LiDAR Hands-on Lab

Y. Unno (KEK) with contribution of Hamamatsu Photonics K.K.

6th INFIERI - LiDAR Hands-on Lab by Y. Unno (KEK)

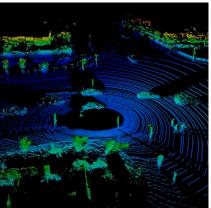
LiDAR Hands-on Lab


- The lab is made of two parts:
 - Introduction to LiDAR
 - We will learn technologies and devices being used
 - Operation and monitoring of a setup
 - using a **TOF-LiDAR** demonstration machine of HPK
 - We will get hands-on to the setup, learn how it is working,
 - and learn the issues relevant to the LiDAR

Remote Sensing

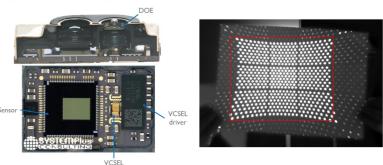
LiDAR is **one type of** remote sensing method that can be used to **map structure** including **vegetation height**, **density** and **other** characteristics across a region.

Automotive LiDAR



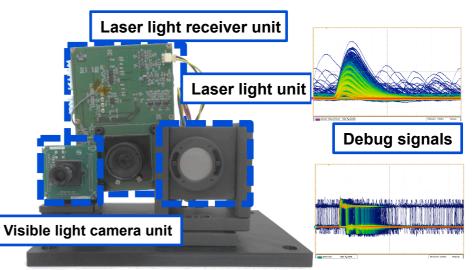
- Autonomous driving, as defined by the Society of Automotive Engineers (SAE).
- LiDAR is seen as critical for L4/L5 operation (but even L1 as ADAS)
- Active and fast-growing market
- Anywhere from 80 to 100 companies working in the automotive LiDAR.

Field of View (FOV)

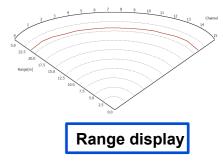

- Mechanical, Solid-state, and Hybrid.
- Mechanical (360°)
 - Spinning, Galvo mirrors, Polygons, or MEMS
 - mounts lasers onto a rotating gimbal (*1).
 - Galvos, polygons, and MEMS all use moving optical elements to scan a scene.
- Solid-state LiDAR
 - Flash or optoelectronic pulse amplifiers
 - uses no moving parts to paint a scene, offering high reliability but typically limited range or resolution (*2)
- Hybrid systems
 - include a combination of scanning methods.

(*) Velodyne HDL-64_9G

Apple iPad Pro LiDAR opening and cross-section

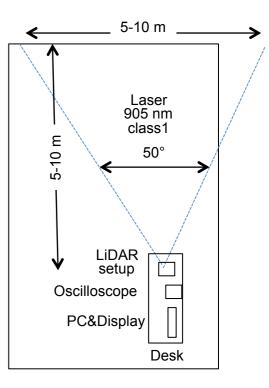


(*2) Array of lasers (VCSEL)


Abstract: Hands-on Lab - LiDAR

Light Detection And Ranging (LiDAR)

- A simple desktop/lab setup
- measuring distance (especially a long-range, up to 100 m (?)) in real time with a viewing angle of 30 degrees, using Time-of-Flight technique
- possible application in automotive world in mind
- The setup is made of cutting-edge semiconductor/solidstate devices:
 - Light emitter: Pulsed solid-state laser (infra-red 905 nm)
 - Light receiver: Linear-array MPPC (solid-state photomultiplier)
 - Visual imager: Visible-light camera (yet sensitive to infrared light)
 - Data acquisition: FPGA-PC chain
- The hands-on experience includes
 - Lectures on the setup and the devices
 - Verification of image of laser light
 - Cross-correlation of visual imaging and laser ranging (viewing angle)
 - Visualization of ranging (distance, cross-passing person, ...)
 - Observation of electrical signals with oscilloscope
 - Optimization of signal-to-noise ratio with aperture of receiver lens



21/8/14 Hands-on Lab - LiDAR, Lecturer - Y. Unno

Space, Equipment

Space

- One desk (1.8 x 0.9 m²)
- Open space (5-10 x 5-10 m² to wall)
 - Clear is the best, but some obstacles are acceptable
- Hardware to bring in
 - 1x LiDAR setup (see Abstract; Laser 905 nm Class1) (20x15x10 cm³)
 - 1x USB hub (with AC power adaptor (100-240V, 2-prong plug (A type))
 - USB cables (1x USB2 TypeA-TypeB, 1x USB3 TypeA-MicroB)
 - Import/export paperwork: (hopefully) Not Applicable
- Software to bring in
 - LiDAR control
 - HPK C15122-1005 Ver1.00/AsicController.exe)
 - HPK MPPC ASIC driver software (DriverSetup_64bit.exe)
 - Microsoft VisualStudio2015 (mfc140u.dll)
 - Visual camera
 - Artray VisualCameraVer1.00/Bin/Viewer.exe
 - Artray Camera driver software (ARTCAM-036MI2-WOM-DRV-V2021)
- Hardware available at hosting campus
 - 1x Desktop/laptop PC & Display (Windows 8.1 or Windows 10)
 - 1x Oscilloscope
 - 1x AC power cable tap/adaptor (100-240 V) for 2-prong plug (A type)

