
Emerging computations in trained neural networks and real brains

Synaptic plasticity allows cortical circuits to learn new tasks and to adapt to changing environments.

How do cortical circuits use plasticity to acquire functions such as sensory coding, decision-making

or working memory? Neurons are connected in complex ways, forming recurrent neural networks,

and learning modifies the efficiency of the connections. Furthermore, neurons communicate

emitting brief discrete electric signals or spikes. I my talk I will describe how to train recurrent

neural networks of spiking units in task like those used to train animals in neuroscience laboratories

and how computations emerge in the trained networks.

Surprisingly, artificial networks and real brains can use similar computational strategies.
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Computational and Systems Neuroscience

A monkey has to make a decision about the tactile
stimuli applied to one of his fingertips.

How are the stimuli processed by molecules, neurons
and neural circuits in order to execute an action?

The purpose of Systems Neuroscience is to explain
behavior starting from neural networks and its
constituents.
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I will consider four experiments:

• A stimulus detection task

• A tactile frequency discrimination task

• A temporal interval discrimination task

• A time interval production task

Task:  A mapping from stimuli to actions.

Correct animal’s responses are rewarded.



Detection Task

 The monkey has to detect a vibrating stimulus, which is present only in half of the trials.
 When it is applied, its amplitude is often rather weak (it takes 9 different values).
 The stimulation time is not fixed. There is a possible stimulation window of 2 seconds.
 The monkey reports his decision after a 3-second delay period

de Lafuente & Romo, Nature Neuroscience 8: 1698; 2005

Performance



Tactile Frequency Discrimination Task

Romo & Salinas, Nature Reviews Neuroscience 4, 203-218; 2003
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Perceptual Bias
(Contraction Bias or
Central Tendency)Performance

Sarno, Beirán, Falcó-Roget, Diaz-deLeon, Rossi-Pool, Romo, & Parga , bioRxiv 2021

(anoher monkey, a different set)



Time Interval Discrimination Task

Stimulus Set Performance

Serrano-Fernández, Beirán & Parga, 2015, in preparation



Time Interval Production Task
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Jazayeri & Shadlen, 2015, Current Biology 25, 2599–2609
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Biologically plausible trained networks: 

• Network Architecture:    Recurrent Neural Networks (RNNs), 

• Model Neurons:              Spiking Neurons, 

• Type of Learning:            Reinforcement Learning, 

• Learning Rules:               Hebbian learning rules, STDP, ecc. 

We consider several features of model networks: 

• Network Architecture, 

• Model Neurons, 

• Type of Learning, 

• Learning Rules. 

Ideally, the neural network and the training algorithm should be biologically realistic. 

some conditions for biological plausibility



Network Architecture

Multilayer feedforward architecture
(deep networks)

Recurrent architecture or
Recurrent Neural Network (RNN)

Input



Model Neurons

The activity of the neurons (units) 
are represented by real variables
(continuous units)

(spiking units)

the “firing rates” 

Leaky integrate-and-fire neurons (LIF neurons)

If V(t) > Eth then insert a spike and reset
the membrane potential V(t) = EL

Rate neurons



Type of Learning

Supervised learning

Reinforcement learning

Supervised learning: the correct output is known to the network. It is used as a target to 
determine the synaptic weights in such a way that a cost function is minimized

average over time during a trial 

and training examples

Uses a reward to indicate to the network if the action was correct or wrong



Learning rule

• Backpropagation
(Deep learning)

• FORCE & full-FORCE
• Ecc

1. Hebbian rules
2. Spike-timing-dependent 

plasticity (STDP)
3. Dopamine-modulated synapses
4. Ecc. 

1. Hebbian learning: “neurons that fire together wire together”

D Hebb , The organization of behavior, 1949

2. STDP: amount of synaptic modification arising from a 
single pair of pre- and postsynaptic spikes separated by a 
time Δt. Time scale are about 20 ms.

Song, Miller and Abbott, Nature Neuroscience 3, 919–926, 2000.

To assign the credit of errors to the weights the
backprop algorithm computes the derivative of the
cost function with respect to the weights.

This generates a non-local learning rule.

Bi, G.-q. & Poo, M.-m., J. Neurosci. 18, 10464–10472, 1998



Fully biologically plausible trained networks are hard to obtain. 

However, one can relax some constraints and investigate how the trained networks solve the tasks. 

This can be used:

• to guide the analysis of experimental data. For instance, find out whether cortical networks use 
computational strategies similar to those observed in the computational models.

• help designing new experiments. Simulating the trained networks one can give information about the 
possible experimental results. 

I will present results from a spiking RNN that solves a task for which experiments have not been done.



A) Electrophysiological Experiments

B) Training Neural Networks: Artificial versus Biologically plausible features

C) Learning Algorithm: Reservoir learning, FORCE and full-FORCE

D) Detection Task: a RNN of Rate Neurons – State-space Analysis

E) Bayesian Computations in spiking RNNs

F) Beyond: Reinforcement Learning



Consider a RNN of rate neurons and supervised learning, with a target fout

Cost function

the task-performing network

Plastic synapses: red lines



Reservoir Learning

Reservoirs are RNNs with fixed connections that are randomly generated according to obtain rich 

spatial and temporal representations. 

A linear output neuron reads the activity of the RNNs and the output weights w are learnt such that the 

network selects the correct actions given inputs.

Learning is simple but it has limited performance.

Input



The FORCE algorithm

Input

Performance can be improved by feeding the output back into the 

network (with randomly chosen weights u)

Jaeger & Haas, 

Science, 2004

The feedback term can be considered as an additive term uwT to 

the recurrent weights. 

The plastic changes in the output weights induce changes in the 

recurrent weights.

FORCE learning:  results from combining this network with a recursive least-squares algorithm for

minimizing Cw

However, in the FORCE algorithm modifications of the recurrent weights are limited:

• it is low rank (rank one): J  J + uwT

• it depends on the changes in the output weights.

FORCE: First-Order Reduced and Controlled Error 

algorithm

Sussillo & LF Abbott, Neuron, 2009



The full-FORCE algorithm

DePasquale, LF Abbott et al., PLOS one, 2018

the task-performing network

the target-generating network

The problem to use the recurrent connections as plastic weeights is
that we do not know the targets for the hidden neurons.

Full-FORCE considers an auxiliary network that receives the target 
as an input and uses the currents as targets for the currents in the 
task-performing network

The task-peforming network can be either a network of rate
neurons or a spiking RNN.

The target-generating network is a network of rate neurons.
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are the “firing rates” 

is the network’s output, it is used as a feedback signal

start cue (a 100ms pulse)

sensory input (a 300ms pulse, proportional to the stimulus amplitude, plus noise)

N=500

Carnevale, de Lafuente, Romo, Barak 
& Parga (2015). Neuron, 86(4), 1067-
1077.



No information about  task timing is given!
The information given during training was 
restricted to the behavioral outcome on each trial. 

target signal

Because of the feedback of the output unit 
z, this rule effectively changes the recurrent
couplings to:

Supervised learning rule 
Affects only the output couplings:



The noise amplitude was calibrated to approximately reproduce the experimental 
psychometric function. 

The network learns to solve the task

MODEL EXPERIMENT



estimate of the distance to the 
separatrix over time: distance 
between the CR neural 
trajectory and the neural state 
at the stimulus offset time in 
the Miss condition



The dynamic mechanism supporting the modulation of the RC

distance between the CR neural 
trajectory and a point in the 
separatrix. 
The latter is given by the state of 
the network immediately after the 
offset of a borderline stimulus 
(obtained by a bisection method) 
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Now I will train spiking RNNs with the full-FORCE algorithm for the following tasks

• temporal Interval discrimination

• tactile frequency discrimination

• time Interval production

and show that in all of them the first stimulus is represented in terms of a Bayesian estimator. 

The contraction bias results from Bayesian computations.

Work in collaboration with:

Luis Serrano-Fernández (UAM, Madrid)

Manuel Beirán (ENS, Paris)

Pablo Crespo Darriba (URJC, Madrid)

Martín Zamarbide (UAM, Madrid)



P(s,r)  =  P(r | s)  P(s)
=  P(s | r)  P(r)

P(s | r)  α P(r | s)  P(s)

Bayes relationship

P(s)        prior probability

P(r|s)    likelihood (noise model)

P(s|r)    posterior probability (belief about the state of the world)

s:   stimulus (state of the world)
r:    firing rate (noisy internal representation of the stimulus)

In the Bayesian models of the tasks, after the stimulus is presented we can obtain a Bayesian estimator of d1, f1 or ts.



Time Interval Discrimination Task:
Solution with spiking RNNs

Performance Population activity
(state space)

BAYESIAN MODEL FIT

Dimensionality reduction

Trajectories describe orbits even if there not cyclic
components in the task



Stimulus Set

Prior-dependent trajectories



Relative distances between state space trajectories
(delay period)

It is reasonable to asume that the relative
distances depend on the time Interval d1, AS 
PERCEIVED BY THE NETWORK.

Is the decoded d1 the true value of d1 or is
it closer to the Bayesian estimator?

+  ξ

+  ξ

d1

d1,e



Comparing Behavior and Neural Population Activity

Two hypotheses relating behavior (bias) with state space structure were tested: (i) mean distances code d1 or (ii) code a 
combination of current d1 and prior knowledge of d1 (a Bayesian estimator)

True d1:                       RMSE = 17.68

Bayesian estimator:  RMSE = 1.38



Time Interval Production Task:
Solution with spiking RNNs

Population activity
(state space)

Performance

The stimulus set contains time intervals from 500 ms to 

1000 ms, with a difference of 50 ms between consecutive

simples (11 classes)



Relative distances between state space trajectories

+  ξ

+  ξ

Is the decoded ts the true value of ts or is it
closer to the Bayesian estimator?



Comparing Behavior and Neural Population Activity

A statistical test compring the distributions of the RMSEs of the two hypotheses favoured the Bayesian estimator (p > 0.0001)



Tactile Frequency Discrimination Task:
Solution with spiking RNNs

Performance

BAYESIAN MODEL FIT



Population activity
(state space)



Relative distances between state space trajectories

True f1: RMSE = 0.67
Bayesian estimator: RMSE = 0.22



Tactile frequency discrimination task:
Experiment (data analysis)

Performance
Population activity

(state space)

BAYESIAN MODEL FIT Serrano-Fernández, Romo, Parga & lab members UNAM  
(in preparation)



True f1 :                       RMSE = 0.89

Bayesian estimator: RMSE = 0.51

(one monkey)

Comparing Behavior and Neural Population Activity
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Dopamine codes reward prediction errors (RPEs)

Schultz et al., Science 1997

Dopamine codes reward prediction errors 

Then, dopamine provides a learning signal, the RPE



Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., & Naud, R. (July, 2021). 
Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits. 
Nature neuroscience, 1-10.

Bono, J., Zannone, S., Pedrosa, V., & Clopath, C. (2021). 
Learning predictive cognitive maps with spiking neurons during behaviour and replays. 
bioRxiv.

Song, H. F., Yang, G. R., & Wang, X. J. (2017). Reward-based training of recurrent neural networks 
for cognitive and value-based tasks. Elife, 6, e21492.

A few recent papers:
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