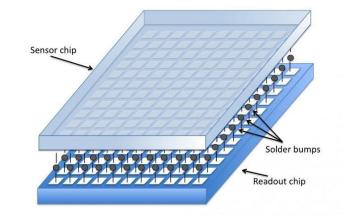
Lab session on RD53 Pixel Front-End Characterization

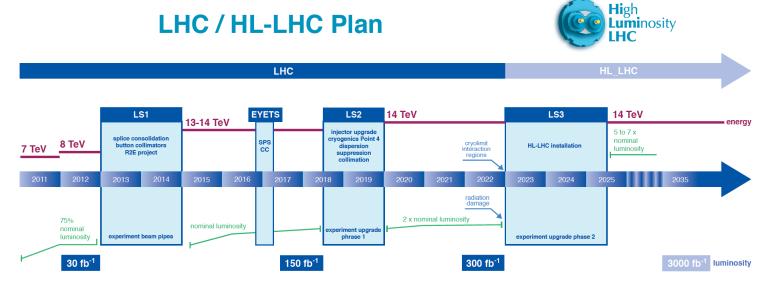
Valerio Re, Luigi Gaioni (valerio.re@unibg.it, luigi.gaioni@unibg.it)


UNIVERSITÀ DEGLI STUDI DI BERGAMO


Università di Bergamo and INFN Pavia, Italy

Focus of the lab

- Pixel front-end ASICs are located at the very beginning of the signal processing chain in pixel based detectors used in many fundamental and applied research fields
- Experimental characterization of front-end circuits in advanced microelectronic technologies is an integral part of the implementation of modern radiation detection systems
- The focus of the lab will be the characterization of front-end channels for pixel detectors in a 65 nm CMOS technology
- The circuit under test is a prototype chip for the CMS phase 2 upgrade designed in the framework of the international RD53 collaboration

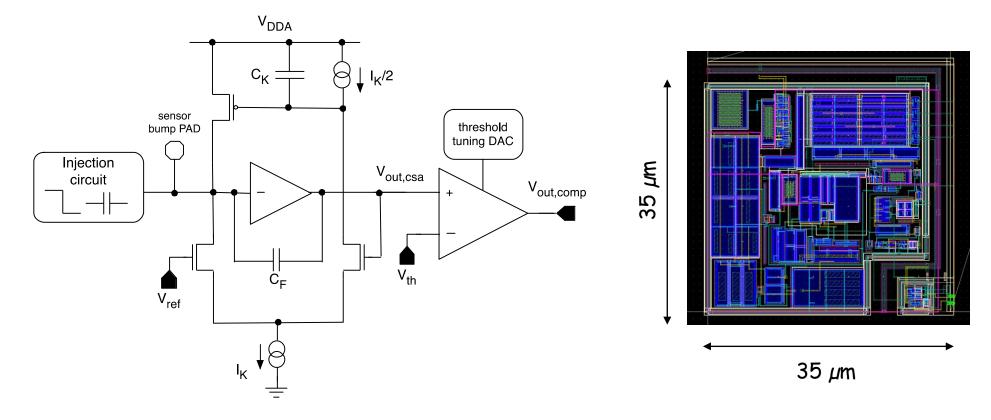


Pixel Detector Requirements at HL LHC

Very challenging requirements for the innermost layers of the pixel detectors in ATLAS and CMS @ the HL LHC

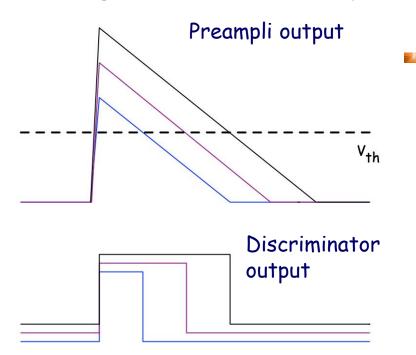
- Very high particle rate \rightarrow pixel hit rates up to 3 GHz/cm²
- Small pixels: $50 \times 50 \text{ um}^2 \rightarrow \text{ increased resolution, improved track separation}$
- Large chips: ~2cm × 2cm (1 billion transistors)
- Low mass, low power systems: ~10 uW per cell (including analog and digital sections)
- Low threshold: ~1000 e- \rightarrow severe requirements on noise and dispersion
- Harsh radiation environment: 1 Grad(SiO₂) TID; 10¹⁶ eq. n/cm² fluence

V. Re, L. Gaioni, Lab session on RD53 pixel front-end – 6th INFIERI International Summer School, Madrid, Spain


RD53 - An overview

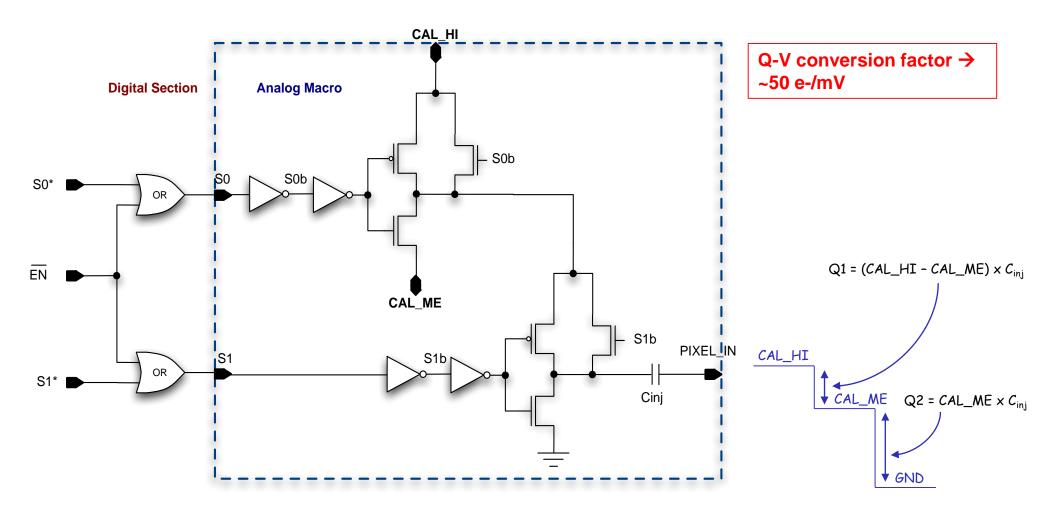
- Collaboration among ATLAS & CMS communities aiming at the development of large scale pixel chips for LHC phase-2 upgrades
- 65 nm CMOS is the common technology platform
- RD53 Goals
 - Detailed understanding of radiation effects in 65nm → guidelines for radiation hardness
 - Design and characterization of full size pixel array chip

- The efforts of the RD53 collaboration led to the submission (2017) of the RD53A chip including three different front-end flavors: Synchronous, Linear and Differential
- Linear front-end has been adopted in the RD53B CMS chip (submitted in June 2021), including a matrix of 336x432 pixels (50x50 µm² each)
- A small prototype chip including RD53A and RD53B Linear front-end has been submitted and will be characterized during lab activities

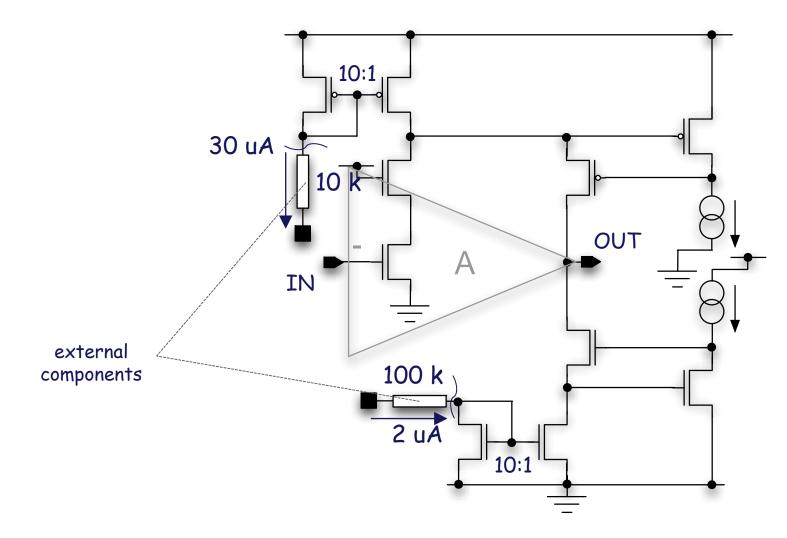

RD53 Linear front-end

- Single stage front-end with Krummenacher feedback to comply with the expected large increase in the detector leakage current
- Low power asynchronous current comparator combined with a 40 MHz Time-over-Threshold (ToT) counter for digitization of the signal
- 4 bit (RD53A) and 5 bit (RD53B) local DAC for threshold tuning

Time over threshold (ToT)


The Time over Threshold (ToT) technique provides a direct amplitude-to-time conversion; the signal at the preamp output is compared to a fixed voltage at the input of a threshold discriminator; the signal at the output of the discriminator is a digital pulse, whose duration is equal to the time during which the signal at the preamp output exceeds the threshold; digitization is easily achieved by computing the logic AND between the discriminator pulse and a reference clock and by counting the number of clock pulses

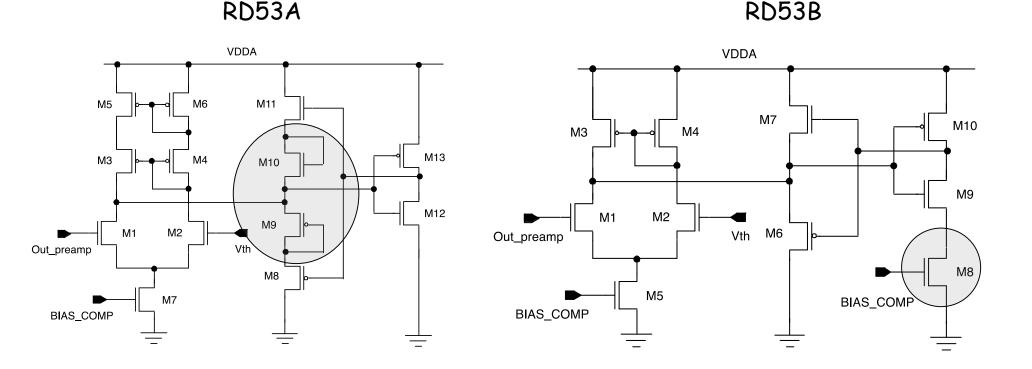
If the signal at the preamp output returns to the baseline with a constant slope, then a linear relationship exists between the peak amplitude at the preamp output and the ToT duration (the rise time of the preamp output signal is assumed to be negligible)


$$ToT = \frac{V_{peak} - V_{th}}{\left|\frac{dV_{shaper}}{dt}\right|}$$

Analog scan

- Local generation of the analog test pulse starting from 2 defined DC voltages CAL_HI and CAL_MI distributed to all pixels and a 3rd level (local GND)
- It is possible to generate two consecutive signals of the same polarity

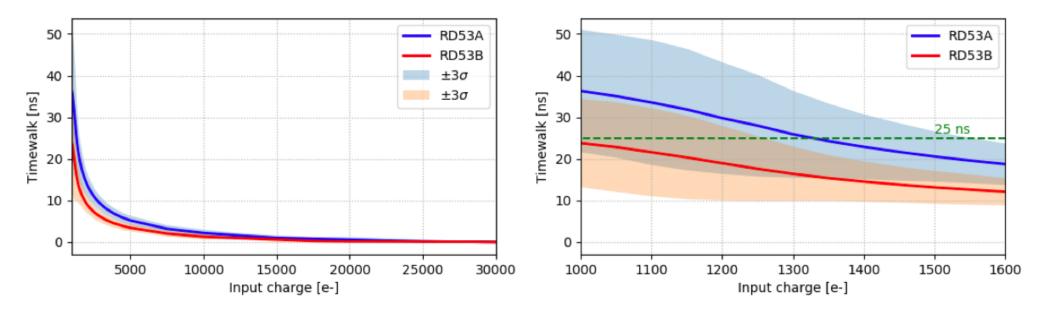
Gain stage based on a folded cascode configuration



total power dissipation is about 3.8 uW (not considering power in the reference branch of the mirror - the same reference branch can be used for all the pixels in an array)

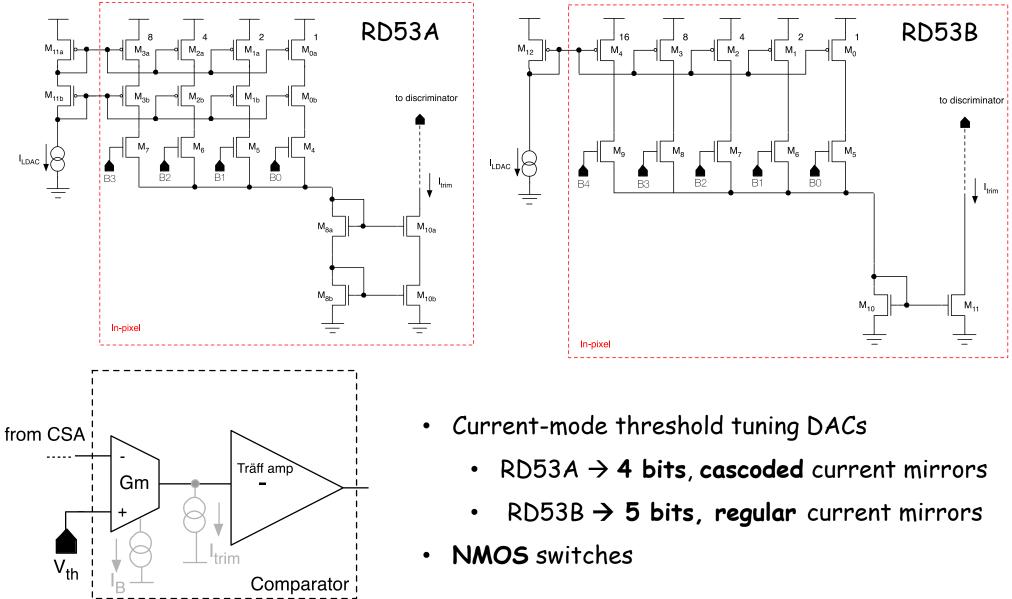
V. Re, L. Gaioni, Lab session on RD53 pixel front-end – 6th INFIERI International Summer School, Madrid, Spain

Boosting time-walk performance

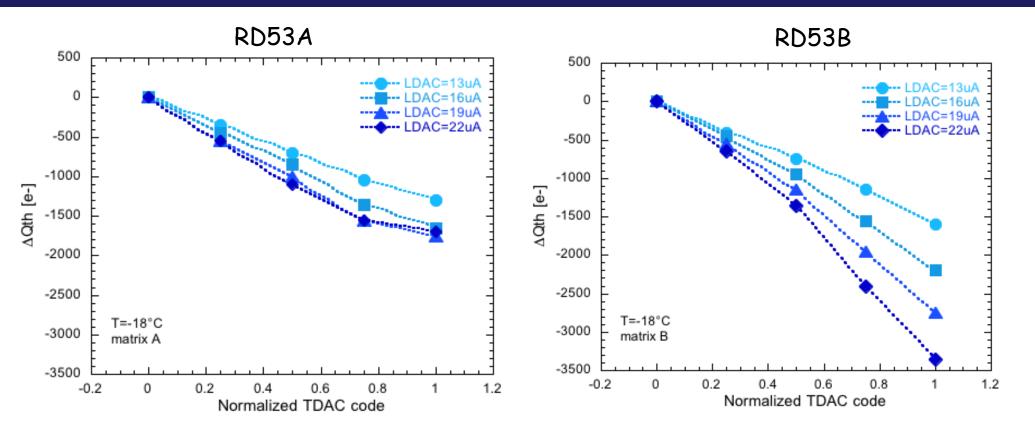

 Partial re-design of the comparator led to improvement in front-end time-walk performance

- Fast turn-on time of M6 and M7 (RD53B) thanks to removal of M9 and M10 (RD53A)
- Current starving M8 (RD53B)

V. Re, L. Gaioni, Lab session on RD53 pixel front-end – 6th INFIERI International Summer School, Madrid, Spain


Time-walk test results

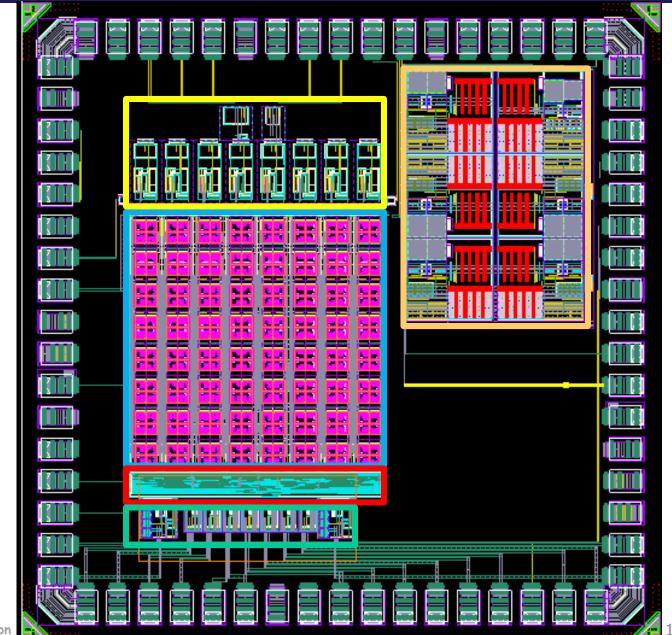
- Results on a sample chip at T=-20 $^{\circ}$ C
- Threshold ~1000 e- , 5uA per-pixel current consumption, 133 ns ToT @ Q_{in}=6ke-, C_D=50fF


Significant improvement in time-walk at the cost of a marginal increase (~4%) in static current consumption

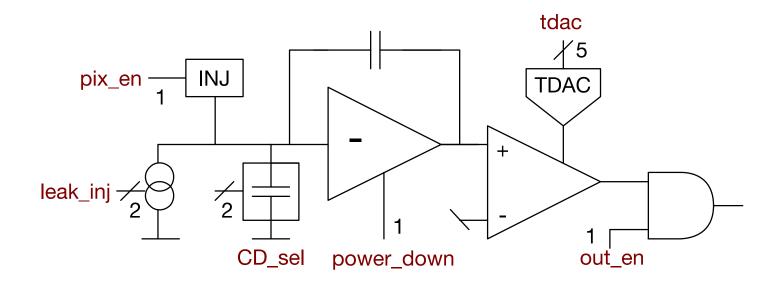
Threshold tuning DACs

V. Re, L. Gaioni, Lab session on RD53 pixel front-end – 6th INFIERI International Summer School, Madrid, Spain

TDAC input-output characteristics


- TDAC dynamic range controlled by "LDAC" current (matrix periphery)
- Saturation effect taking place for RD53A at cold (for large ILDAC)
- The effect is **fixed** in the RD53B version

V. Re, L. Gaioni, Lab session on RD53 pixel front-end – 6th INFIERI International Summer School, Madrid, Spain


Device under test (DUT)

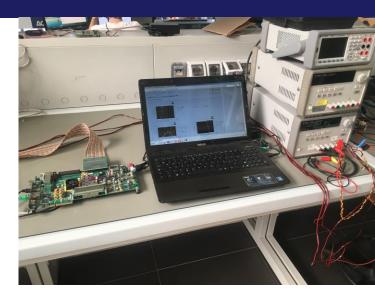
- 16x16 pixel matrix
 - Two regions:
 RD53A RD53B
- Analog bias
- Configuration block
 - SPI-based
- Custom LVDS TX/RX
- Bandgap test structures

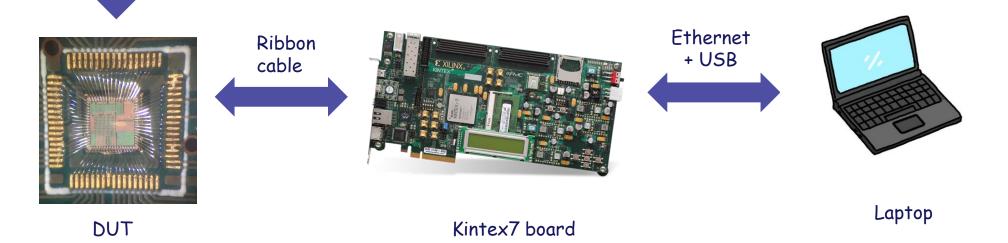
Top metal layers not shown

Pixel block diagram

• 2 detector emulating capacitors: 50 fF and 100 fF

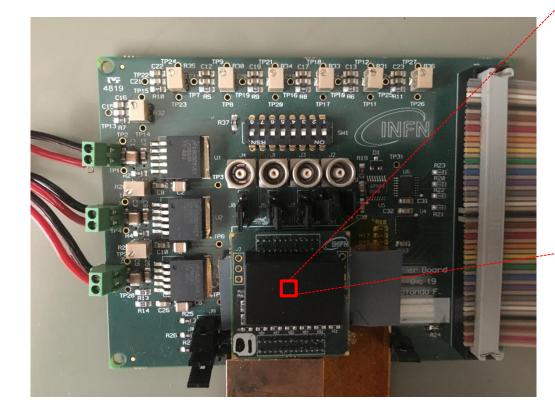
→ CD = 0, 50 fF, 100 fF, 150 fF

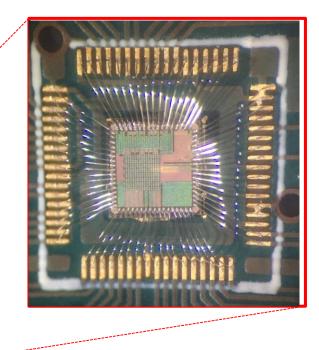

• Leakage injection circuit (possibility to inject "positive" or "negative" currents)


Test setup

Agilent 3631A power supply

Power cables

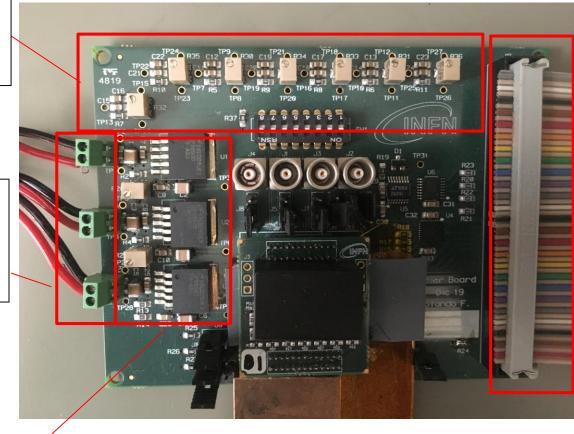




V. Re, L. Gaioni, Lab session on RD53 pixel front-end – 6th INFIERI International Summer School, Madrid, Spain

DUT

2 mm x 2 mm chip including a 16x16 matrix featuring the RD53A and RD53B version of the Linear Front-end



Chip on a small daughter board mounted on a test PCB, including potentiometers for front-end bias setting

Test board

Potentiometers for front-end bias setting

Power connectors (from top: analog, digital, aux)

FPGA connector

Power supply regulators

Main analog performance parameters

- Equivalent noise charge (ENC)
- Threshold dispersion
- Charge sensitivity
- Time-walk
- Time-over-threshold

Only the **comparator digital output** is available: how can we measure all these parameters?

Charge scans

64

100

80

60

40

20

0

Occupancy

565

Failed fits: 6 Noisy pixels: 26

50

1066

100

- Measures probability of discriminator to fire vs input charge
- Fitting S-Curve provides measurement of threshold and noise

$$\eta_{hit} = \frac{1}{2} \left[1 + erf\left(\frac{Q_{in} - p_1}{\sqrt{2}p_2}\right) \right]$$

2068

200

2569

250

3070

104

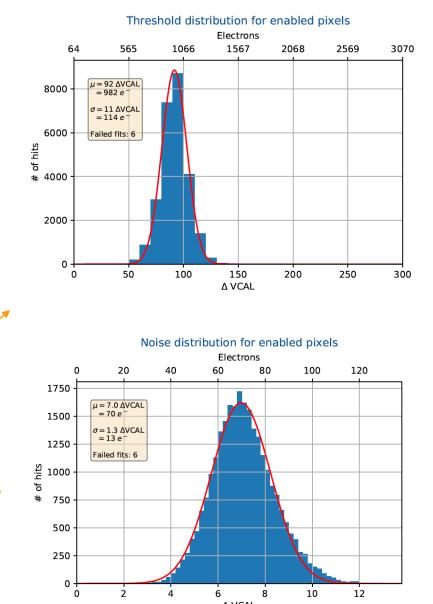
10³

10² 5

10¹

100

300


pixels

S-curves for 26063 pixel(s) Electrons

1567

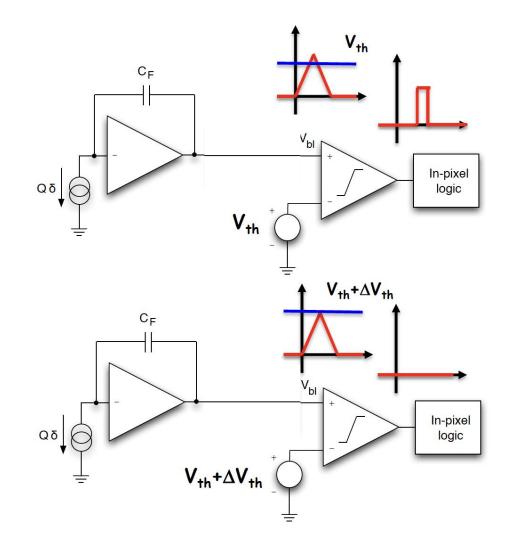
150

∆ VCAL

p1

p2

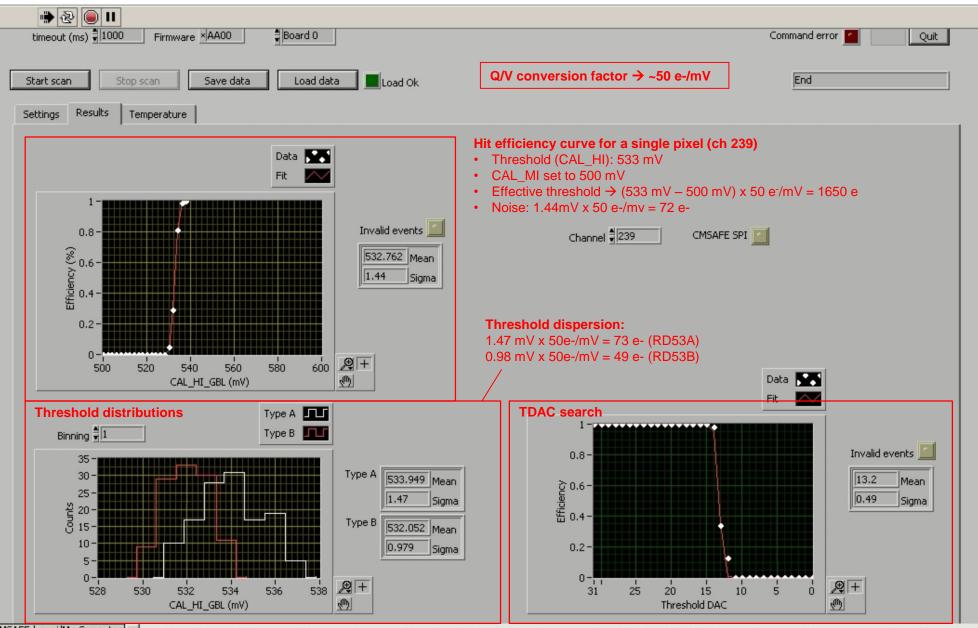
DAQ system based on LabVIEW


- Main virtual instruments (VIs):
 - Threshold calibration
 - Charge scan
 - Noise occupancy

😫 CMSAFE.lvproj * - Project Explorer							
File Edit View Project Operate Tools Window Help							
🍋 😅 🗊 🐰 🗅 🗅 🗙 🕵 尾 🎛 🕶 🚰 🛕] 🐉 🇊						
Items Files							
🕞 🖦 Project: CMSAFE.lvproj							
📥 📃 My Computer							
🗄 📁 _subVIs							
🖶 🗊 Hardware control							
🖶 🗊 Tsensor control							
🖶 🛱 CMSAFE control							
🛱 📁 CMSAFE scans							
🖶 📁 _subVIs	_						
- El CMSAFE_VthCalibration.vi							
CMSAFE_NoiseOccupancy.vi							
🦾 🔜 CMSAFE_ChargeScan.vi	J						
🖶 💭 CMSAFE acquisition							
🛄 🦾 📸 Build Specifications							

* Protect Freelower

DAQ control panel

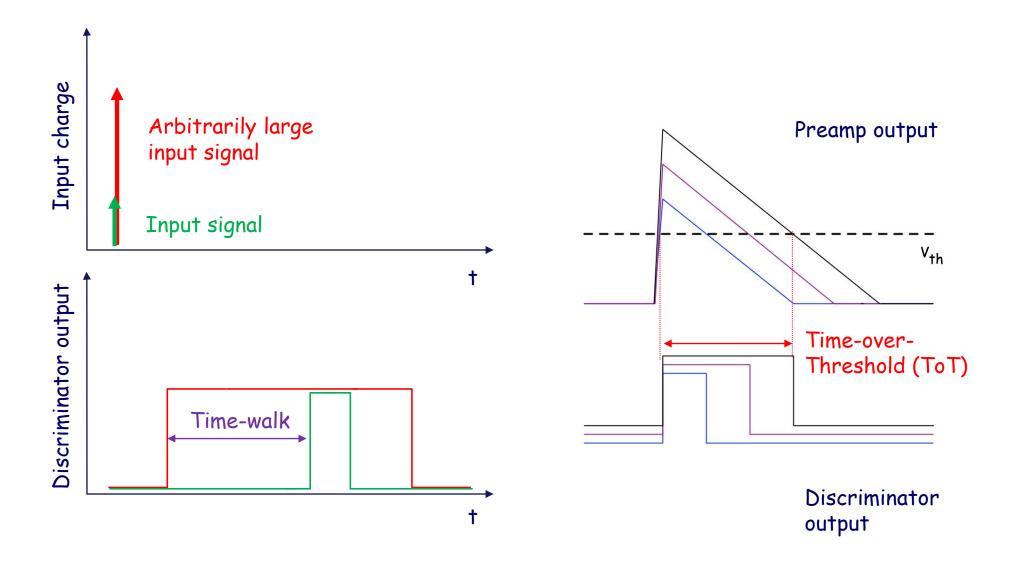

- In a multichannel binary readout circuit, random and systematic variations of process (doping) and geometrical (device dimensions, thickness of the various involved layers) parameters may be responsible for introducing non uniformities in the parallel path followed by the signals
- Two channels, nominally identical to each other and featuring a common threshold at the inverting input of the discriminator, may provide different responses to the same charge pulse at the preamplifier input

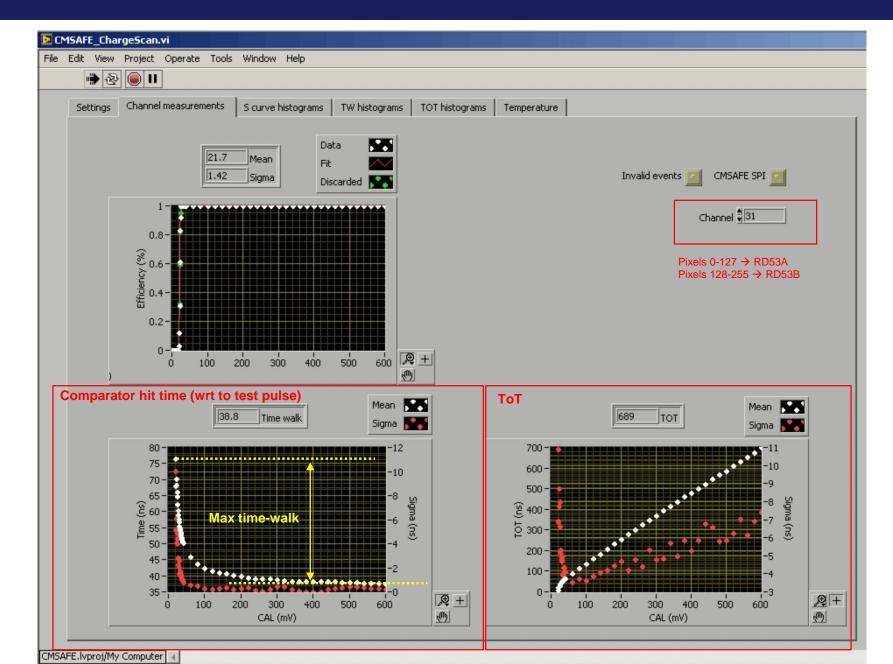
Threshold tuning (VthCalibration.vi)

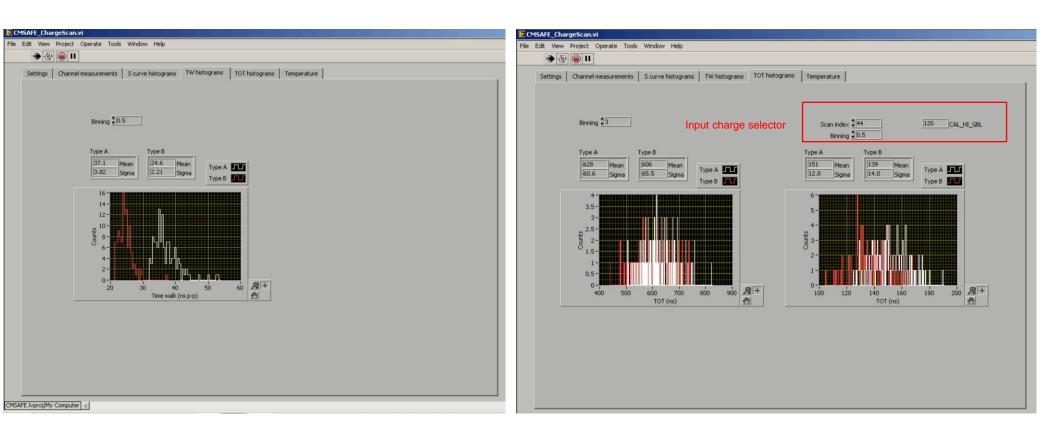
CMSAFE_VthCalibration.vi Front Panel on CMSAFE.lvproj/My Computer *		_ 8 ×
e Edit View Project Operate Tools Window Help		Search Search
Image: Specific state Image: Specific state <td< th=""><th>Command error</th><th></th></td<>	Command error	
Start scan Stop scan Save data Load data Settings Results Temperature	End	
calibration input file Vth Calibration	Middle Th DAC A Image: Section 10 and Section 20	
Channel range Start I Start Pixels 0-127 + RD53A Stop 239 Pixels 128-255 + RD53B Hrreshold VTH GBL A (mV) 500.000 VTH GBL B (mV) 560.000 TP period 60 us VRIF_KRUM B (mV) 560 Number of TPs 100 CAL_MI_GBL (mV) 500 CAL_MI (test pulse setting) max (mV) 900 CAL_HI (test pulse setting) Max (mV) 900 CAL_HI (test pulse setting) Max (mV) 900 CAL_HI (test pulse setting)	PCR A configuration Ueakage P enable Leakage P enable C_det = 50 ff enable C_det = 100 ff enable TP inject enable Gain selector Threshold DAC Power down Configuration Start of RD53A Configuration	

Threshold tuning

3


EXE1: threshold tuning


- Set detector capacitance to 50 fF and tune the matrix to 1000 e-
- What is the threshold dispersion for RD53A and RD53B?
- Why there is a significant difference between the two values?
- Hints → start tuning the matrix to higher threshold, than decrease the threshold down to 1000 e-

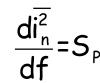

Charge scan (ChargeScan.vi)

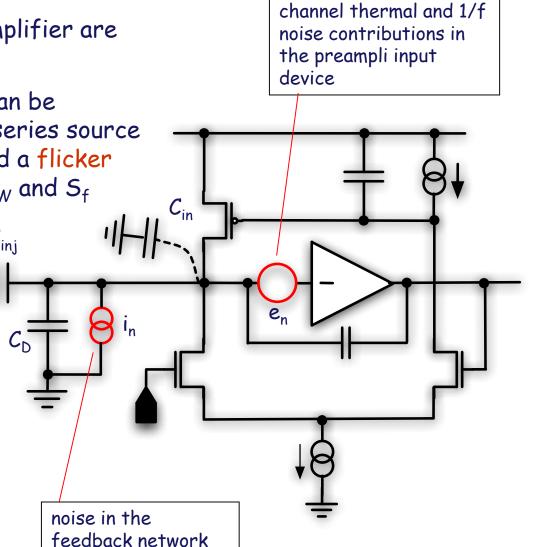
Start scan	Stop scan Save dara	Load data Load Ok	End					
Settings Cha	annel measurements S curve histogr	rams TW histograms TOT histograms	Temperature					
calibration input file								
Vth Ca	libration &C:\Users\\calib_PREAMP	_30_CD_50_LDAC_14_soglia_1000.txt	7					
	Channel range Start 1 Stop 239	Pixels 0-127 → RD53A Pixels 128-255 → RD53B	PCR A configuration Output enable 0 Leakage P enable 0	PCR B configuration Output enable 0 Leakage P enable 0				
	VTH GBL A (mV) ♥ 348 VTH GBL B (mV) ♥ 407 VRIF_KRUM A (mV) ♥ 300	TP period ∯ 60 us TP width ∯ 20 us Number of TPs ∯ 100	Leakage N enable 0 C_det = 50 fF enable 1 C_det = 100 fF enable 0	Leakage N enable 0 C_det = 50 fF enable 1 C_det = 100 fF enable 0				
CA U	VRIF_KRUM B (mV) CAL_MI_GBL (mV) 500		TP inject enable 0 Gain selector 0 Threshold DAC	TP inject enable 0 Threshold DAC ∰×00 Power down 0				
CAL_H	I_GBL min (mV) \$500.000 max (mV) \$540.000 Increment (mV) \$1.000	Time threshold (ns) 🚽 -1	<u> </u>	n read from calibration file				
	Double range min 2 (mV) ♥ 560.000 max 2 (mV) ♥ 1100.00(Increment 2 (mV) ♥ 20.000	Skip debug pixels 🔤						
		 Charge scan se Min-max valu Fixed CAL_M 	e for CAL_HI					

Time-walk and ToT

Threshold and noise histograms

	15AFE_Cha													
File		-	-	Tools	Window Help									
	الله ا													
	Settings	Channe	el measure	ements	S curve histog	ams TW his	tograms TC)T histogra	ms Tempera	ture				
												Expected Vth A (n	nV)	
											32.05	Expected Vth B (n	nV)	
		Binning	1.000						Binning	00				
				_						_	_			
		Type A		Type 8					Type A	Type				
		0.998	Mean Sigma	0.60		Type A			1.68 Mea 0.317 Sigr			Туре А 📕		
		p		<u>p</u>		Туре В						Туре В 📕		
		60							120 -					
		50) -						100-					
		40							80 -					
		Counts) -						- 00 Counts					
		20							40-					
		10) -						20 -					
)-						0-					
			16	18	20	22	24 ⊉ +	Į	-1	Ó	1 2		4 Q +	
	_				Threshold (mV)	512				Noise (mV)		<u><u>s</u></u>	

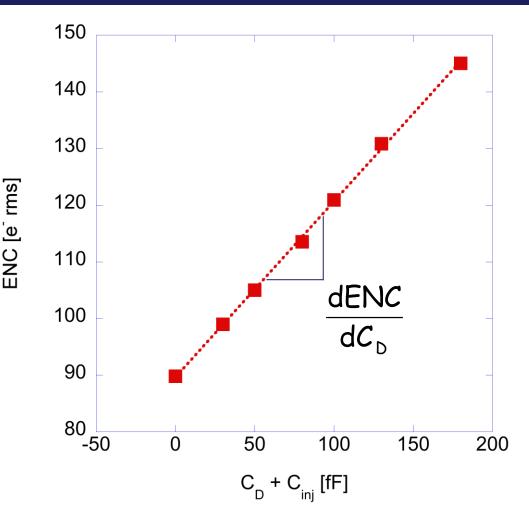

Noise and equivalent noise charge (ENC)


The main noise sources in the preamplifier are located

•in the preamplifier input device - can be represented through an equivalent series source (e_n) and includes a white thermal and a flicker term with power spectral density S_W and S_f respectively

$$\frac{d\overline{e_n^2}}{df} = S_w + \frac{S_f}{f}$$

 in the feedback network - can be represented through an equivalent parallel source (i_n), mostly with a white spectrum with power spectral density S_P


ENC and detector capacitance

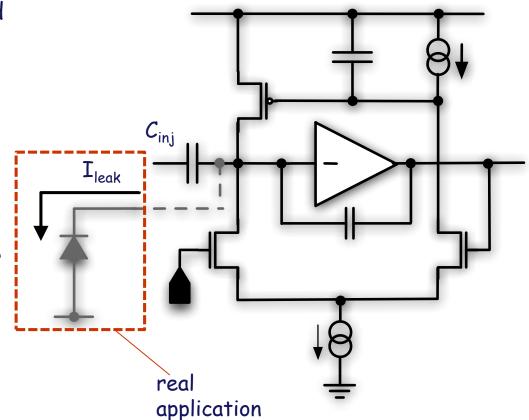
A quite general expression for the ENC is the following, accounting for the different noise contribution

ENC²=
$$C_{T}^{2}A_{1}S_{W}\frac{1}{t}+C_{T}^{2}A_{2}S_{f}+A_{3}S_{p}t$$

 $C_T = C_D + C_{in} + C_F + C_{inj}$ A_1, A_2, A_3 = shaping coefficient τ = shaping time (has some relationship with t_p)

The effect of the series noise source on the overall noise performance gets more pronounced as C_T (the capacitance shunting the circuit input terminal) increases

The slope of the ENC vs C_D is a figure of merit telling us how the noise performance of the circuit degrades as the detector capacitance increases


EXE2: charge scan

- Set the detector capacitance to 50 fF and tune the matrix to 1000 e-
- Measure the maximum time-walk for RD53A and RD53B
- Measure the ToT for an input charge of 6000 e-
- Set the threshold to around 2000 e- and evaluate the ENC for CD=0, 50, 100 and 150 fF. What is the dENC/dCD slope for the front-end channels?

Measurements in the presence of a leakage current

- The readout channel has to work correctly also in the presence of a leakage current at the input terminal
- In the real application, this leakage current comes from the detector and may exceed 10 nA when the detector is exposed to very high ionizing radiation doses - ~1 Grad for 10 year operation is expected for the inner layers of the CMS detector at the HL-LHC
- In the DUT, a leakage emulator circuit can be enabled, providing a DC current I_{leak} at the preamp input

EXE3: detector leakage current

- Set the threshold to around 2000 e- and the detector capacitance to 50 fF.
- Measure the ENC.
- Enable the leakage current emulator (default values is around 20nA/pixel). How does the ENC vary?

Noise hit rate

- An important figure of merit for a front-end chip is the noise hit rate at a given threshold.
- Ideally, we would like to have a low threshold for better efficiency. This actually translates in larger number of hits due to noise.
- **Optimum efficiency** is generally constrained by the maximum rate of noise induced transitions at the discriminator output, or maximum noise hit rate, due to the signal at the preamplifier output randomly crossing the discriminator threshold. Such a noise hit rate limit is strongly dependent on the readout architecture and on the target readout efficiency. Under some very general assumptions, in a binary channel the noise hit rate f_n , whose analysis represents a specific aspect of the more general level crossing problem, can be written as

$$f_n = f_{n0} \cdot e^{-\frac{Q_{t0}^2}{2ENC_{sl}^2}}$$

where Q_{t0} is the mean value of the threshold, and f_{n0} is the noise hit rate at zero threshold.

L. Ratti et al. "Design of Time Invariant Analog Front-End Circuits for Deep N-Well CMOS MAPS" DOI: 10.1109/TNS.2009.2024536

Noise hit rate (NoiseOccupancy.vi)

🔯 CMSAFE_NoiseOccupancy.vi		
File Edit View Project Operate Tools Win	dow Help	
ا ا 🛃 🖈		
timeout (ms) 🛓 1000 Firmware ×0000	Board 0	Command error 🞽 📃 Quit
Start scan Stop scan Save o	dara Load data Load Ok	Init comms
Settings Results		
Vth Calibration		
Channel range Start #0 Stop #255	PCR A configuration Output enable 0 Leakage P enable 0	PCR B configuration Output enable 0 Leakage P enable 0
VTH GBL A (mV) 🚽 360	Leakage N enable 0 C_det = 50 fF enable 0	Leakage N enable 0 C_det = 50 fF enable 0
VTH GBL B (mV) 🚽 360	$C_{det} = 100 \text{fF enable} 0$	$C_{det} = 100 \text{fF enable} 0$
VRIF_KRUM A (mV)	TP inject enable 0	TP inject enable 0
VRIF_KRUM B (mV)	Gain selector 0	Threshold DAC
CAL_MI_GBL (mV)	Threshold DAC	Power down 0
CAL_HI_GBL A (mV)	Power down 0	
CAL_HI_GBL B (mV)		
	The system records the noise hits in a Pixel noise hit rate = total_counts/90ms/	a time frame lasting 1000 x 90us = 90ms 'num_pixels

EXE4: noise hit rate

- Tune the matrix threshold to 1000e-.
- Measure the noise hit rate.
- Repeat the measure for smaller thresholds (900, 800, 700, 600, 500).
- Plot the noise hit rate as a function of the threshold.