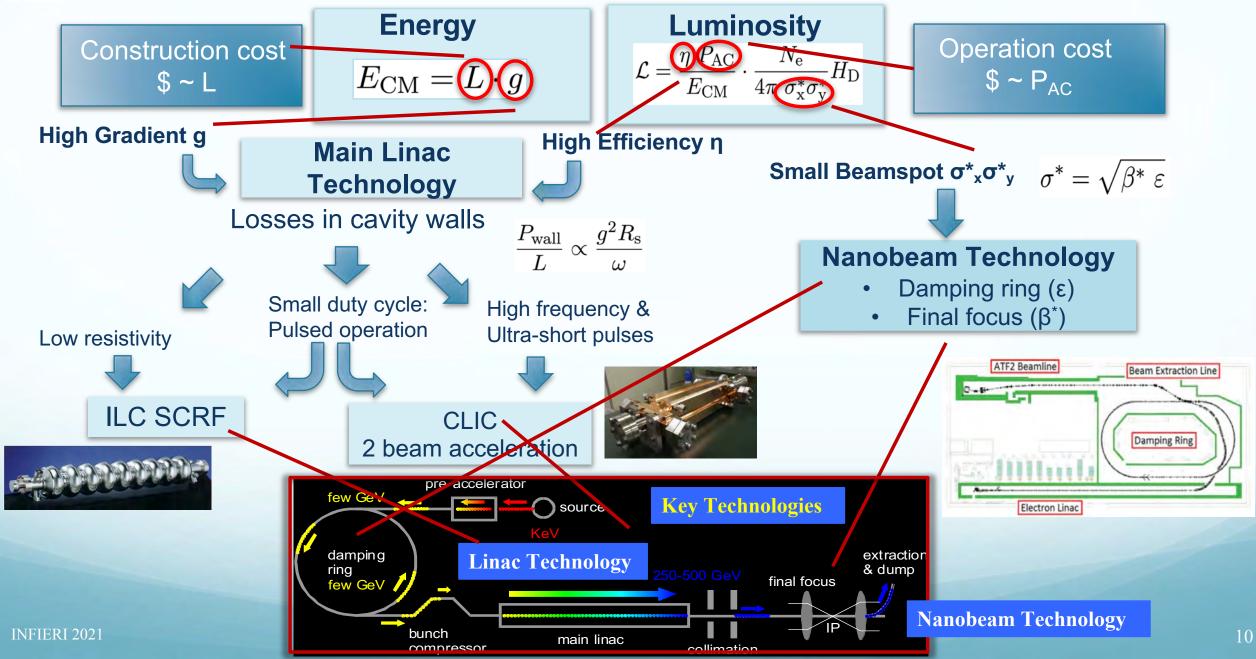
Note: The typical Higgs factory energies are close to the cross over in luminosity

> Others LCs advantages:

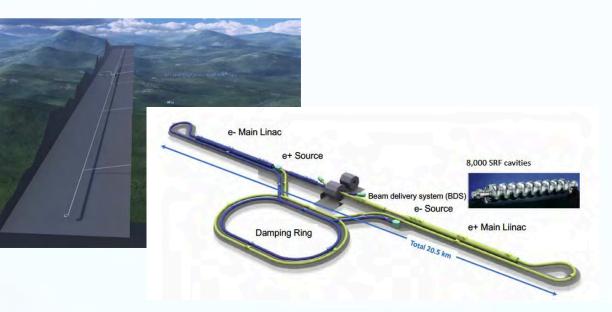
- LCs have polarized beams (80% e⁻, ILC also 30% e⁺), the spin of the e⁺e⁻ beam can be maintained during the acceleration and collision. This can help significantly improve measurement precision.
- Upgradeability: LCs can extend its collision energy by longer tunnel/ higher gradient

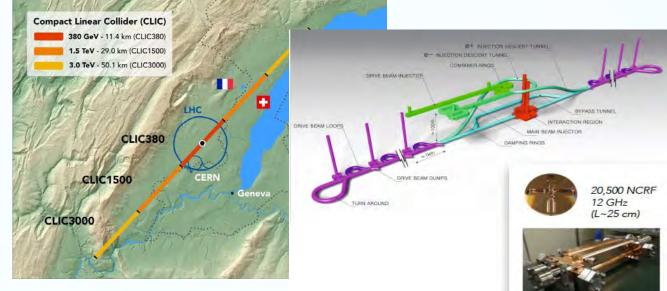
23 Sep-4 Aug2021

Outline


Luminosity issues

- > The e^+e^- Linear colliders
 - ILC-IDT: Technology update
 - CLIC: Technology update
- ➤ The e⁺e⁻ Circular colliders
 - FCCee: Technology update
 - CepC: Technology update (J. Gao's talk)
- Summary and Perspectives


LCs Accelerator Challenges and Key Technologies



ILC and CLIC in a nutshell

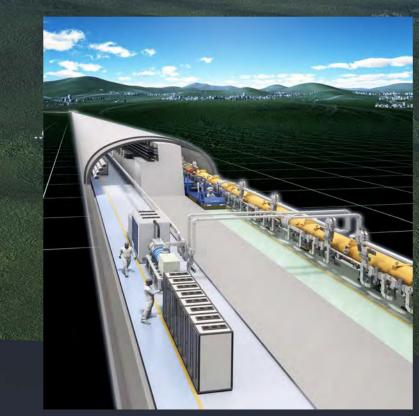
Two e+e- linear collider designs, starting as a Higgs factory

International Linear Collider ILC

- Superconducting Cavities, 1.3GHz, 31.5MV/m
- Klystrons
- 250GeV CME, upgradeable to 500, 1000GeV
- L = 1.35x10³⁴ cm⁻²s⁻¹ (at initial 250GeV)
- 20km length, in Tohoku / Japan
- Polarisation 80%(e-), 30%(e+)

INFIERI 2021

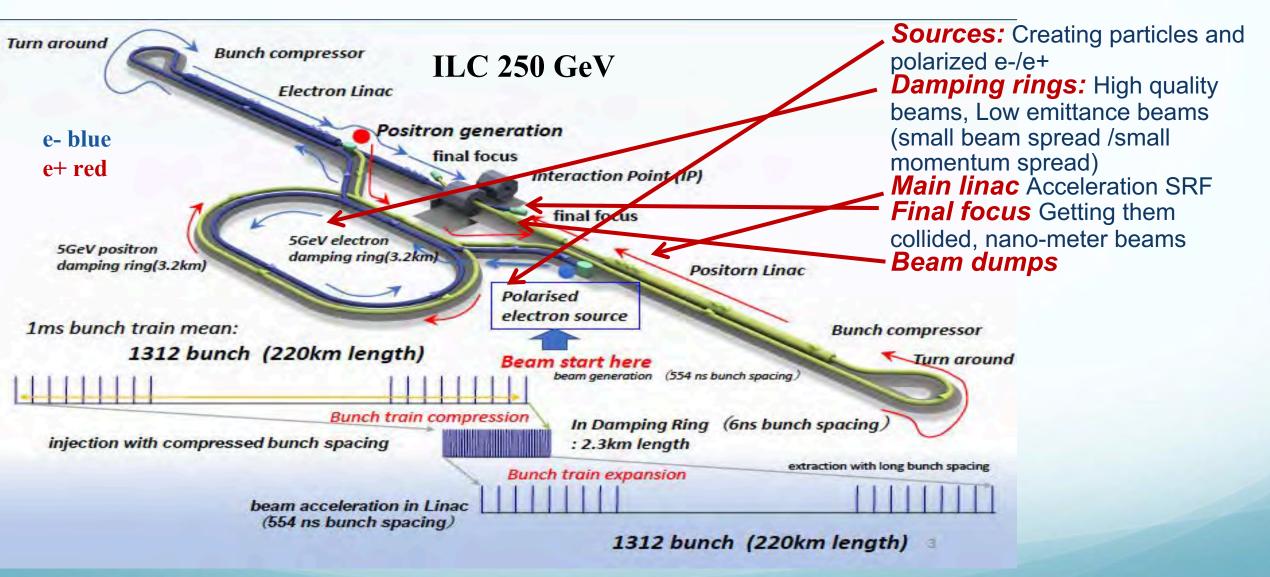
Compact Linear Collider CLIC


- NC Copper Cavities, 12.0GHz, 72 100MV/m
- Two-beam acceleration
- 380GeV CME, upgradeable to 1500, 3000GeV
- $L = 1.50 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (at initial 380GeV)
- 11.4km long, at CERN / France & Switzerland
- Polarisation 80% (e-)

23 Sep-4 Aug2021

descent of states and second the spectrum.

ILC accelerator: Techology update



http://www.linearcollider.org/

INFIERI 2021

23 Sep-4 Aug2021

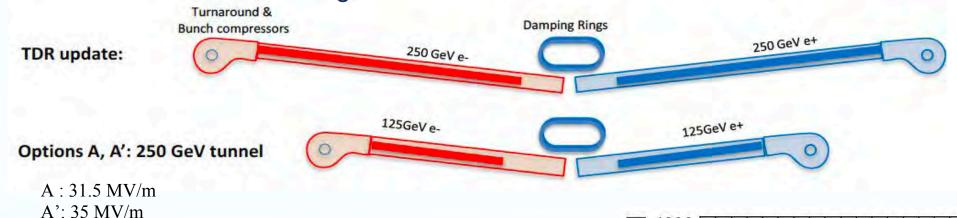
ILC accelerator sequence and main area systems

IN2P3 is deux infinis ilr

116

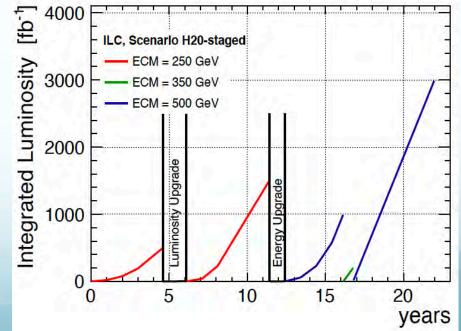
ILC updated parameters and upgrades

The ILC can be upgraded to higher energy and luminosity


	1		Z-Pole [4]		1	Higgs [2,5]		500Ge	V [1*]	TeV [1*]
		1	Baseline	Lum. Up	Baseline	Lum. Up	L Up.10Hz	Baseline	Lum. Up	case B
Center-of-Mass Energy	ECM	GeV	91.2	91.2	250	250	250	500	500	1000
Beam Energy	Ebeam	GeV	45.6	45.6	125	125	125	250	250	500
Collision rate	f	Hz	3.7	3.7	5	5	10	5	5	4
Pluse interval in electron main linac		ms	135	135	200	200	100	200	200	200
Number of bunches	nb		1312	2625	1312	2625	2625	1312	2625	2450
Bunch population	N	1010	2	2	2	2	2	2	2	1.737
Bunch separation	Δt_b	ns	554	554	554	366	366	554	366	366
Beam current		mA	5.79	5.79	5.79	8.75	8.75	5.79	8.75	7.60
Average beam power at IP (2 beams)	PB	MW	1.42	2.84	5.26	10.5	21.0	10.5	21.0	27.3
RMS bunch length at ML & IP	σz	mm	0.41	0.41	0.30	0.30	0.30	0.30	0.30	0.225
Emittance at IP (x)	γe [*] ∗	μm	6.2	6.2	5.0	5.0	5.0	10.0	10.0	10.0
Emittance at IP (y)	γe [*] y	nm	48.5	48.5	35.0	35.0	35.0	35.0	35.0	30.0
Beam size at IP (x)	σ^*_{\times}	μm	1.118	1.118	0.515	0.515	0.515	0.474	0.474	0.335
Beam size at IP (y)	σ_y^*	nm	14.56	14.56	7.66	7.66	7.66	5.86	5.86	2.66
_uminosity	L	$10^{34}/cm^{2}/s$	0.205	0.410	1.35	2.70	5.40	1.79	3.60	5.11
Luminosity enhancement factor	HD	1	2.16	2.16	2.55	2.55	2.55	2.38	2.39	1.93
Luminosity at top 1%	L0.01/L	%	99.0	99.0	74	74	74	58	58	45
Number of beamstrahlung photons	ng		0.841	0.841	1.91	1.91	1.91	1.82	1.82	2.05
Beamstrahlung energy loss	δΒS	%	0.157	0.157	2.62	2.62	2.62	4.5	4.5	10.5
AC power [6]	Psite	MW			111	138	198	173	215	300
Site length	Lsite	km	20.5	20.5	20.5	20.5	20.5	31	31	40

Lumi.

ILC updated parameters and upgrades



Possible energy upgrades: 500GeV, 1TeV need tunnel extension Kitakami site: 50km long, sufficient for 1TeV

> Luminosity upgrades:

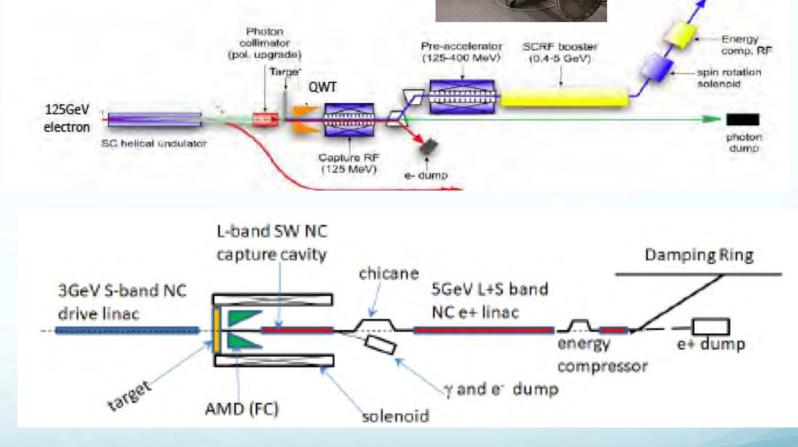
- More RF: factor 2 (1.35 -> 2.7x10³⁴)
- Run = 500GeV machine at 250GeV, 10Hz: factor 2 (2.7x10³⁴ -> 5.4x10³⁴)
- Improves power efficiency

Lab CNIS

IN2P3

ilr

İİL


Sources: Positron production

Two concepts considered:

SC helical undulators:

baseline, polarized, but e⁻ at 125 GeV complicated for commissioning/operation

e⁻ driven source: dedicated 3 GeV NC S-band TW e⁻ (pair production), not polarized, special tunnel infrastructure

R&D is ongoing in the framework of the ILC-IDT WG2

Two undulators in one cryomodule were tested

to Damping Ring

at Daresbury. Both

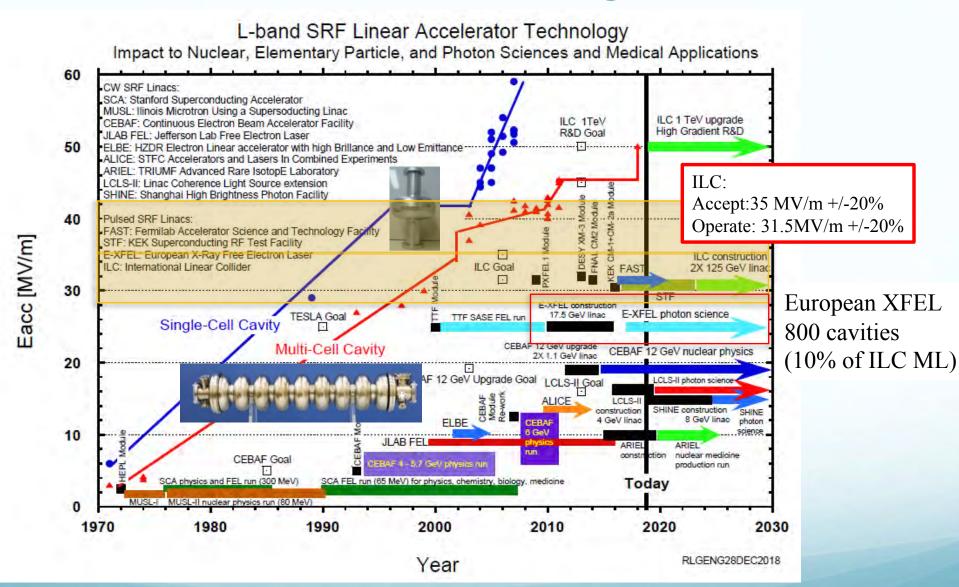
achieved nominal magnetic fields.

ILC Main Linac: SRF Technology

- ~8000 SC 9-cell cavities:
 1.3 GHz, 1.038m long, 31.5MV/m
- 9 cavities per 12m long cryomodule
- 10MW pulsed **klystron** per 4½ modules
- 2K operating **temperature**:
 - 4-6 cryo plants 19kW@4.5K
- Pulsed operation, 5Hz x 0.73ms (1312 bunch)
- European XFEL in operation 100 cryomodules, 800 cavities
- LCLS-II, SHINE: Under construction / planned

Exitv~9.000

ILC: artistic view


INFIERI 2021

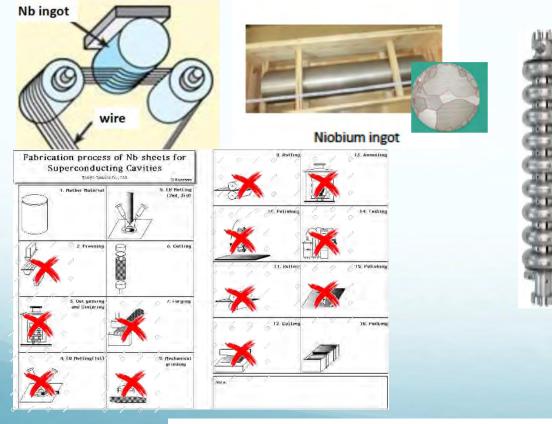
23 Sep-4 Aug2021

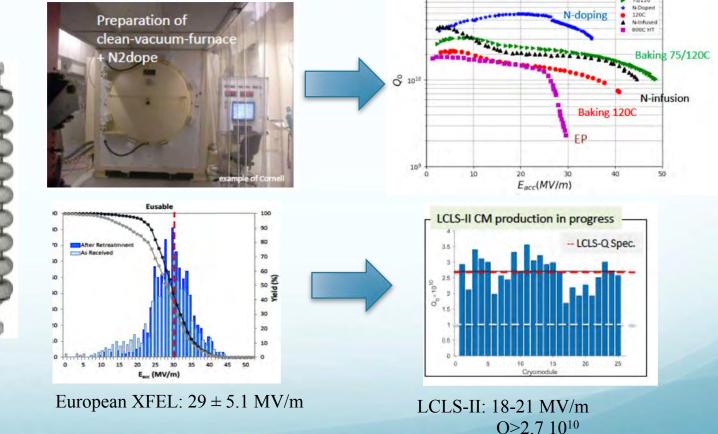
Matured SRF technologies

Worldwide large scale SRF accelerators

23 Sep-4 Aug2021

INFIERI 2021

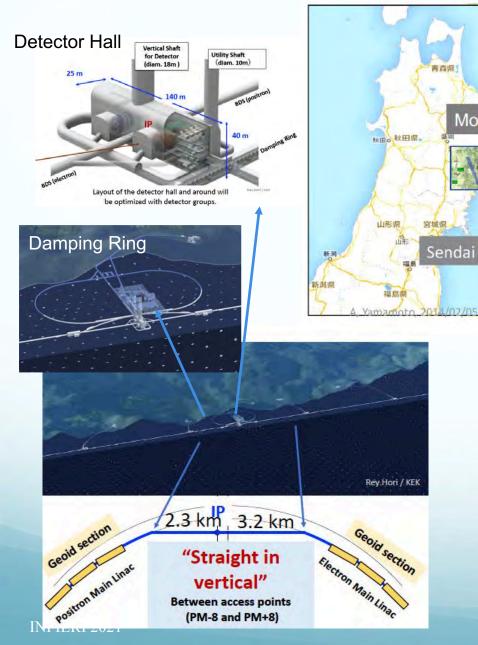

ILC Main Linac: Technology challenge


R&D to reduce cost fabrication and to push performance limits

> Niobium material/sheet preparation:

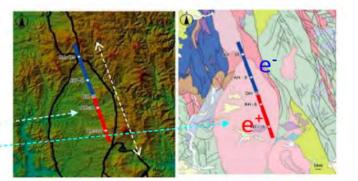
Large grain directly sliced from ingot (cost reduction), **Nb thin-film** coating on Cu based structure (HiPIMS), or Nb₃Sn in Nb or Cu

SRF cavity fabrication for high-gradient (N doping well stablished), high-Q (N infusion, low-T baking) and high-yield.



Mass production still a challenge, R&D in the framework of the ULC-IDT WG2

ILC Site Selection and Civil Engineering


Kitakami mountains

1 ILC Location

青森県

Morioka

ILC accelerator area : inside the granite rock bodies → inside black curves (left) \rightarrow in the pink color (right) \rightarrow possible up to 50 km

→ On-going jobs : Optimal accelerator placement, considering surface environment, land-use and

land-acquisition

Geological Surveys (2)

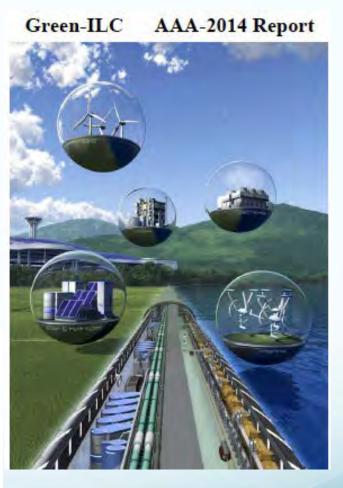
- Electric Prospecting (crack)
- Seismic Exploration (stiffness)
- **Boring Survey**
- **Borehole Camera**
- Measurement of Initial Stress of the Ground

- → no issues from previous surveys
- → requiring : additional surveys around access tunnel head and access tunnel inside for detailed designing

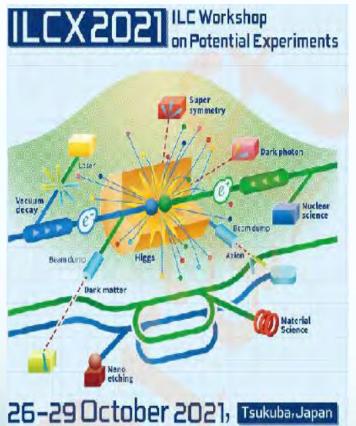
23 Sep-4 Aug2021

"Green ILC" and Carbon neutrality

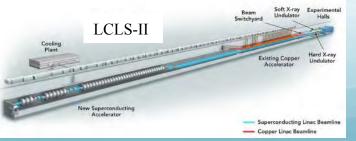
Although SRF has been adopted, the AC power consumption for ML part is <50%, what is a total of 110 MW


- "Green ILC": Past efforts include increasing the efficiency of accelerators (SC, klystron) https://green-ilc.in2p3.fr/documents/
- Carbon neutrality: Common challenge for all future HEP accelerators. The use of SC will contribute to carbon neutrality in the future.

Work is ongoing to study these issues

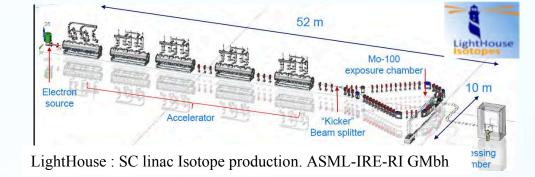

Lab CNS

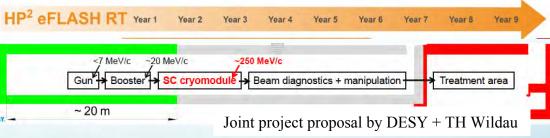
Extending the Physics potentiality of ILC and mili applications of ILC technology


Experiments using the main dump Experiments using Extracted beam Far detector

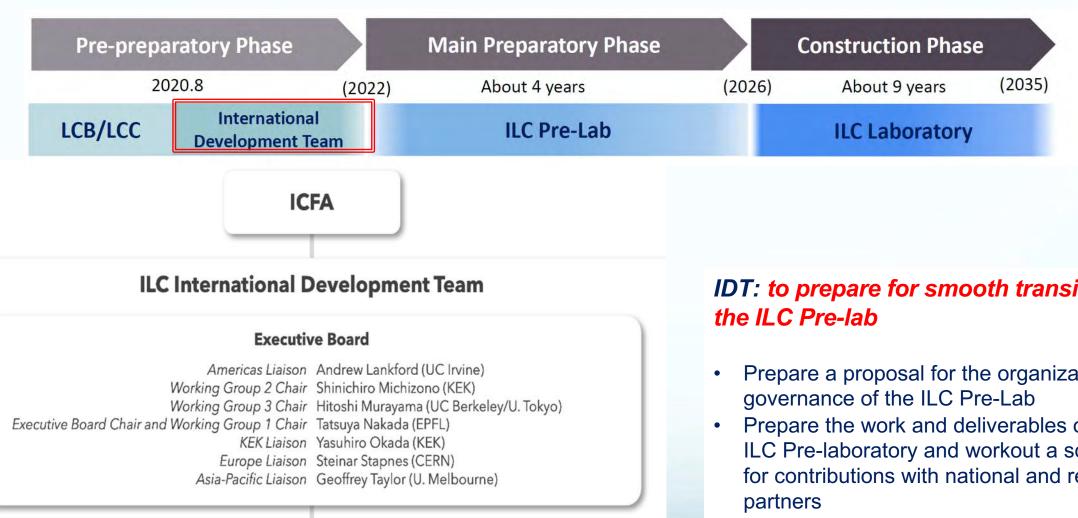
- > ILC technology for different applications
 - XFEL accelerators: EuXFEL, LCLSII, SHINE
 - Medical linacs
 - Industrial linacs
 - etc

SCRF compact for water treatment





1.3GHz 9 cell cavity



International Development Team (IDT)

Working Group 1 Pre-Lab Setup

Working Group 2 Accelerator

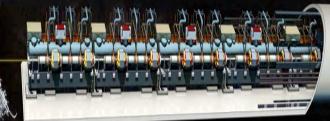
Working Group 3 Physics & Detectors

IDT: to prepare for smooth transition to

- Prepare a proposal for the organization and
- Prepare the work and deliverables of the ILC Pre-laboratory and workout a scenario for contributions with national and regional

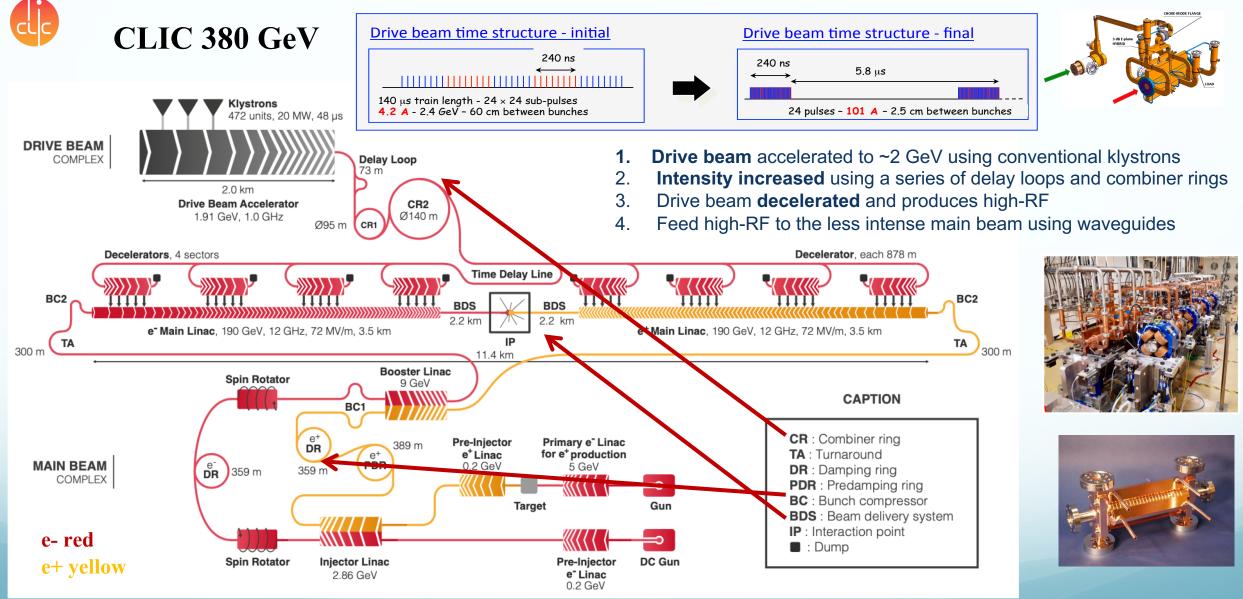
ILC Timeline

- International Development Team (IDT) prepares Pre-Lab
- 4 year Pre-Lab (hosted by KEK, Japan) phase for R&D, Engineering Design Report, Construction preparation
- > **ILC Laboratory** (international): 10 year construction phase



	IDT	IL	C P	re-La	b						ILC	Lab.				
	PP	P1	P2	P3	P4	1	2	3	4	5	6	7	8	9	10	Phys. Exp.
Preparation CE/Utility, Survey, Design Acc. Industrialization prep.																
Construction																
Civil Eng.	Foll	owir	ng a f	our-	year	ILC	Pre-	Labj	ohase	e, IL	C co	nstru	ctior	ı will		
Building, Utilities	cont	inue	for a	abou	t ten	year	s.									
Acc. Systems																
Installation																
Commissioning																
Physics Exp.																

CLIC accelerator: Technology update


http://clic-study.web.cern.ch/

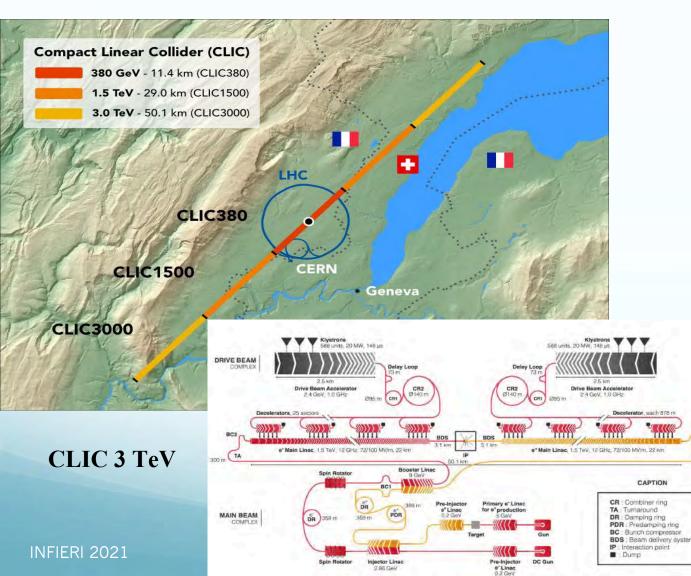
INFIERI 2021

23 Sep-4 Aug2021

CLIC accelerator sequence and main area systems

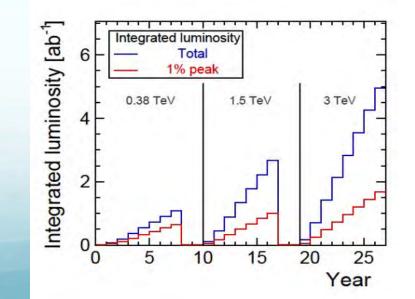
23 Sep-4 Aug2021

CLIC updated parameters and stages


Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Total integrated luminosity per year	$\mathscr{L}_{\mathrm{int}}$	fb ⁻¹	180	444	708
Main linac tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	10 ⁹	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	900/20	660/20	660/20
Final RMS energy spread	ubuden yr.	%	0.35	0.35	0.35
Crossing angle (at IP)		mrad	16.5	20	20

CLIC updated parameters and upgrades

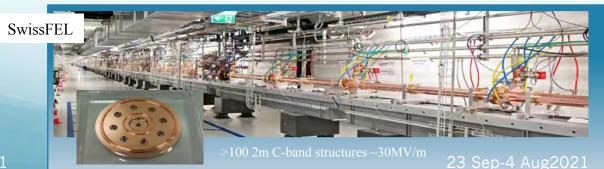
Possible energy upgrades: 1.5 and 3TeV need tunnel extension, CERN site: 50km long, sufficient for 3 TeV

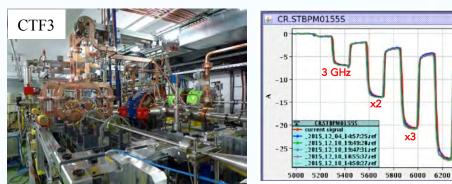

Lab CNS

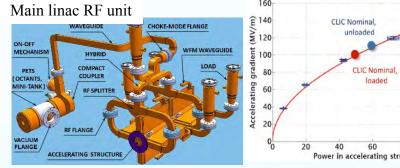
Luminosity upgrades: Baseline

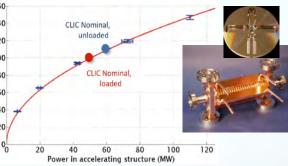
polarisation scenario adopted: electron beam (-80%, +80%) polarised in ratio (50:50) at \sqrt{s} =380GeV; (80:20) at \sqrt{s} =1.5 and 3TeV. Doubling frequency (50 Hz ->100 Hz, but double the luminosity, with power +50 MW and cost ~5% increases.

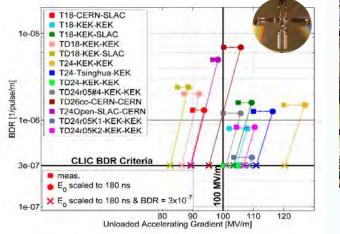
Stage	\sqrt{s} [TeV]	$\mathscr{L}_{int} [ab^{-1}]$
1	0.38 (and 0.35)	1.0
2	1.5	2.5
3	3.0	5.0

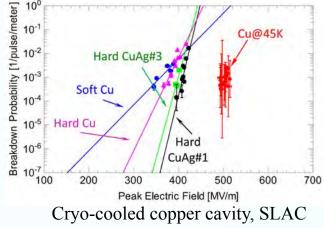

29

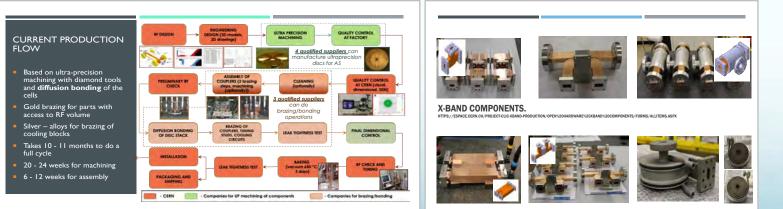

CLIC Main Linac: NCRF Technology

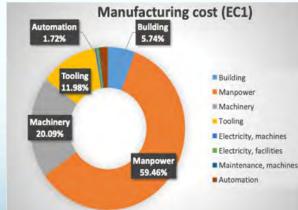



- ML NC RF X band copper cavities (20,500 structures)
- Drive-beam based machine (PET structures), two beams acceleration demonstrated, CTF3 (CLIC Test Facility at CERN) program addressed all drive-beam production issues.
- Klystron-powered option also studied (high-efficiency)
- High-current drive beam bunched at 12 GHz
- Achieved 100 MV/m gradient in main-beam cavities
- X-band technology developed and verified with prototyping, test-stands, and use in smaller systems
- Two C-band XFELS (SACLA and SwissFEL the latter particularly relevant) now operational: large-scale demonstrations of normalconducting, high-frequency, low-emittance linacs


Details in PIP, DOI: http://dx.doi.org/10.23731/CYRM-2018-004


CLIC Main Linac: Technology challenge R&D to reduce cost fabrication and to push performance limits


Fundamental process for high-fields and material dynamics: Understanding the limits by: Field emission, Vacuum arcing (breakdown) and Fatigue due to pulsed surface heating.



X band RF structures fabrication: Processes, Developments (rectangular disks, brazing, halves), Fabrication capacity and Components for systems.

Industrial questionnaire: Based on the companies feedback, the preparation phase to the mass production could take about five years. Capacity clearly available.

Industrialization and mass production still a challenge

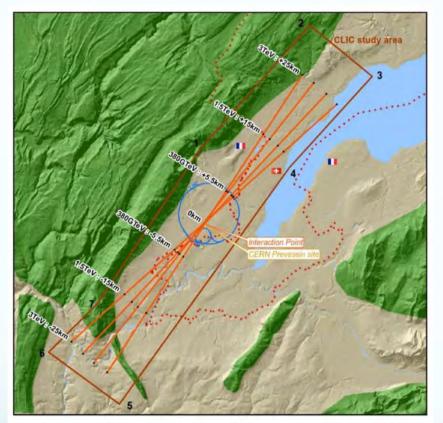
CLIC Main Linac: Technology challenge

R&D for high-efficiency klystrons

- The CERN high-efficiency klystron program develops klystrons for numerous accelerators including LHC, CLIC, FCC-ee and ILC.
- For **CLIC**, this includes the L-band and X-band sources

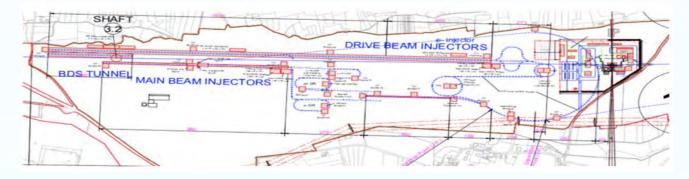
Drivebeam klystron: The klystron efficiency (circles) and the peak RF power (squares) simulated for the CLIC TS MBK (solid lines) and measured for the MBK E37503 (dashed lines) vs total beam power.

INFTER //2029xplore.ieee.org/document/9115885

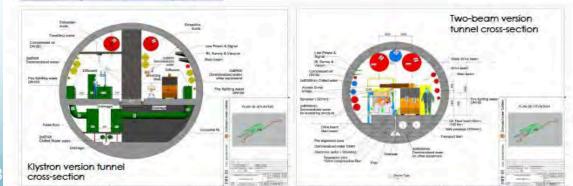

Communication & Power Indus	50 MW	VKX-8311A	CERN(D)	8-10 MW	E37113 at factory		Canor
	Voltage, kV	420	420	Voltage, kV	154	154	
	Current, A	322	204	Current, A	93	90	
	Frequency, GHz	11.994	11.994	Frequency, GHz	11.994	11.994	
	Peak power, MW	49	59	Peak power, MW	6.2	8.1	
	Sat. gain, dB	48	58	Sat. gain, dB	49	58	
	Efficiency, %	36.2	68 / KlyC	Efficiency, %	42	57/ FCI	
	Life time, hours	30 000	85 000	Life time, hours	30 000	30 000	
	Solenoidal magnetic field, T	0.6	0.35/0.6	Solenoidal magnetic field, T	0.35	0.4	
	RF circuit length, m	0.32	0.32	RF circuit length, m	0.127	0.127	
20/1	1/2021		VKX-8311A 00 125 130 RF deve	elopment meeting	HEX8 8 12 Beam power, MW	E37113 6 20 12 20 20 12 20 20 20 20 20 20 20 20 20 20 20 20 20	15
20/1	1/2021 Tailored Technologies	50 75 3 Beam power, MW	VKX-8311A 10 00 125 150 RF deve	Billiperech 10 0	5 12 Beam power, MW	E37113 6 12	
20/:	1/2021 0 25	50 75 3 Beam power, MW . High Efficiency es delivers	VKX-8311A 0 225 250 RF deve Magnetic circuit Local oil tank Cathode ceramic (25 K/) Main solenoid 2" HV insulating	elopment meeting	5 12 Beam power, MW	E37113 6 12	25
20/:	Tailored Technologies.	50 75 3 Beam power, MW . High Efficiency es delivers	Magnetic circuit Local oil tank Gathode ceramic (25 KV) Main solenoid	elopment meetiRg	8 12 Beam power, MW	E37113 6 12	0 25 20 15
	1/2021 Tailored Technologies. Industrial CLIC MBK prototype "70 % RF power production e To % RF power production e The new klystron bunching tech cannot be directly adopted to th	A High Efficiency as delivers fficiency as delivers fficiency fficienc	VKX-8311A 0 225 350 RF deve Magnetic circuit Local oll tank Cathode ceramic (25 KV) Main solenoid 2 rd HV insulating ceramic (115 KV) PA gap Output waveguide Output tool	elopment meeting	8 12 Eeam power, MW 90 80 70 60 50 60 60 60 70 60 70 60 70 60 70 60 70 60 70 70 70 70 70 70 70 70 70 7	E37113 9 000 g	25 20 15 10 5
20/1	1/2021 Tailored Technologies Industrial CLIC MBK prototype 70 % RF power production e To % RF power production e To % RF power production e To % RF power production e To % RF power production e	High Efficiency and a second	VKX-8311A 0 225 250 RF devo Magnetic circuit Local oil tank Cathode ceramic (25 W) Main solenoid 2 rd HV insulating ceramic (115 W) PA gap Output waveguide	elopment meeting	5 12 Beam power, MW 90 80 70 60 50 50	E37113 6 12	0 25 20 15 10 30 35

23 Sep-4 Aug202

High Efficiency X-band klystrons retrofit upgrades (in collaboration with CPI and Canon).

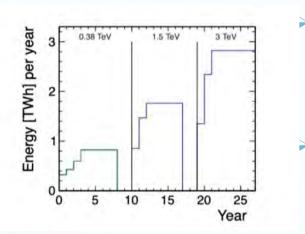


CLIC Site Selection and Civil Engineering

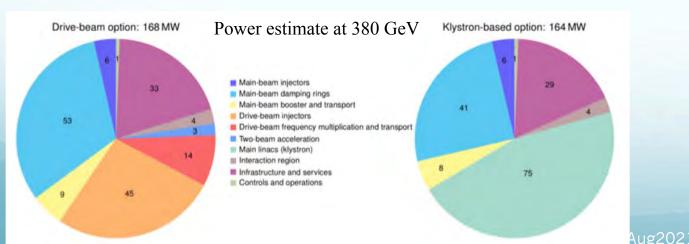

Important effort within:

- Civil engineering
- Electrical systems
- Cooling and ventilation
- Transport, logistics and installation
- Safety, access and radiation protection systems Crucial for cost/power/schedule

- Klystron-powered version studied and costed for 1st stage (380 GeV c.m.)
- Upgrade to 1 TeV and beyond based in any case on Two-beam scheme (klystron-based sectors re-usable with modifications)

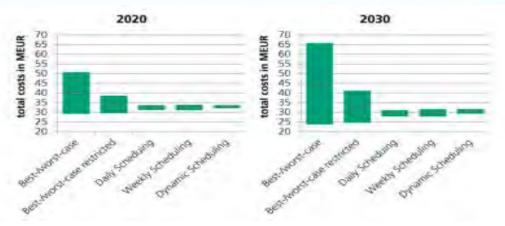


INFIERI 2021


Laboratoire de Physique es 2 Infinis

"Green CLIC" and Carbon neutrality

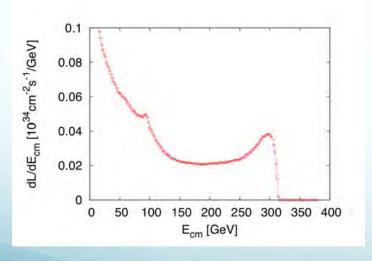
Collision Energy [GeV]	Running [MW]	Standby [MW]	Off [MW]
380	168	25	9
1500	364	38	13
3000	589	46	17

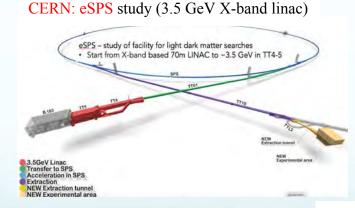


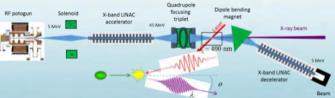
 Very large reductions since CDR, better estimates of nominal settings, much more optimised drivebeam complex and more efficient klystrons, injectors more optimisation, etc
 Further savings possible, main target damping ring RF and improved Lband klystrons for drivebeam

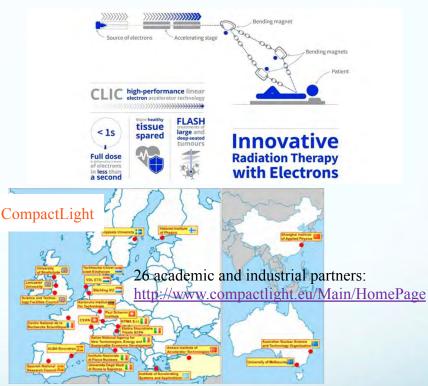
- Energy studies:
- Running when energy is cheap

Relative energy cost by no scheduling, avoiding the wintermonths (restricted), daily, weekly and dynamic scheduling. Central values of the ranges shown should be considered best estimates. The absolute cost scale will depend on price, contracts and detailed assumption about running times, but the relative cost differences indicate that significant cost-reductions could be achieved by optimizing the running schedule of CLIC to avoid high-energy cost periods (Fraunhofer)


- Renewable energy (carbon footprint)
- Recovering energy





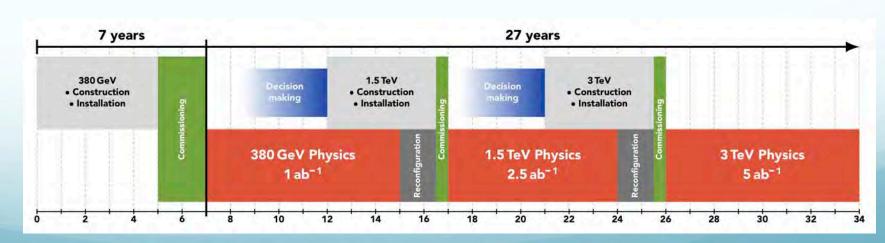

Further work on luminosity performance, possible improvements and margins, operation at the Z-pole and gamma-gamma are ongoing.

- CLIC technology for different applications
 - EU co-funded FEL design study
 - 1 GeV linac at INFN-LNF
 - Medical linacs
 - ICS
 - etc

INFN Frascati advanced acceleration facility EuPRAXIA@SPARC_LAB

Eindhoven University SMART*LIGHT Compton Source

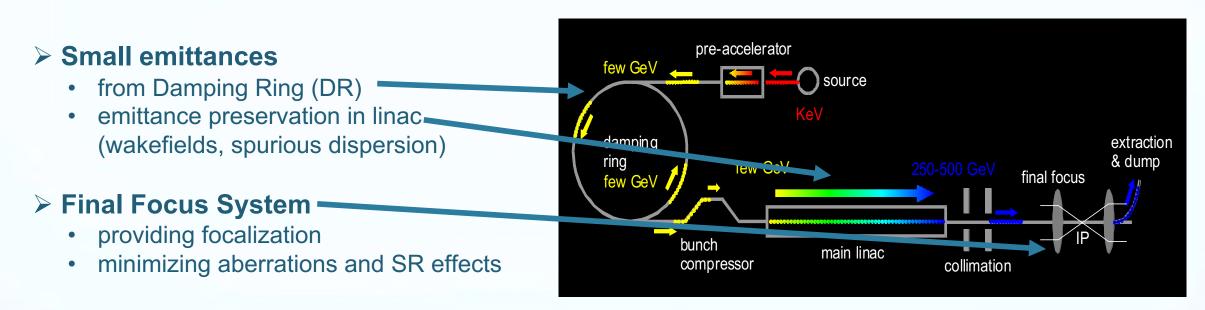
CLIC Timeline



Project Readiness Report as a step toward a TDR – for next ESPP

Assuming ESPP in 2026, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.

- Focusing on:
- The X-band technology readiness for the 380 GeV CLIC initial phase
- Optimizing the luminosity at 380 GeV
- Improving the power efficiency for both the initial phase and at high energies


- More details:
 - **X-band studies**: Structure manufacturability and optimized conditioning, interfaces to all connecting systems for large scale production, designs for and support of use in applications from the 1 GeV linac at LNF to medical linacs
 - **Luminosity:** beamdynamics studies and related hardware optimisation for nano beams from damping rings to final focus (mechanical and thermal stability, alignment, instrumentation, vacuum systems, stray field control, magnet stability, etc)
 - Improving damping ring and drive beam RF efficiency, study parameter changes to reduce power at multi-TeV energies maintaining high luminosities

Technology Driven Schedule with a preparation phase of ~5 years is needed before (estimated resource need for this phase is ~4% of overall project costs)

Nanobeam Systems: what is needed to get nanobeam sizes?

Tuning recipe

- scanning orthogonal tuning knobs
- beam-beam deflection scans or luminosity dither feedback

> Stability

- pulse-to-pulse orbit stability (DR instability, wakefileds, kicker)
- pulse-to-pulse beam size / emittance stability

Generic LC (at least one half of it)

Nanobeams past and recent achievements: linear

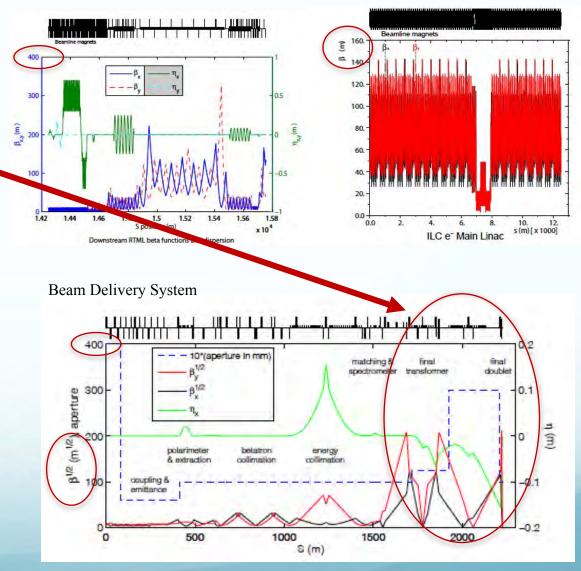
*1998

**1997

bang!

***	2016
-----	------

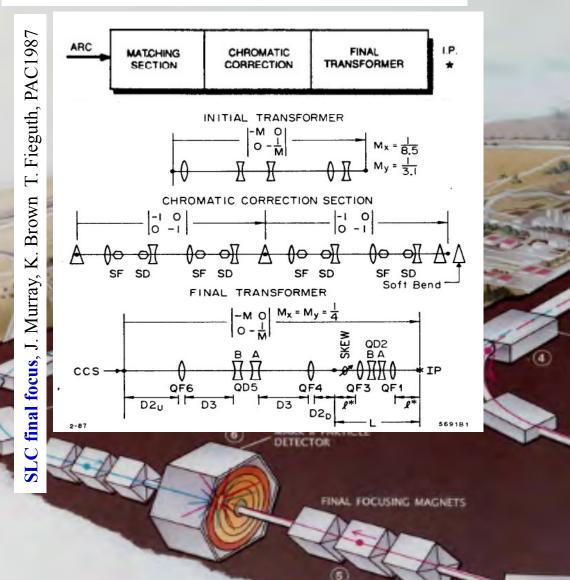
		SLC FFTB ATF2		TF2					
	Units	design	achieved*	design	achieved**	design	standard***	ILC	CLIC
E_{cm}	[GeV]	50	50	50	46	1.3	1.3	250	380
Ĺ	$[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	0.0006	0.00014					1.35	1.5
<i>f</i> _{rep}	[Hz]	180	120			3.12	3.12	5	50
<i>n</i> _b	1					1 - 20	1	1312	352
N _e	[10 ¹⁰]	7.2	3.7	1.2		1.0	0.1	2.0	0.52
σ_b	[µm]	1000	1000	500	500	7000	7000	300	70
$\gamma \epsilon_x$	[nm]	42000	54000	32000	30000	5000	5000	5000	950
$\gamma \epsilon_y$	[nm]	42000	10000	3000	1000	30	30	35	30
σ_{x}^{*}	[nm]	1650	1840	1000	1700	9000		516	149
σ_{v}^{*}	[nm]	1650	980	60	70	37	41	7.7	2.9
β_x^*	[mm]	5	2.8	0.1	10	4	40	13	8
β_y^*	[mm]	5	1.5	3.0	0.1	0.1	0.1	0.41	0.1



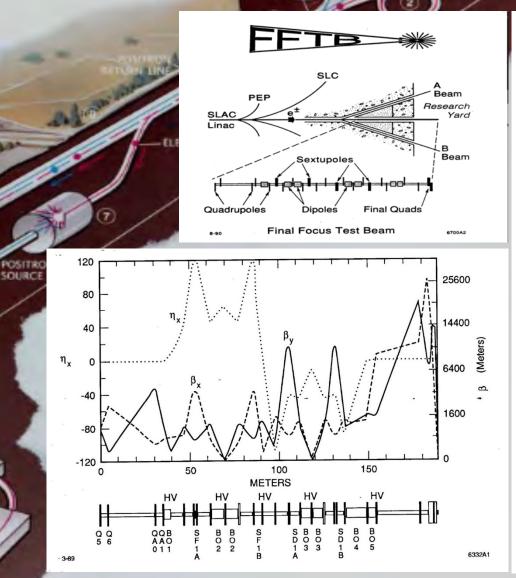
Nanobeam Systems: FFS designs

ILC optics

FFS is among the most challenging sections of a LCs


- Chromaticity correction is the main problem
 - Interleaved sextupoles (SLC)
 - Non-interleaved sextupoles (FFTB)
 - Local chromaticity correction (ATF2)
- Very-large β and the presence of nonlinear elements make it extremely sensitive to any kind of imperfections.

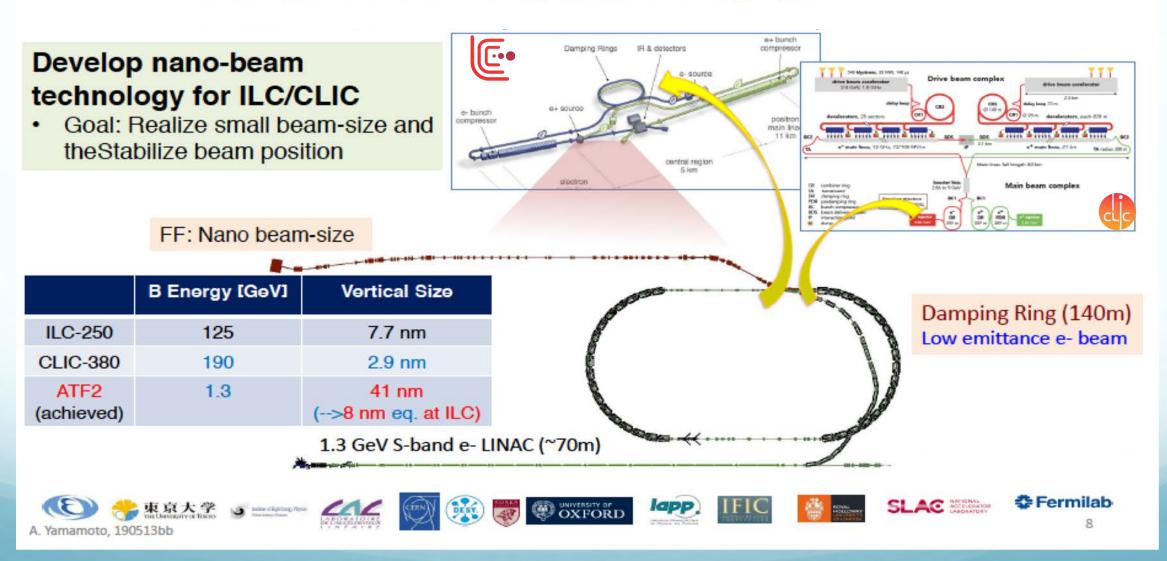
Nanobeam Systems: FFS designs


3 Sep-4 Aug2021

> **SLC type** (interleaved sextupoles)

FFTB type (modular, non-interleaved sextuples)

ilC



ATF2 the ILC-CLIC FFS testbench

ATF/ATF2: Accelerator Test Facility

Courtesy: N. Terunuma

Nanobeam Systems: FFS designs

150

100

50

0.3

-0.6 -0.8

> 200 100

> > 0.1

-0.2

600

500

400

100

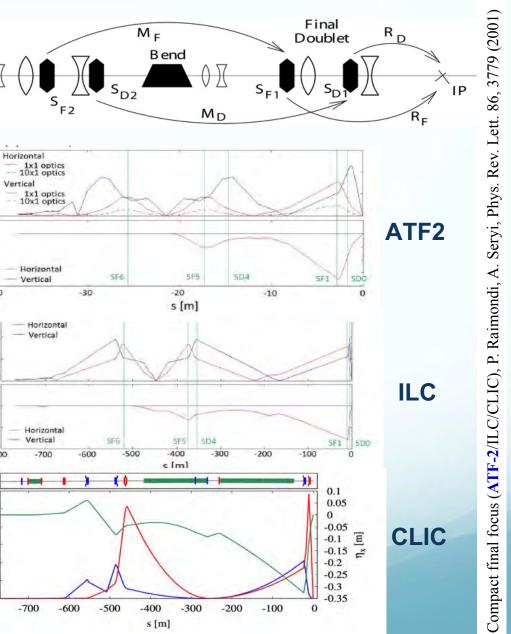
0

[III] ⁴⁰⁰ 300 gd 200

0

B^{1/2} [m^{1/2}]

[ա] և -0.2 -0.4


β^{1/2}[m^{1/2}]

[ա] և -0.1

FFS optics

ug2021

Comp	act ILC/CLIC	C/ATF2 loca	al chroma	atic correc	tion
	Units	ATF2	ILC	CLIC	

	Units	ATF2	ILC	CLIC
E_{cm}	[GeV]	1.3	250	380
Ĺ	$[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$		1.35	1.5
<i>f</i> _{rep}	[Hz]	3.12	5	50
N _{bunches}	1	1 - 20	1312	352
N _e	[10 ¹⁰]	1.0	2.0	0.52
σ_{b}	[µm]	7000	300	70
Δt_b	[ns]	154	554	0.5
$\gamma \epsilon_x / \gamma \epsilon_y$	[nm]	5000 / 30	5000 / 35	950 / 30
$\sigma_{x}^{*} / \sigma_{y}^{*}$	[nm]	9000 / 37	516 / 7.7	149 / 2.9
IP Stabilization	σ_{y}^{*}	< 0.05	< 0.2	< 0.08
L^*	[m]	1	4.1	6
β_x^* / β_y^*	[mm]	40 / 0.1	13 / 0.41	8 / 0.1
INFIERI 2021				23 Sep-4

Nanobeam Systems: FFS designs

FFS is among the most challenging sections of a LCs

- Very-large β and the presence of nonlinear elements make it extremely sensitive to imperfections as:
 - Wakefields introduce energy spread, bunch head-to-tail distortions, and amplify transverse deflections...
 - Magnets misalignment introduce dispersion, beta-beating, orbit deflections, transverse coupling, ...
 - Beam jitter unavoidably cause betatron oscillations that propagate all the way to the IP, etc.
- $\label{eq:similar chromaticities (L*/\beta*_{x,y}): 25 / 10000 (ATF2), 315 / 10000 (ILC), 750 / 60000 (CLIC) and similar tolerances for FD multipole field errors (ATF2 and ILC) PRAB 17, 023501 (2014) \\ \end{tabular}$
- In ILC and CLIC, the much shorter bunch length and the much larger beam energy make the situation "simpler"
- > ATF2 tackles its critical task with two major disadvantages w.r.t. its "bigger brothers":
 - Bunch length is much longer: 7000 vs 300 (ILC) / 70 (CLIC) µm, 23 / 100 times larger
 - Beam energy is significantly lower: 1.3 vs 125 (ILC) / 190 (CLIC) GeV, 100 / 150 times smaller
- > Measurement of the nanobeam sizes involves a complex device: Shintake monitor (IPBSM)

ATF2: The perfect storm in a glass of water...

- Very-large β and imperfections as
 - Wakefields

Na

- Magnets mis
- Beam jitter
- Similar Chromati similar tolerances
- In ILC and CLIC the situation "sim
- ATF2 tackles its c
 - Bunch len
 - Beam ener
- > Measurement of the

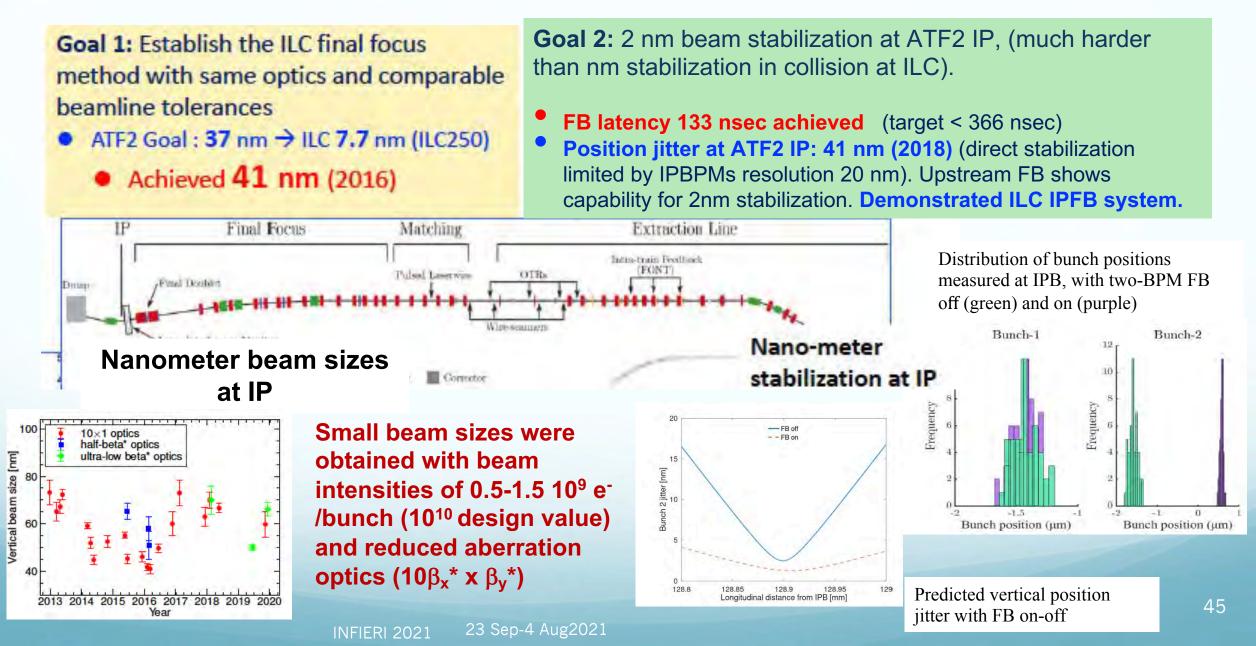
ilc 🍕

xtremely sensitive to

y transverse deflections... ansverse coupling, ... to the IP, etc.

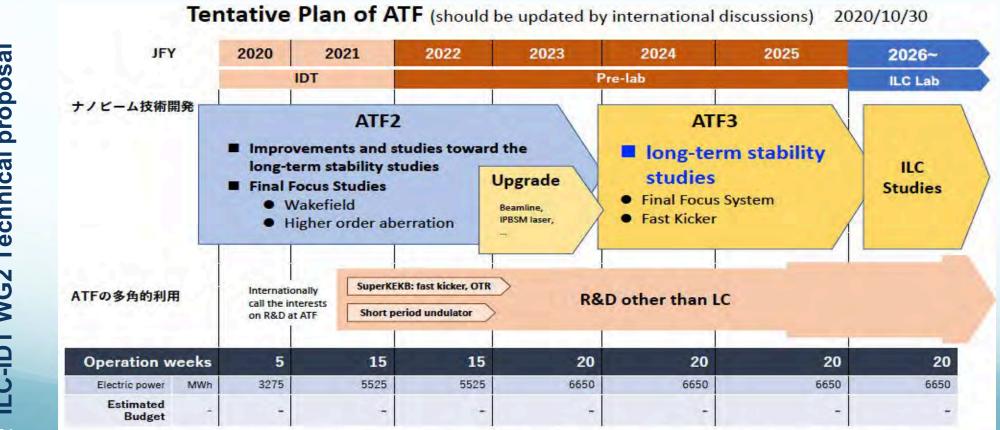
750 / 60000 (CLIC) and B 17, 023501 (2014)

ger beam energy make

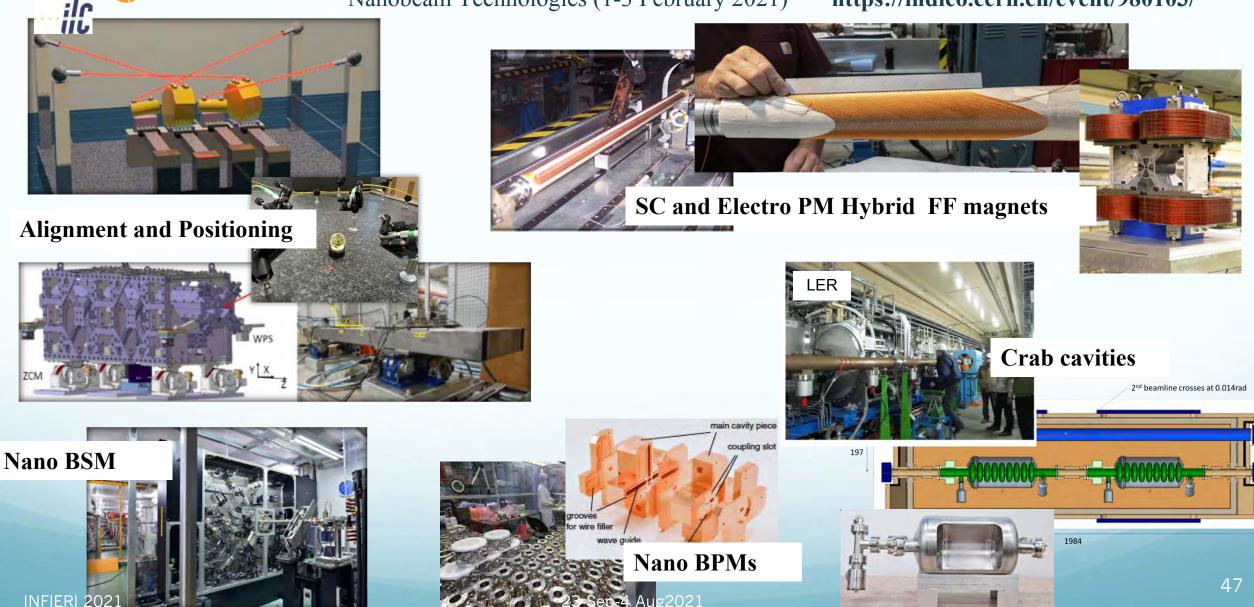

bigger brothers": / 100 times larger /, 100 / 150 times smaller

onitor (IPBSM)

Nanobeam Systems: Experimental results



Based on the achievements of the ATF2 no showstopper for ILC has been found, **ATF3** plan is to pursue the necessary R&D to **maximize** the **luminosity potential of ILC**. In particular the assessment of the **ILC FFS system design** from the point of view of the beam dynamics aspects and the technological/hardware choices and the **long-term stability operation issues**.



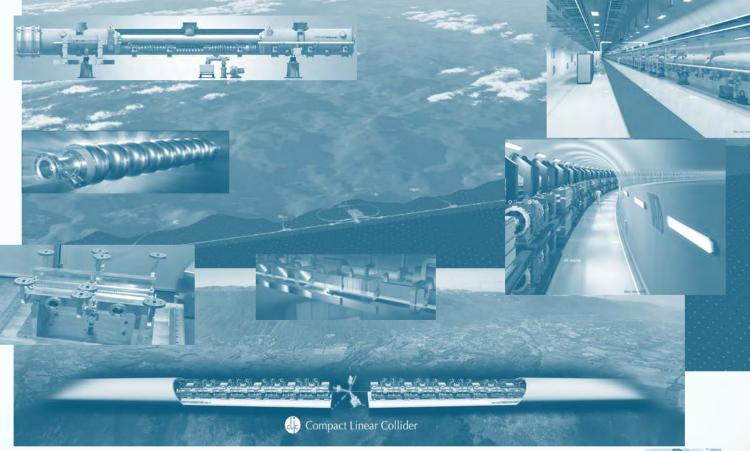
Technical proposal LC-IDT WG2 INFIERI 2021

Translated in English for your reference. Detailed budget profile was omitted here but presented to DG. N. Terunuma

Nanobeam Technologies: devices and monitoring

Nanobeam Technologies (1-3 February 2021) https://indico.cern.ch/event/980103/

Lab CNS

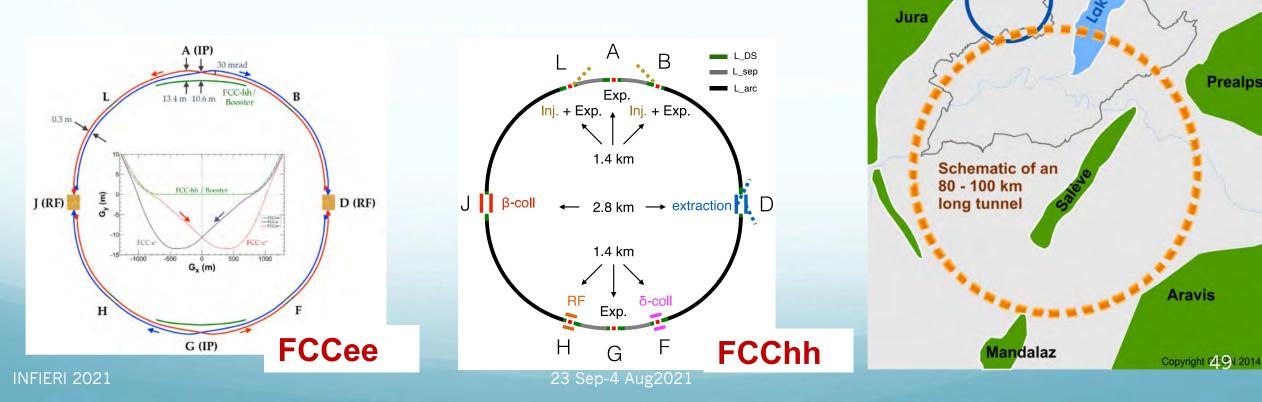

IN2P3

Outline

Luminosity issues

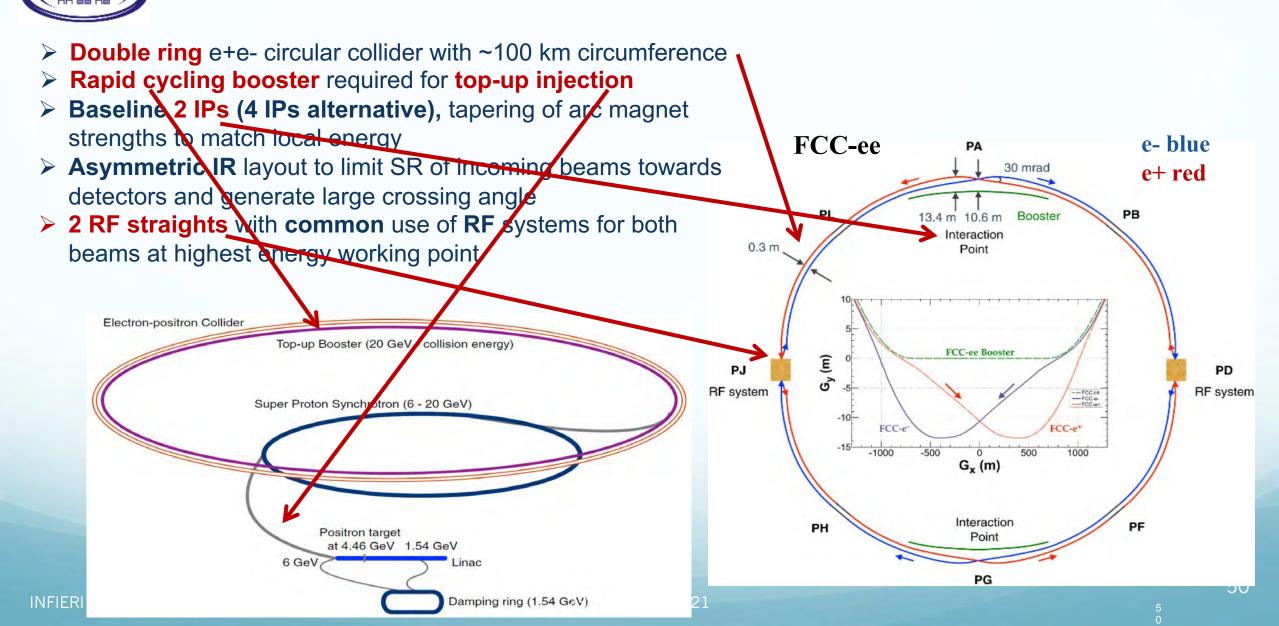
- ➤ The e⁺e⁻ Linear colliders
 - ILC-IDT: Technology update
 - CLIC: Technology update
- ➤ The e⁺e- Circular colliders
 - FCCee: Technology update
 - CepC: Technology update (J. Gao's talk)
- Summary and Perspectives

The FCC integrated program



LHC

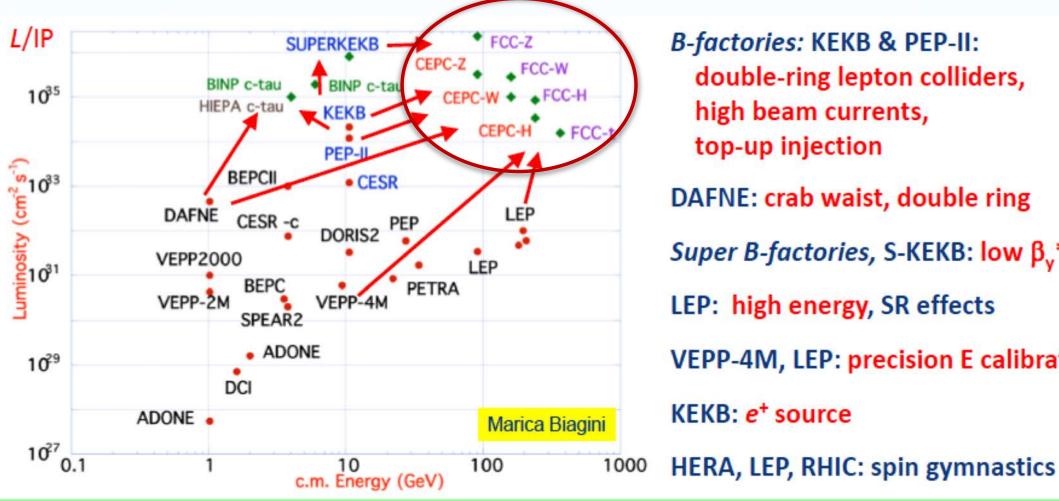
Inspired by successful LEP – LHC programs at CERN


FCC is a comprehensive long-term program maximizing physics opportunities
 stage 1: FCC-ee (Z, W, H, tt̄) as Higgs factory, electroweak & top factory at highest luminosities
 stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options

- complementary physics
- common civil engineering and technical infrastructures
- building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after HL-LHC

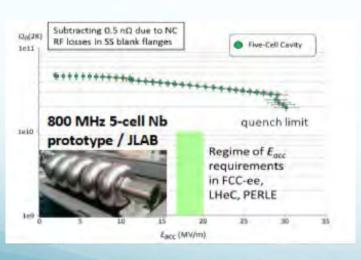
FCCee accelerator sequence and main area systems

FCCee updated parameters and operation modes

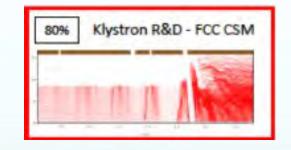


Parameter	Z	WW	ZH	tī	LEP2
energy/beam [GeV]	45.6	80	120	182.5	105
bunches/beam	16640	2000	328	48	4
beam current [mA]	1390	147	29	5.4	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.6	0.0012
energy loss/turn [GeV]	0.036	0.34	1.72	9.2	3.34
synchrotron power [MW]		100			22
RF voltage [GV]	0.1	0.75	2.0	4.0 + 6.9	3.5
rms bunch length (SR,+BS) [mm]	3.5, 12	3.0, 6.0	3.2, 5.3	2.0, 2.5	12, 12
rms emittance e _{x,y} [nm, pm]	0.27, 1	0.84, 1.7	0.63, 1.3	1.5, 2.9	22, 250
longit. damping time [turns]	1273	236	70	20	31
vert. IP beta function b _y * [mm]	0.8	1.0	1.0	1.6	50
beam lifetime, rad. Bb + BS [min]	68	59	12	12	434

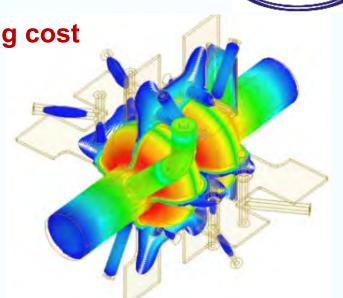
FCCee is based on proven techniques from past colliders and light sources

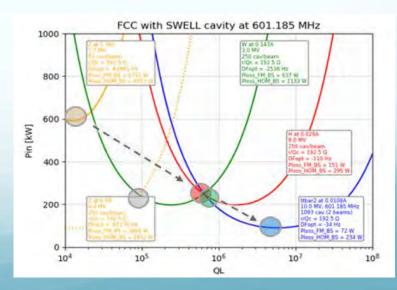

B-factories: KEKB & PEP-II: double-ring lepton colliders, high beam currents, top-up injection DAFNE: crab waist, double ring Super B-factories, S-KEKB: low β^{*} LEP: high energy, SR effects VEPP-4M, LEP: precision E calibration KEKB: e⁺ source

combining successful ingredients of several recent colliders \rightarrow highest luminosities & energies



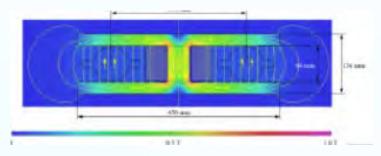
RF R&D to improve performance and efficiency and reducing cost

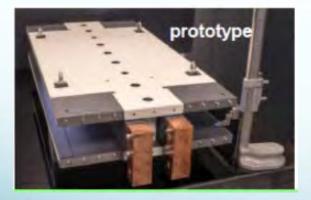

- Improved Nb/Cu coating/sputtering (e.g. ECR fibre growth, HiPIMS)
- Coating of A15 (e.g. Nb3Sn)
- Bulk Nb cavity R&D at FNAL, JLAB, Cornell, KEK and CepC/IHEP
- New cavity fabrication techniques (e.g. Improved polishing, seamless, SWELL cavities)
- The CERN high-efficiency klystron program develops klystrons for numerous accelerators including LHC, CLIC, FCC-ee and ILC.
- MW-class fundamental power couplers for 400 MHz

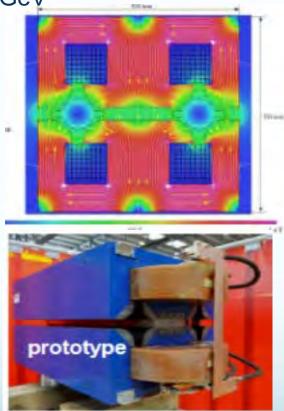


400 MHz SRF cryomodule, + prototype multi-cell cavities for FCC ZH operation

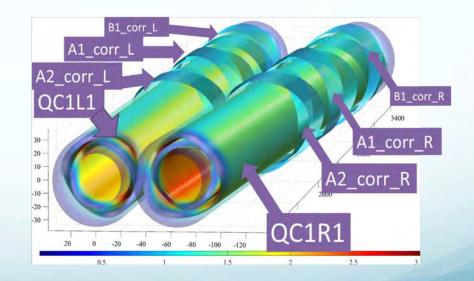
SWELL cavity: one for all energies


INFIERI 2021


recent topical FCC review April-June '21

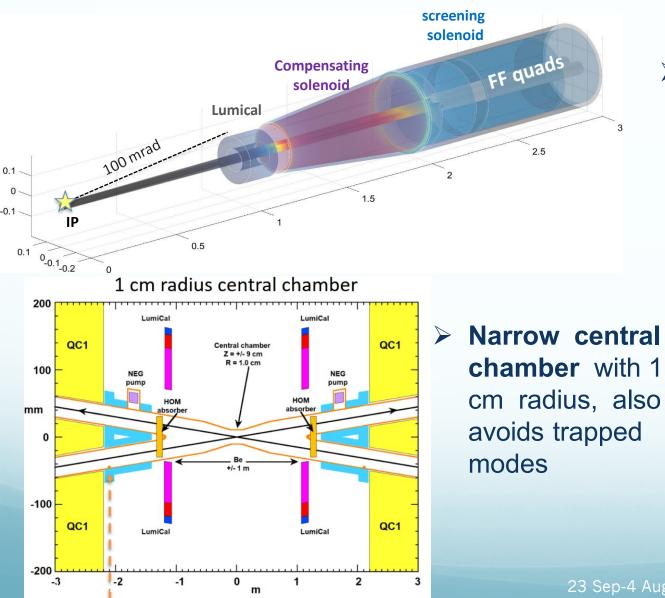

Magnet R&D for low power

Twin-dipole design with 2xpower saving 16 MW at 175 GeV



Twin F/D quad design with 2xpower saving 25 MW at 175 GeV

Final quadrupole pair near IP; canted-cosine-theta concept; with orbit corrector & skew quadrupole; to be built with Nb-Ti or HTS wires



Power reduction by 2 w.r.t. single aperture magnets

R&D in Machine Detector Interface

challenging integration: 2 T detector solenoid, luminosity monitor (Bhabha scattering), compensation and shielding solenoids

Q1 prototype:

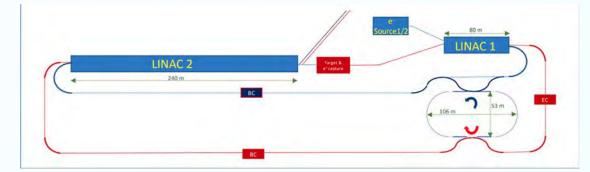
with fringe field

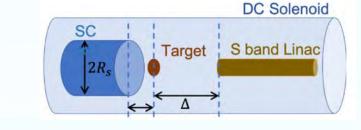
LHC SC cable

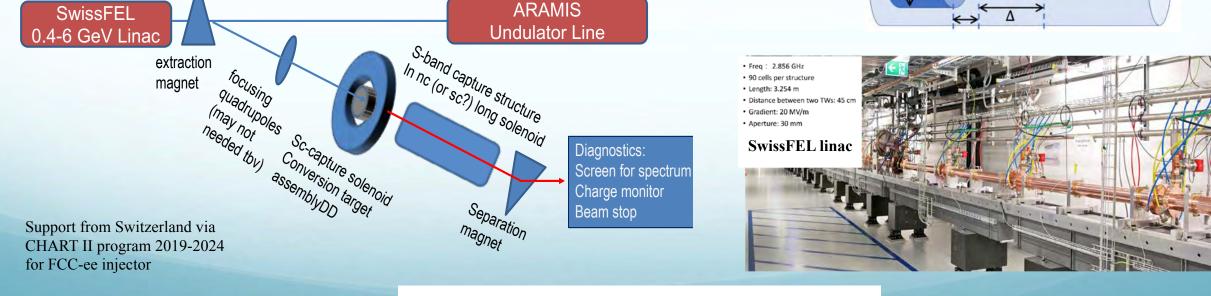
correction, using

canted cosine theta

23 Sep-4 Aug2021

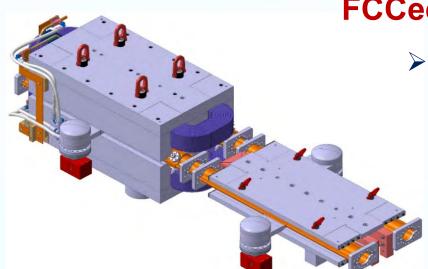

field measurement at warm





R&D for optimized FCCee injector to improve performance and efficiency

- FCC-ee injector new design, conservative approach SuperKEKB based, optimized layout
- High-yield positron source target with DC SC solenoid or flux concentrator
- > **Positron capture linac** large aperture S-band linac
- Beam test of e⁺ source and capture linac at SwissFEL yield measurement



recent topical FCC review April-June '21

chirped laser pulse

EO

e bunch

bunch electric field at the crystal changes the laser pulse polarization

crystal

 $\lambda/4$

 $\lambda/2$

polarizing

grating

beam splitter

FCCee R&D: prototypes by 2025

FCCee complete arc half-cell mock up including girder, vacuum system with antechamber + pumps, dipole, quadrupole + sext. magnets, BPMs, cooling + alignment systems, technical infrastructure interfaces.

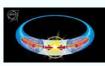
Key beam diagnostics elements

- bunch-by-bunch turn-by-turn longitudinal charge density profiles based on electrooptical spectral decoding (beam tests at KIT/KARA);
- ultra-low emittance measurement (X-ray interferometer tests at SuperKEKB, ALBA)
- beam-loss monitors (IJCLab/KEK);
- beamstrahlung monitor (KEK);
- polarimeter ; luminometer

laser

encoded bunch

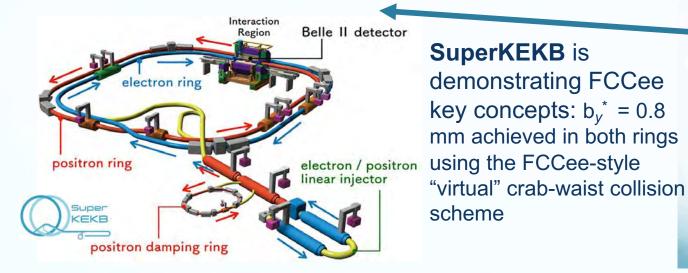
line array camera

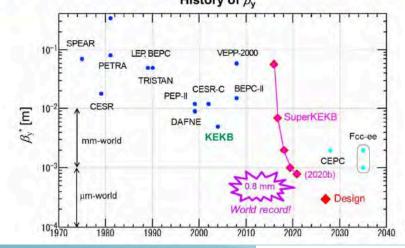

profile

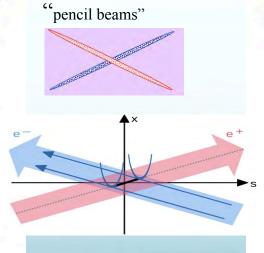
ultra-fast

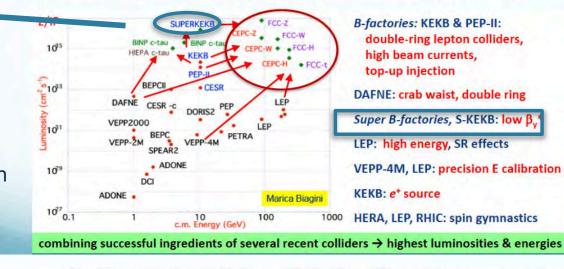
beam dump

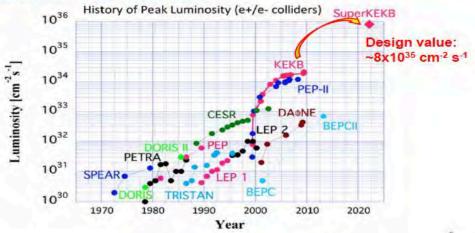
Nanobeams past and recent achievements: circular


			SuperKEI	KB		FCCee	CepC
	Units	design		Achi	eved *	(Z)	(Z)
E_{cm}	[GeV]	4 (LER)	7 (HER)	4 (LER)	4.6 (HER)	45	45.5
L/IP	$[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	80		3	.12	230	101.1
Ι	[mA]	3600	2600	790	687	1390	841
<i>n</i> _b	1	250	0	1174		16640	10870
N _e	[10 ¹⁰]					17	16.1
σ_{b}	[µm]	600	0	60	000	3500	9600
$\gamma \epsilon_x$	[nm]	25049	63013	31702	63013	23777	46301
$\gamma \epsilon_y$	[nm]					88	142.5
$\sigma_{\!x}^{*}$	[nm]	10100	10700	17900	16600	6300	8800
σ_{y}^{*}	[nm]	48	62	229	229	28	40
β _x *	[mm]	32	25	80	60	150	150
β_y^*	[mm]	0.27	0.3	1.0	1.0	0.8	1.0

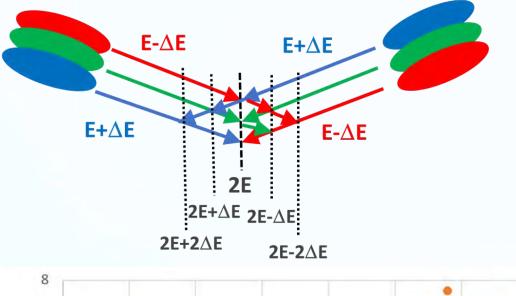

Past and recent achievements: circular

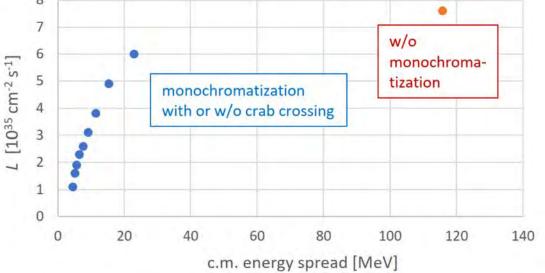




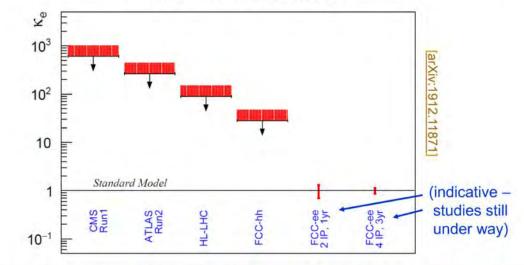

Now operating with the world's smallest β_y^* of 0.8 mm, lower than the bunch length of ~6 mm. History of β_y^*

Aim the world-highest luminosity (a measure of collision frequency) by using a novel "nanobeam scheme" collision.



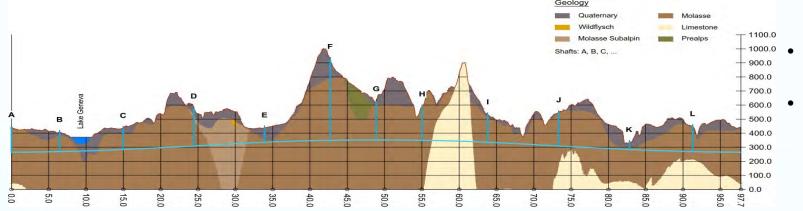

Understanding SuperKEKB essential for FCC-ee!

FCC-ee monochromatization option



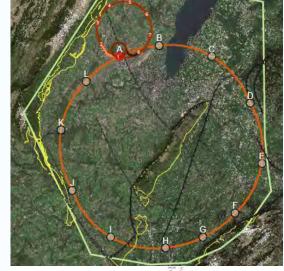
Measure the electron Yukawa coupling in a dedicated run at ~125 GeV collision energy, reducing the centre-of-mass (CM) energy spread by means of monochromatization

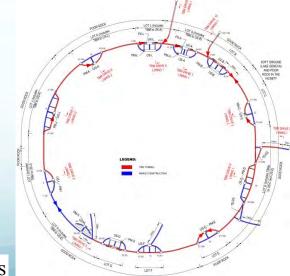
Studies still underway – likely require several years to reach SM value at 3 σ . However, can do vastly better than any other machine. Also, motivation for 4 IPs !


Upper Limits / Precision on κ_e

Final remark: operation at E_{CM} =125 GeV is also valuable for accumulating radiative returns to the Z and improving sensitivity to the number of neutrino families.

FCCee Site Selection and Civil Engineering

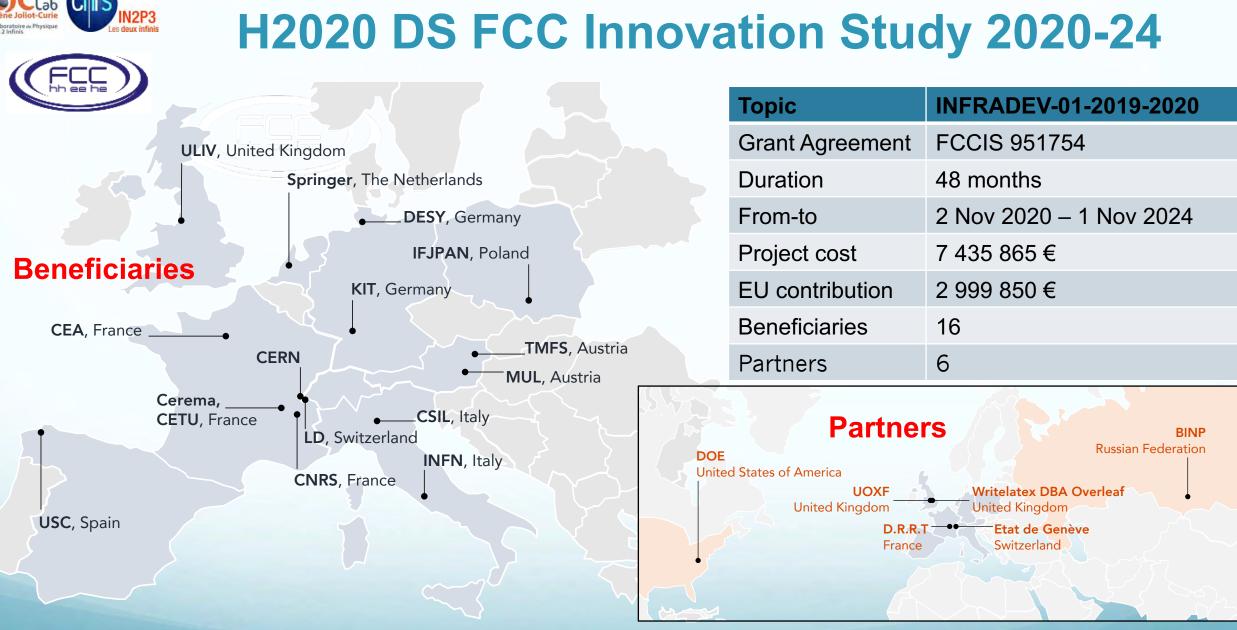



90 – 100 km circumference 12 surface sites with few ha area each

Present baseline position was established considering: Molasse rock preferred for tunnelling, avoid limestone with karstic structures, low risk and fast construction

CECTOR.	RISK	FINAL RISK INDEX								
SECTOR	NJK	17-0.8	19-0.3	21-0.5	31-0.	35-0.6	37-0.3	38-0.1	Std. Dev.*	
LAKE	Quaternary soft ground, water bearing	47	28	54	29	65	79	40	20	
ARVE	Quaternary soft ground, water bearing	12	4	9	6	6	4	5	3	
MANDALLAZ	Limestone, water bearing karsts	96	96	96	96	96	96	96	0	
USSES	Quaternary soft ground, water bearing	7	7	5	3	1	2	2	2	
VUACHE	Limestone, water bearing karsts	24	442	240	12	50	12	12	16	
RHONE	Quaternary soft ground, water bearing	18	5	8	11	8	11	12	4	
JURA	Limestone, water bearing karsts	100	672	864	100	100	100	100	0	
	TOTAL	304	1254	1276	257	326	303	267	29	

Placement minimizing the risk, define leave open later choice between 2 and 4 IPs, reduced number of surface sites



INFIERI 2021

61

FCCIS Work Packages

WP1: study management

WP2: collider design

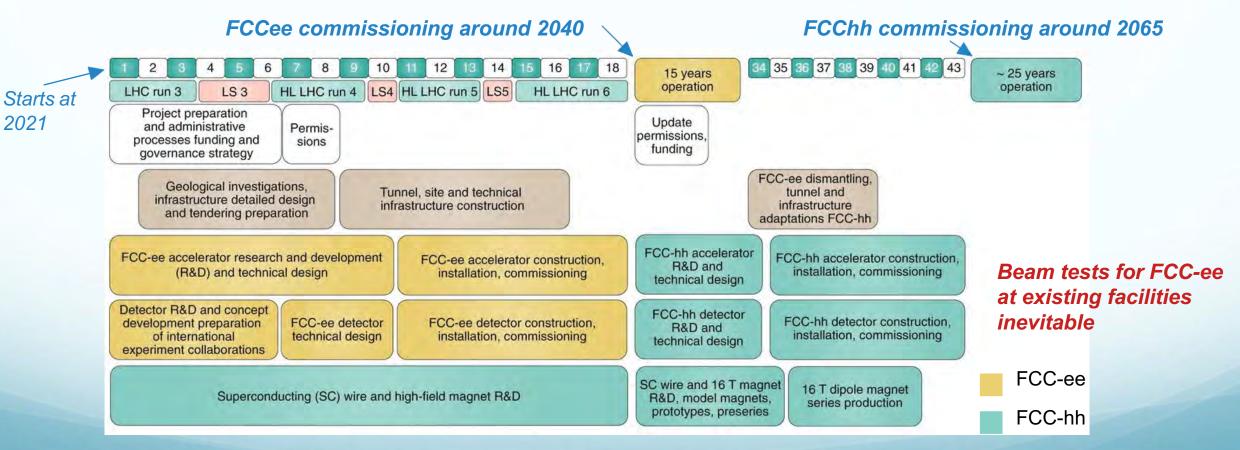
Deliver a **performance optimised machine design**, integrated with the territorial requirements and constraints, considering cost, long-term sustainability, operational efficiency and design-for- socio-economic impact generation.

WP3: integrate Europe

Develop a feasible project scenario while guaranteeing the required physic performance.

WP4: impact & sustainability

Develop the financial roadmap of the **infrastructure project**, including the analysis of socio-economic impacts.

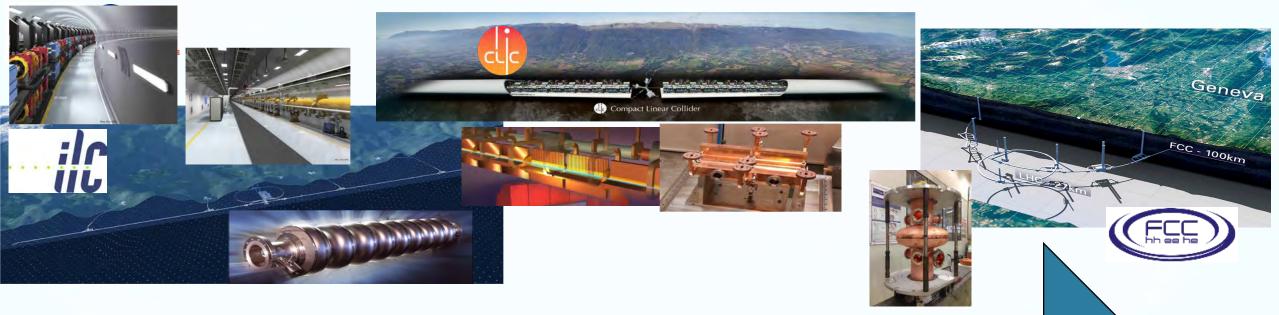

WP5: leverage & engage

Engage stakeholders in the preparation of a new research infrastructure. Communicate the project rationale, objectives and progress. Create lasting impact by building theoretical and experimental physics communities, creating compatible with local - territorial constraints awareness of the technical feasibility and financial sustainability, forging a project preparation plan with the host states (France, Switzerland).

FCC Integrated Timeline

Lepton collider (FCCee) followed by hadron collider (FCChh)

64



- **two circular Higgs and electroweak factories** are being developed, FCC-ee and CEPC; both promise highly efficient performance over large energy range from *Z* pole to top pair threshold
- independent design efforts led to **similar layouts & parameters**; further improvements possible (e.g. monochr. s-channel *H* production, 4 IPs,...)
- synergetic R&D efforts are ongoing, prototyping of key components,...
- either machine would prepare the ground for a subsequent hadron collider, FCC-hh or SPPC, plus several other options, and would enable an exciting frontier physics programme spanning over a century
- FCC has entered **feasibility study phase**, results of which will inform the **next update of European Strategy** for Particle Physics ~2026/27

- A LC Higgs factory is ready for start up ~2035: ILC hosted in Japan and CLIC at CERN, are mature designs in both cases promoted and set up as international projects
 - Main accelerator technologies have been demonstrated (mass production still a challenge)
 - Cost and implementation time are similar to LHC (~10B\$)
 - Physics case is broad and profound, and being further developed
 - Detector concept and detector technologies R&D are well advanced
- Circular Higgs and electroweak factories are being developed, FCC-ee and CEPC; both promise highly efficient performance over large energy range from Z pole to top pair threshold.
 - Independent design efforts led to **similar layouts & parameters**; further improvements possible
 - Synergetic R&D efforts are ongoing, prototyping of key components,...
 - Either machine would prepare the ground for a subsequent hadron collider, FCC-hh or SPPC,
 - FCC feasibility study phase, results of which will inform the next update of EPPS

Thanks for your attention

Special thanks to Shin Michuzono, Steinar Stapnes, Benno List and Frank Zimmermann, Katsunobu Oide and Yoshihiro.funakoshi

INFIERI 2021

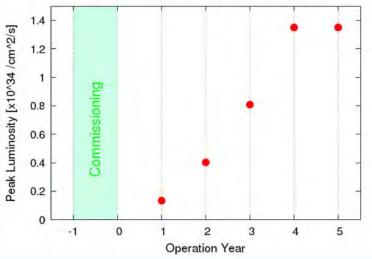
23 Sep-4 Aug2021

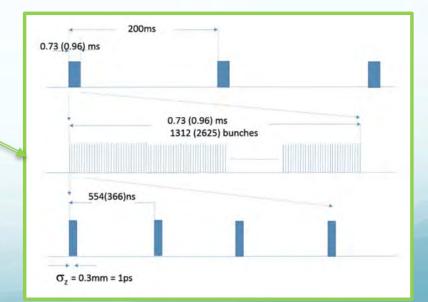

Present and Future Large Accelerator projects

In operation In construction Under study

International Large Scale Projects

An uncompleted view ...


EPPSU			EPPS	SU															$\boldsymbol{\Lambda}$
2018 2020	2022 2	2024 20	026 2	2028	2030	2032	2034	2036	2038	2040	2042	2044	2046	2048	2050	2052	2054	2056	
LHC ATF2	ESS SC linac	HL-LI ; 11T N			СерС. High сı		ILC 1.3GHz	SC	-	current		Chh ⊺ Nb₃Tn	ı/NbTn					(FCCee) ₃Tn/NbTn	
Super KEKB		FAIR			Z-pole		nano-	tabilizati	Z-pol on	9	FC ER	Ceh		HC (H Ib₃Tn/N	L-LHC) IbTn		μ+μ-		
	ATF3	LE	BNF		ERL	C	2 GHz				LIX		Spp	С					
23 Sep-4 A	ug2021				EIC		ano- eam/sta	ıbilizatio	n	INF	IERI 20	21							68



ILC 250 GeV baseline parameters

ILC Parameters	Units	ILC250
Beam Energy	GeV	125 (e ⁻) and 125 (e ⁺⁾
Peak Luminosity (10 ³⁴)	cm ⁻² s ⁻¹	1.35 * 5,000-hour operation at peak luminosit
Int. Luminosity	ab ⁻¹ /yr	0.24*
Beam dE/E at IP		0.188% (e ⁻), 0.150% (e ⁺)
x/y Beam sizes at IP	nm	515 / 7.66
Rms bunch length /	cm	0.03 (σ _z)
beta*	mm	bx*=13mm, by*=0.41mm
Crossing angle	mrad	14
Rep./Rev. frequency	Hz	5
Bunch spacing	ns	554
# of bunches		1,312
Length/Circumference	km	20.5
Facility site power	MW	111
Cost (value) range	\$B US	~5 (tunnel and accelerator)
Timescale till operations	years	$(\sim 1) + 4(prep.) + 9(construction)$

ILC Luminosity Scenario (ECM=250GeV)

INFIERI 2021

Accelerator activities at ILC Pre-lab phase

Technical preparations & SRF R&D for cost reduction [shared across regions]

- SRF performance R&D, quality testing of a large number of cavities (~100), fabrication and slTechnical preparation North America and Europe (for validating shipping)
- Positron source final design and verification
- Nanobeams (ATF3 and related): Interaction region: beam focus, control; and Damping ring: fast kicker, feedback
- Beam dump: system design, beam window, cooling water circulation
- Other technical developments considered performance critical

Final technical design and documentation [central office in Japan with a support from other labs]

- Engineering design and documentation, WBS
- Cost confirmation/estimates, tender and purchase preparation, transport planning, mass-production planning and QA plans, schedule follow up and construction schedule preparation
 Engineering Design Report (EDR)
- Site planning including environmental studies, CE, safety and infrastructure (see below for details)
- Review office
- Resource follow up and planning (including human resources)

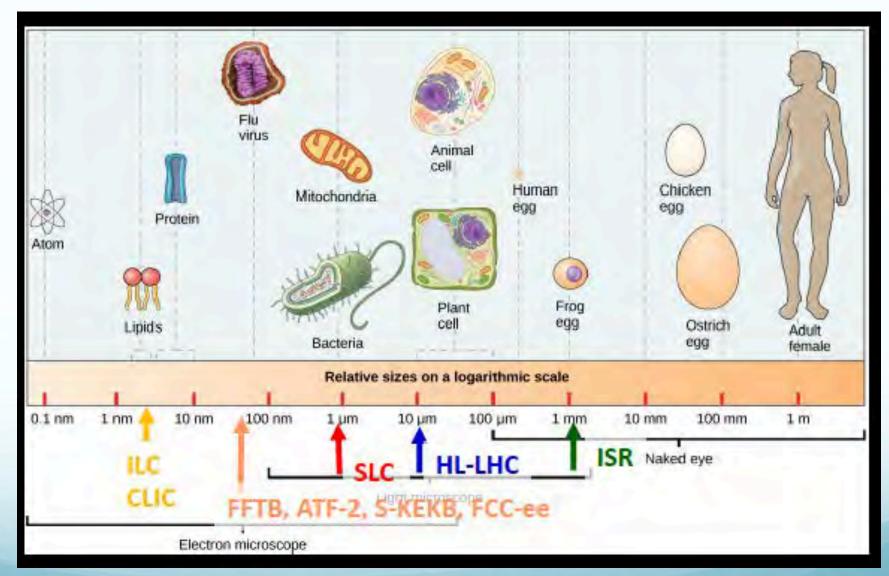
Preparation and planning of deliverables [distributed across regions coordinated by the central office]

- Prototyping and qualification in local industries and laboratories, from SRF production lines to individual WIPlanning and preparation of Hub lab.
- Local infrastructure development including preparation for the construction phase (including Hub.Lab)
- Financial follow up, planning and strategies for these activities

Civil engineering, local infrastructure and site [mainly by the Japanese institutions]

- Engineering design including cost confirmation/estimate
- Environmental impact assessment and land access
- Specification update of the underground areas including the experimental hall
- Specification update for the surface building for technical scientific and administrative needs

Civil engineering



Positron production performances in colliders

Parameters	Colliders	SLC	LEP	SuperKEKB	CLIC	ILC	CEPC	FCC-ee baseline
e ⁻ beam energy	@ target [GeV]	33	0.2	3.5	5/5 ³	126.5	4	4.46
e ⁻ /bunch[10 ¹⁰]	18.00	3-5	0.5-30	6.25	0.52/0.44	2	6.25	4.2 (or 6.25) ⁴
Bunch/pulse		1	1	2	352/312	1312	1	2
Repetition rate	[Hz]	120	100	50	50/50	5	100	200
Target Scheme	γ production way for pair creation	bremsstra- hlung	bremsstra- hlung	bremsstra- hlung	Oriented Crystal (channeling)	helical undulator	bremsstra- hlung	bremsstrahlung \ Oriented Crystal
	Target material	W74-Re26	W74-Re26	w	radiator (W) + converter (W74-Re26)	Ti	w	W74-Re26 \ radiator (W) + converter (W74-Re26)
Target mobility	· · · · · · · · · · · · · · · · · · ·	moving	fixed	fixed	fixed	moving	fixed	moving
Capture system		AMD ¹	QWT ²	AMD	AMD	AMD	AMD	AMD
Capture linac frequency [GHz]		2.856	2.999	2.856	1.999	1.3	2.860	1.999/2.856
DR energy [Ge	DR energy [GeV]		0.5	1.1	2.86	5	1.1	1.54
e+ yield @ inje	ctor exit	1.1	0.003	0.4	1	1.5	≥ 0.3	≥ 0.7

Where are we?

Key parameters for CC e+e-

M. Benedikt, Granada 2019

	Collider (all double rings)	Beam energy [GeV]	Peak luminosity (per IP) [10 ³⁴ cm ⁻² s- ¹]	β _y * [mm]	beam current [mA]	Collision scheme	Beam lifetime [min]	e ⁺ top- up rate [10 ¹¹ /s]
	SuperKEKB	4 (e⁺), 7 (e⁻)	80	0.3	3600 (e ⁺), 2600 (e ⁻)	Nano-beam	<5	10
	BINP c-t	1-3	5-20	0.5	2200	Crab waist	<10	1
	HIEPA c-t	1.5-3.5	~10	0.6	2000	Crab waist	<10	1
	FCC-ee (Z)	45.6	230	0.8	1500	Crab waist	68	7
	FCC-ee (H)	120	8.5	1.0	29	Crab waist	12	1
	FCC-ee (t)	182.5	1.6	1.6	5	Crab waist	12	0.2
2	CEPC (Z)	45.5	32	1.0	460	Crab waist	150	1.1
	CEPC (H)	120	3	1.5	17	Crab waist	26	0.2

Many similar parameters and strong synergies for design

FCCee and CepC: RF systems

	f _{RF} [MHz]	#cavities	#cell/cavity	V _{RF,tot} [MV]	acc. gradient [MV/m]	technology
SuperKEKB	509	30 (ARES) 8 (SCC)	1 1	15 12	2 6	warm Cu bulk Nb
charm-tau	500	1 / ring	1	2x1	6	bulk Nb
FCC-ee-H	400	136 / ring	4	2000	10	Nb/Cu
FCC-ee-t (addt'l)	800	372	5	6930	19.8	bulk Nb
CEPC	650	240	2	2200	19.7	bulk Nb

all systems between 400 and 800 MHz, various technologies,

- preference for SC cavities,
- FCC-ee RF system optimized for each working point, CEPC features single system

Machine parameters of SuperKEKB in June 2021

	LER	HER	Units
Beam energy [-60MeV from Y(4S) resonance], E _b	4.000-0.023	7.007-0.040	GeV
Luminosity	3.12 x 10 ³⁴		cm-2s-1
Revolution freq. f _{rev}	99.39		kHz
Date & Time	June 22 nd 2021, 18:30		
Injector rep. rate	12.5 (2bunch/inj.)	25 (1bunch/inj.)	Hz
Beam current, I _b	790.3	686.6	mA
Half crossing angle	41.5		mrad
# of bunches, N _b	1174		
β _x *	80	60	mm
β,*	1	1	mm
σ _x *	24	22	μm
σ,*	0.26	0.23	μm
Bunch length, σ_z	5.9	6.2	mm
Vertical beam-beam parameter, ξ_y	0.0529	0.0264	