
HIGH GRANULARITY CALORIMETER SIGNAL PROCESSING, WITH MACHINE LEARNING BASED RECONSTRUCTION IN THE CMS HGCAL

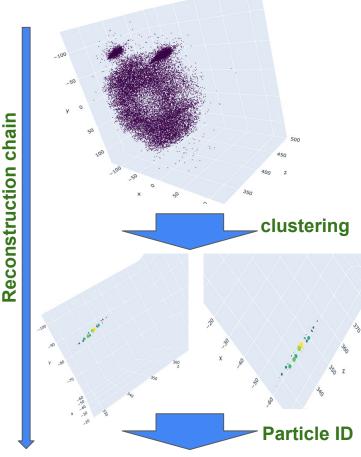
Shamik Ghosh | Alexandre Zabi, LLR - Ecole Polytechnique, CNRS, France

Introduction

- High Granularity Calorimeter HGCaL will replace existing CMS endcap calorimeters (preparing for HL-LHC)
- Highly granular calorimeter with ~6M detector channels from 50 layers
 - granular 5D (position(3), energy, time) signals
- Possibility of performing calorimetry with tracker like granular information.
- Challenge to fully utilize this information to extract physics objects out of the detector.

HGCal detector to be discussed in details during Alexandre Zabi's talk on Thursdsay

Lab Objectives

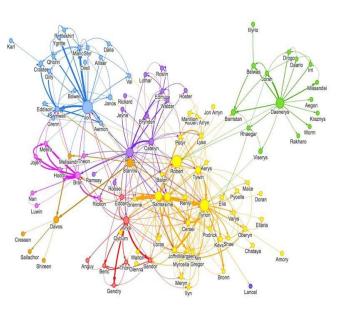

- Visualise and explore signals corresponding to the shower of particles inside the detector
 - Simplest particles like photons and pions

- Assign properly the signals associated with individual particles with minimal contamination(clustering)
 - Single particles
 - Multiple close by particles with noise

- Properly utilise the signals attributed to a particle to identify the type of the particle (**particle ID**)
 - Photon vs pion

Ideas can be ported to your favourite experiment as well!

Hits in the detector with noise


There are 2 photons

Algorithms explored

- Clustering : State of the art tools to be discussed for clustering
 - K-means clustering
 - o **DBSCAN**
 - **Custom energy-density based clustering**(similar to that used in CMS)

- Particle ID : State of the art Graph Neural Networks(GNNs) to be considered
 - Hand crafted variables representing shower information has limitations
 - Use machine learning to extract maximal information
 - Use GNNs which excel at handling the 5D information the detector provides and building powerful representations of the showers
 - GNNs handle irregular geometries (hexagonal pixel size:a difficult task for out-of-the box Convolutional Neural networks) naturally.

Social media network classification using GNNs: CNNs/ RNNs do not work on this kind of data

Fun and powerful packages: Hope to see you there!

Installation guide:

- Create a fresh conda environment
 - conda create --name py3613 python=3.6.13 (this python version is preferred)
- Activate the new environment and install all the other packages inside this environment
 - conda activate py3613
- Install pytorch according to your system from:
 - https://pytorch.org/
- Install scipy
 - conda install -c anaconda scipy
- Install scikit-learn according to your system from:
 - https://scikit-learn.org/stable/install.html
- Install matplotlib
 - conda install -c conda-forge matplotlib
- Install tqdm
 - conda install -c conda-forge tqdm
- Install pytorch geometric according to your system from:
 - https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html
- Install jupyter
 - conda install -c anaconda jupyter
- wget https://shghosh.web.cern.ch/shghosh/INFIERI2021/allschoolfinalmaterial.tar.gz OR just download by clicking
 - All the notebooks and data are inside this tarball
- tar -xzvf allschoolfinalmaterial.tar.gz
 - Cd inside the untarred directory
- jupyter notebook --port=8088 --no-browser

Installation contd...

Or in linux systems with conda installed

- Get the list of all packages needed
 - wget https://shghosh.web.cern.ch/shghosh/INFIERI2021/torchtest.yml
- conda env create --file torchtest.yml
- conda activate torchtest
- conda install jupyter
- Download and untar to get the data and the notebooks
 - jupyter notebook --port=8088 --no-browser

Also the notebooks can be found in github at:

https://github.com/sameasy/Infieri2021

The data has to be downloaded from the link mentioned above

Some references:

- Calorimetry
 - Calorimetry: Energy Measurement in Particle Physics Book by R. Wigmans
 - <u>https://indico.cern.ch/event/855973/contributions/3602188/attachments/1979913/3296643/calo</u> <u>rimetry_sauvan_esipap2020.pdf</u> : Awesome lecture 1
 - <u>https://indico.cern.ch/event/124299/contributions/93835/attachments/74344/106642/EDIT_Cal</u>
 <u>o_lecture_Ir.pdf</u>: Awesome lecture 2
- Clustering
 - <u>https://cs.wmich.edu/alfuqaha/summer14/cs6530/lectures/ClusteringAnalysis.pdf</u>
- Graph Neural Networks:
 - Pytorch_geometric examples and tutorials : refer website
 - <u>https://arxiv.org/abs/1812.08434</u> : Review article(a bit old)
 - <u>https://arxiv.org/abs/1801.07829</u> : DGCNN paper
 - <u>https://arxiv.org/abs/2003.08013</u> : DRN paper