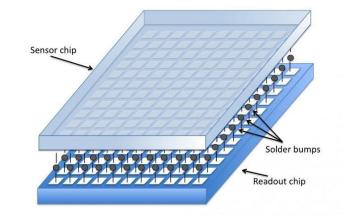
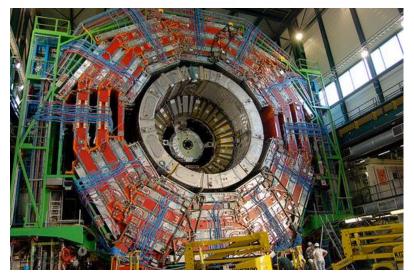
Lab session on RD53 Pixel Front-End Characterization

Valerio Re, Luigi Gaioni

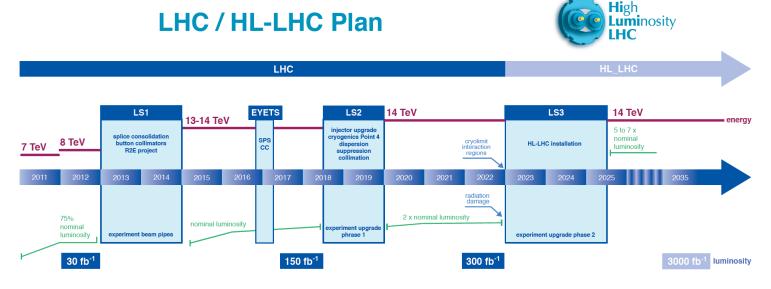
(valerio.re@unibg.it, luigi.gaioni@unibg.it)




UNIVERSITÀ DEGLI STUDI DI BERGAMO

Focus of the lab

- Pixel front-end ASICs are located at the very beginning of the signal processing chain in pixel based detectors used in many fundamental and applied research fields
- Experimental characterization of front-end circuits in advanced microelectronic technologies is an integral part of the implementation of modern radiation detection systems
- The focus of the lab will be the characterization of front-end channels for pixel detectors in a 65 nm CMOS technology
- The circuit under test is a prototype chip for the CMS phase 2 upgrade designed in the framework of the international RD53 collaboration

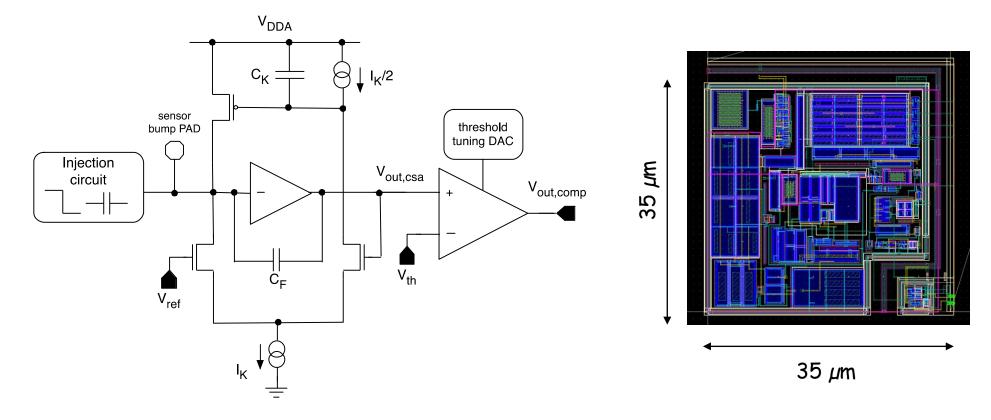


Pixel Detector Requirements at HL LHC

Very challenging requirements for the innermost layers of the pixel detectors in ATLAS and CMS @ the HL LHC

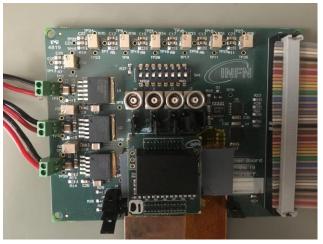
- Very high particle rate \rightarrow pixel hit rates up to 3 GHz/cm²
- Small pixels: $50 \times 50 \text{ um}^2 \rightarrow \text{ increased resolution, improved track separation}$
- Large chips: ~2cm × 2cm (1 billion transistors)
- Low mass, low power systems: ~10 uW per cell (including analog and digital sections)
- Low threshold: ~1000 e- \rightarrow severe requirements on noise and dispersion
- Harsh radiation environment: 1 Grad(SiO₂) TID; 10¹⁶ eq. n/cm² fluence

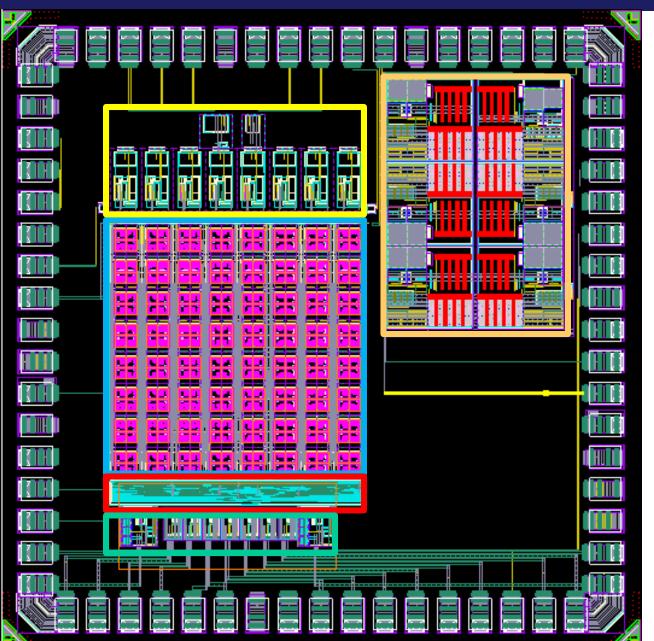
L. Gaioni, Lab session on RD53 pixel front-end – 6th INFIERI International Summer School, Madrid, Spain


RD53 - An overview

- Collaboration among ATLAS & CMS communities aiming at the development of large scale pixel chips for LHC phase-2 upgrades
- 65 nm CMOS is the common technology platform
- RD53 Goals
 - Detailed understanding of radiation effects in 65nm → guidelines for radiation hardness
 - Design and characterization of full size pixel array chip

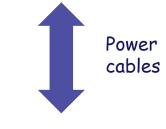
- The efforts of the RD53 collaboration led to the submission (2017) of the RD53A chip including three different front-end flavors: Synchronous, Linear and Differential
- Linear front-end has been adopted in the RD53B CMS chip (submitted in June 2021), including a matrix of 336x432 pixels (50x50 µm² each)
- A small prototype chip including RD53A and RD53B Linear front-end has been submitted and will be characterized during lab activities

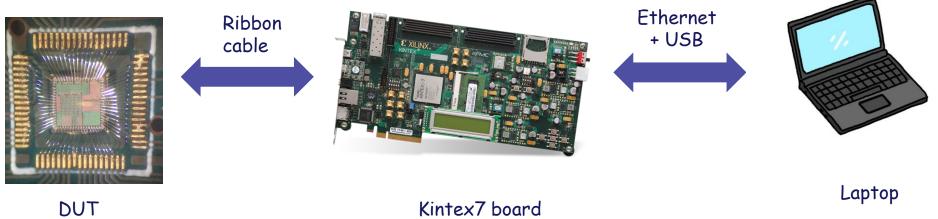

RD53 Linear front-end


- Single stage front-end with Krummenacher feedback to comply with the expected large increase in the detector leakage current
- Low power asynchronous current comparator combined with a 40 MHz Time-over-Threshold (ToT) counter for digitization of the signal
- 4 bit (RD53A) and 5 bit (RD53B) local DAC for threshold tuning

Device under test (DUT)

- 16x16 pixel matrix
 - Two regions:
 RD53A RD53B
- Analog bias
- Configuration block
 - SPI-based
- Custom LVDS TX/RX


L. Gaioni, Lab session on RD5


Test setup

Agilent 3631A power supply

- Simple LavVIEW-based test setup is used for measuring the main analog performance parameters (noise, threshold dispersion, timewalk, Time-over-Threshold) of the front-end channels
- No previous experience in pixel front-end characterization is required
- **Basic knowledge** on electronic circuit operation is a prerequisite

