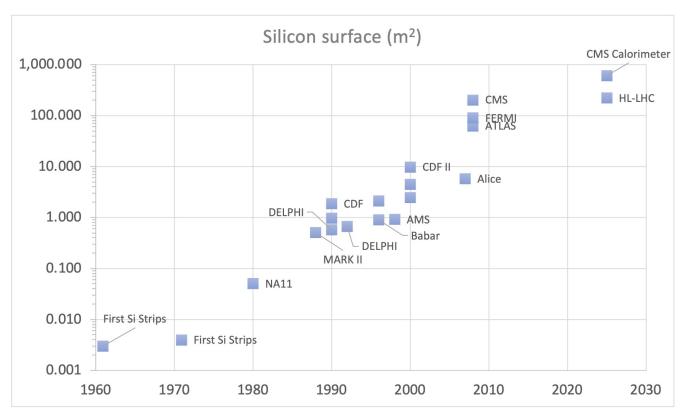
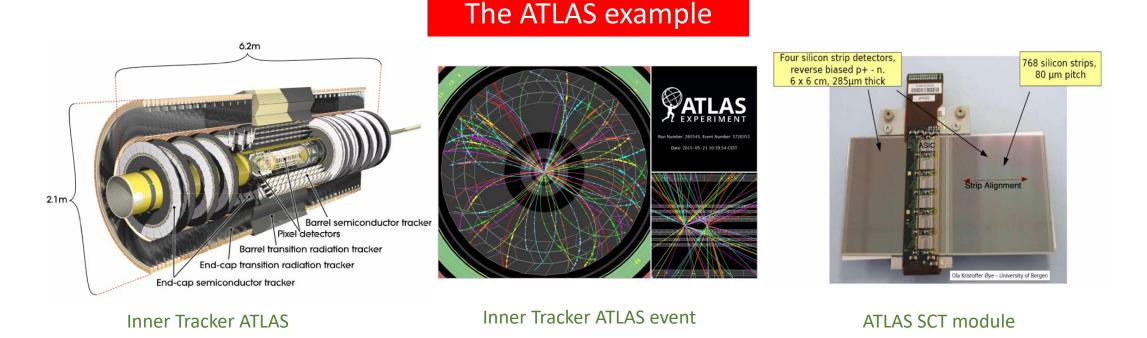


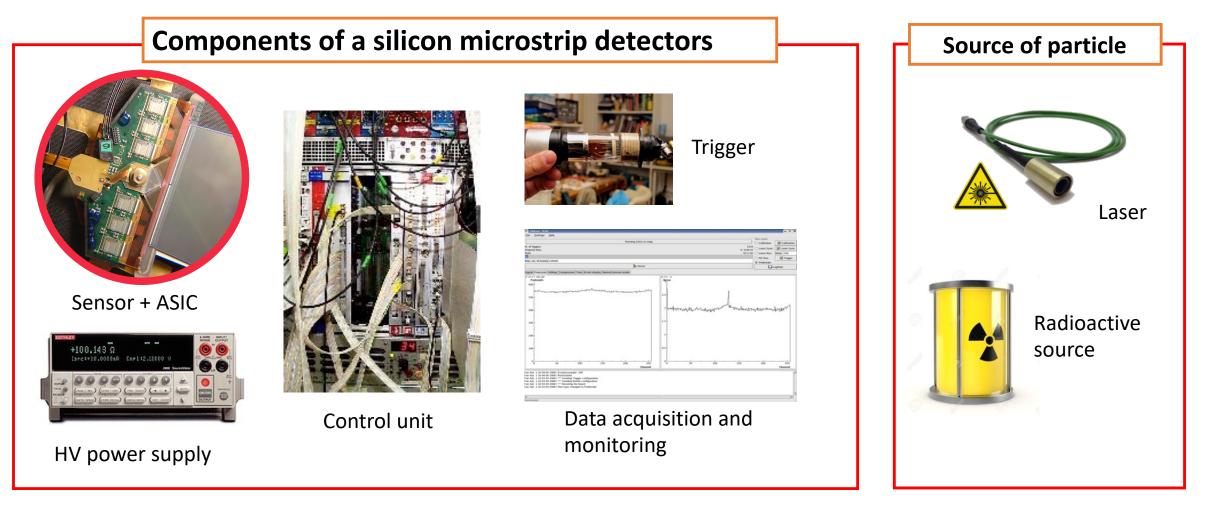
SILICON STRIP SENSORS, A GENTLE INTRODUCTION WITH ALIBAVA'S EASY SYSTEM



Carmen García, Carlos Lacasta

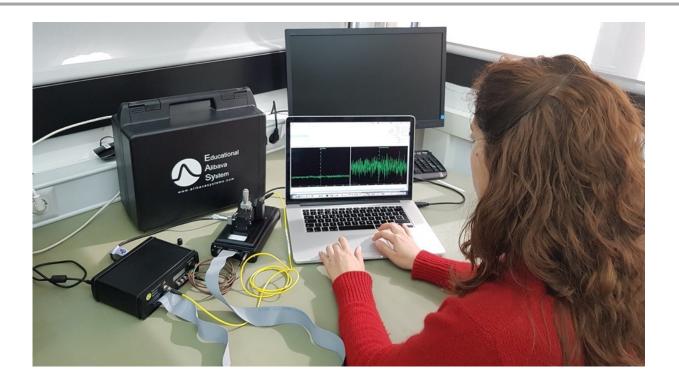

Silicon Trackers

Silicon Strip sensors are at the heart of Silicon Trackers. Silicon trackers are **everywhere** in recent, current and future experiments.



Silicon Trackers

Silicon Strip sensors are at the heart of Silicon Trackers. Silicon trackers are **everywhere** in recent, current and future experiments. We use them to <u>reconstruct the trajectory of charged particles</u>



Setup components @ Lab.

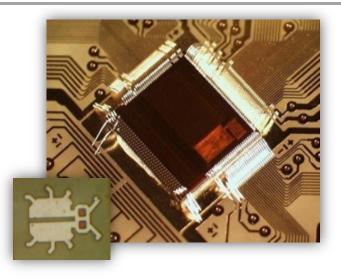
EASY is a portable, compact and complete system for experiments with silicon microstrip detectors. We will use it in the Hands-on lab.

Control unit

- Data Acquisition Control.
- Process sensor and trigger data
- Adjustable HV unit for microstrip sensor bias, with voltage and current display.
- Include the laser source
- Communication with computer software via USB

Sensor unit

- Silicon micro-strip sensor and the Beetle chip.
- Opaque carbon fibre window to place radioactive source.
- Laser micro-positioner and focus system.
- A diode placed under the detector provides a trigger signal.


Silicon microstrip

- P-on-N Detector
- Size: 20x20 mm2
- Thickness: 300 µm
- Channels: 128
- Interstrip pitch: 160 μm

			0 00				3								
					1		1	- Y	1	1		1	1	-	
				11		(1)	個	181	(E)	101	(III)	E	1	1	and
		0													
	-		2	2	1	1	1	5	1	8	E.	B	1	2	
	0			E									-		
							ы							ы	
	0						ы								
	0													14	
				121			13								
				131	24		121								
							10	131	24						
				151	14				10.0						

Beetle Characteristics

- Low noise ASIC developed for CERN/LHC experiments
- 128 channels

Laser source

- Wavelength: 980nm
- Pulse width: 5 ns
- Laser Spot: 20 μm
- Micropositioner resolution: 10 μ m

The hands-on Lab @ INFIERI

- ✓ Understand basic principles of silicon strip sensors and the signal they produce when a particle traverses them.
- ✓ We will perform 2 experiments to understand:
 - → Exercise 1: Charge collection and depletion voltage with a *radioactive source*
 - → Exercise 2: Strip structure and charge sharing with a *laser pulse*
- ✓ We will use Google Colaborative notebooks (<u>https://colab.research.google.com/notebooks/</u>)
 - → Follow the link to get familiar to it.
 - → Having a Google account might be handy if you want to do the exercises in your laptop
- ✓ The Hands-On lab will start on September 30th.

More Information

https://www.alibavasystems.com

Exercise 1

Alibava Systems in YouTube

Exercise 2

Thanks and Enjoy the School !

Carlos & Carmen

