$6^{\text {th }}$ Summer School on INtelligent signal processing for FrontlEr Research and Industry
30th August 2021, University Autónoma de Madrid

Introduction to Machine Learning and Deep Learning (Part I)
 Juan Carlos San Miguel

Associate Professor at UAM \& Researcher at VPULab \&
Director of Master in Deep Learning for Audio and Video Signal Processing Juancarlos.sanmiguel@uam.es

Universidad Autónoma de Madrid

OUTLINE
-What is Machine Learning?

- Performance evaluation
- Examples of Machine Learning algorithms
- Ensembles
- Conclusions

UA'M WHAT IS MACHINE LEARNING?

- Arthur Lee Samuel (1901-1990) Pioneer of artificial intelligence research IEEE Computer Pioneer Award 1987
"Field of study that gives computers the ability to learn from data without being explicitly programmed"

Source: https://history-computer.com/people/arthur-samuel-biography-history-and-inventions/

WHAT IS MACHINE LEARNING?

"Field of study that gives computers the ability to learn from data without being explicitly programmed"

- Looking for a function to mimic human brain decisions...
-Speech Recognition

$$
f(\square)=\text { "How are you" }
$$

-Image recognition

$$
)=\text { "Cat" }
$$

-Playing Go

$$
f(
$$

$$
)=" 5-5 "
$$

(next move)

WHAT IS MACHINE LEARNING?

"Field of study that gives computers the ability to learn from data without being explicitly programmed"

- It can be any unprocessed digital signal of any nature like a fact, value, text, sound or picture
- It can have temporal dependency (time-series)
- Often transformed to Numerical and Categorical types
- Organized as Datasets, which are collections of data instances that all share a common attribute
- Requires annotations of attributes for each data instance of the dataset to measure efficiency

UÁM
 WHAT IS MACHINE LEARNING?

"Field of study that gives computers the ability to learn from data without being explicitly programmed"

- Learning problems in Machine Learning Algorithm employs data annotations?

Supervised learning Unsupervised learning
Type of signals
Continuous Discrete

Classification or categorization

Regression

Classification or categorization	Clustering
Regression	Dimensionality reduction

- The accuracy of ML algorithms must be evaluated to choose the best one for each specific task

Task
 Brain Tumor Segmentation in MRI images (i.e. identify which image pixels are tumor)

ML algorithm \#1

ML algorithm \#2

ML algorithm \#3

Which one is the best?

Example created with https://htmlsegmentation.s3.eu-north-1.amazonaws.com/index.html

- Three key elements
-Result: prediction of the algorithm (e.g. category, scalar value,...)
-Ground-truth: the knowledge of the truth for the specific task. (e.g. ideal expected result for the category, scalar value,...)
-Metric: function to compute similarity between result and ground-truth

Source: https://www.med.upenn.edu/cbica/brats2020/data.html

- Metrics for binary classifier evaluation
(can be also applied to classify data instances into multiple classes) Actual Values

Source: http://www.info.univ-angers.fr/

- Classification accuracy and error

$$
\begin{aligned}
\text { Accuracy } & =\frac{T P+T}{T P+T N+F P+F} \\
& =\frac{\# \text { correct predictions }}{\# \text { total predictions }}
\end{aligned}
$$

- Confusion matrix
-Performance visualization and summary of results
-Diagonal are correct predictions
-Allows to focus on errors

$$
\begin{aligned}
\text { Error rate } & =\frac{F P+F}{T P+T N+F P+F N} \\
& =\frac{\# \text { wrong predictions }}{\# \text { total predictions }}
\end{aligned}
$$

Predicted class	Cat	Dog				
Actual class			$	$	Cat	6
:---:	:---:					
Dog	1					

Extended description at https://en.wikipedia.org/wiki/Confusion matrix

- Many more metrics... (see suggested readings)
- If dataset is large (i.e. millions of samples), split in two sets:
- Train (85-98\%): algorithm fitting (i.e. adjust) parameters for best performance
- Test (15-2\%): validate the algorithm trained with different data
- If dataset is not large (i.e. thousands of samples), then dataset is randomly split into "k" folds (often $\mathrm{k}=5$ so 20% each)

Iteration 1	Train (20\%)	Train (20\%)	Train (20\%)	Train (20\%)	Test (20\%)	Error or acc
Iteration 2	Train (20\%)	Train (20\%)	Train (20\%)	Test (20\%)	Train (20\%)	Error or acc
Iteration 3	Train (20\%)	Train (20\%)	Test (20\%)	Train (20\%)	Train (20\%)	- Error or acc
Iteration 4	Train (20\%)	Test (20\%)	Train (20\%)	Train (20\%)	Train (20\%)	Error or acc
Iteration 5	Test (20\%)	Train (20\%)	Train (20\%)	Train (20\%)	Train (20\%)	Error or acc

- Moreover, a validation set is often added to add fairness in evaluation
- Train set used for algorithm fitting (resulting in a learned model)
- Validation set used to estimate prediction error for selecting the best model
- Test set used to assess the generalization error of the final chosen model

PERFORMANCE EVALUATION

- Error generalization: algorithm complexity for a given dataset

Underfitting
 (e.g. number of parameters)

Overfitting

MACHINE LEARNING ALGORITHMS

- Unsupervised learning: K-means ${ }^{1}$
-Iterative algorithm for clustering

Step 1: Select the number of clusters and set randomly a cluster center (i.e. representative)

Step 2: associate each data to clusters by minimum distance with cluster centers

${ }^{1}$ Lloyd, Stuart P. "Least Squares Quantization in PCM." IEEE Transactions on Information Theory. Vol. 28, 1982, pp. 129-137.

- Supervised learning: Support Vector Machines ${ }^{1}$

Training data sample ith

> A linear classifier learns a lineal function to determine the classification boundaries

${ }^{1}$ C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery, 1998

MACHINE LEARNING ALGORITHMS

- Supervised learning: Support Vector Machines
-Defines a hyperplane $\vec{\omega} \cdot \overrightarrow{x^{i}}-\vec{b}=0$ for binary classification

$$
\begin{aligned}
& \hat{y}^{i}=\operatorname{sgn}\left(\vec{\omega} \cdot \overrightarrow{x^{i}}+\vec{b}\right) \\
& \hat{y}^{i}=\operatorname{sgn}\left(\sum_{j=1}^{N_{d}} \omega_{j} \cdot x_{j}^{i}+\vec{b}\right)
\end{aligned}
$$

-Prediction

- Class $\mathbf{x}(+1)$ if $\vec{\omega} \cdot \overrightarrow{x^{i}}-\vec{b}>0$
- Class $\circ(-1)$ if $\vec{\omega} \cdot \overrightarrow{x^{i}}-\vec{b}<0$
-Training

- minimize $\|\vec{\omega}\|$ subject to $\vec{\omega} \cdot \overrightarrow{x^{i}}-\vec{b}$ gives
the correct classification y^{i} for all data samples $\overrightarrow{x^{i}}$
- Optimal solution $\overrightarrow{\omega_{o p t}}=\sum_{k} \alpha^{k} y^{k} \overrightarrow{x^{k}}$

UA'M

MACHINE LEARNING ALGORITHMS

- Supervised learning: Support Vector Machines

Employ a linear SVM and tolerate errors (i.e. add a C regularization term)
What if data is non-linear?

Option B

Map data instances to a higher dimensional space where data is linearly separable

Option A

- Decision Trees ${ }^{1}$:
- Very popular algorithm due to their intelligibility and simplicity
-Classification or regression
-Structure:
- Root Node
- Intermediate Nodes
- Leaf nodes \rightarrow predictions
-Tree structure built sequentially by:
- Splitting data into subsets (i.e. for each available feature)
- Measuring feature performance
- Finding the optimal threshold

Survival of passengers on the Titanic

Source: https://towardsdatascience.com/
${ }^{1} \mathrm{X}$. Wu et al. "Top 10 algorithms in data mining". Knowledge and information systems, 14(1), 1-37. 2008.

- Combine multiple algorithms applied to the same data to get one high-accuracy meta-algorithm
-"No Free Lunch" Theorem - No single algorithm wins all the time!

Weather forecast for 7-days (sun or storm?)

Reality (ground-truth)			${ }_{\mathbf{w}}$			$\cdots \mathrm{S}$	$\cdots \mathrm{S}$
ML algo 1	\cdots		\cdots		\cdots	\because	
ML algo 2		\cdots	\cdots		\because	\cdots	0
ML algo 3	\cdots	\because		$\stackrel{\square}{\square}$	\cdots	16	- .
ML algo 4	\cdots	\because		$\stackrel{\square}{\square}$		\cdots	\cdots
ML algo 5	\cdots	\because	\cdots	。	\because	9	\cdots
Combine	\cdots						

- When combing multiple independent and diverse predictions which are at least more accurate than random guessing, random errors cancel each other, correct predictions are reinforced.
- Often weak learners are employed in the ensemble (low-accuracy but very fast time for training and prediction)

Weather forecast for 7-days (sun or storm?)

Reality (ground-truth)						$\because \mathrm{s}$	$\because s$
ML algo 1	\because		\cdots		\bigcirc	\cdots	
ML algo 2		\because	\because			\because	9
ML algo 3	\square	\cdots	$\cdot 1$	\cdots	.		
ML algo 4	\cdots	\because		\because	.	\because	\cdots
ML algo 5			\cdots	-	0		\cdots
Combine	$\because 3$	\cdots	\because	.	0	\cdots	\cdots

Each classifier has 70\% accuracy for the task and it is independent to other classifiers

Majority vote accuracy

- 5 classifiers - 83.7\% accuracy - 101 classifiers - 99.9\% accuracy

Hint: Probability that k out of n independent trials of a random experiment are successful, with success probability p is $\binom{n}{k} p^{k}(1-p)^{n-k}$

- Two main design choices
-Combining strategies: averaging, majority vote, stacking,...
-Learning paradigm: bagging, boosting.,...

Goal: reduce the variance (i.e. low test accuracy) of combining weak learners by parallel training each algorithm with a subset composed of random selection of data instances
 by row sampling with replacement $\left(m_{k}<m\right)$

ENSEMBLES - BAGGING

- Random Forest ${ }^{1}$
-Widely used ensemble method that employs decision trees.
-However, decision trees alone tend to overfit when becoming deep (overfitting \equiv high variance \equiv high train accuracy and low test accuracy)
- To overcome this limitation, features are randomly selected for each node of the tree, so to avoid dependency on "dominant" features

Decision Tree $D T_{1}$

For each intermediate node, take remaining features and repeat the random selection \& choosing the best feature

Subset D_{1}
($m_{1} \times n$ matrix)

\#children	Age	Commute time	Salary	Change job?
0	27	30 min	32 K	No
2	30	15 min	35 k	No
0	22	30 min	20 k	Yes
1	27	15 min	25 k	Yes
1	26	15 min	25 k	Yes

¹L. Breiman. "Random Forests", Machine Learning 45 (1): 5-32. ,Springer, 2001

Goal: learn a cascade of algorithms (weak learners), where each algorithm attempts to correct the previous errors

Bagging / Random Forest

- All data samples have equal weight
- Parallel algorithms
- All algorithms have equal say
- Fully grown trees (each tree may have different depth)

Boosting / Adaboost ${ }^{1}$

- Data samples have adaptive weights
- Sequential algorithms
- All algorithms have different say
- Weak learners: stumps
(trees with one node and two leaves)
${ }^{1}$ Y. Freund \& R. Schapire. "A decision-theoretic generalization of on-line learning and an application to boosting". Journal of Computer and System Sciences. 55: 119-139, 1997

UA'M
 ENSEMBLES - BOOSTING

- Adaboost ${ }^{1}$

Dataset D (as a $m \times n$ matrix)
 associated to each data instance

Execution: apply all the algorithms in the ensemble for each data instance.
Get overall "say": accumulate the "say" or importance of classifiers for the predictions Final prediction: prediction with the highest accumulated importance or "say"

Training stage

Initialization:

- Set equal weights to all data instances
- Define the number of algorithms

Recursively do for each ML algorithm ith

1. Training
a) Randomly select a subset of data based on data instance weights
b) Train ML algorithm ith
c) Evaluate accuracy using subset
2. Update
a) Compute "say" for algorithm ith proportional to its accuracy
b) Update weights of data instances

- Increase weight if incorrect
- Decrease weight if correct
${ }^{1} \mathrm{Y}$. Freund \& R. Schapire. "A decision-theoretic generalization of on-line learning and an application to boosting". Journal of Computer and System Sciences. 55: 119-139, 1997

CONCLUSIONS

- Machine Learning requires to prepare raw data in order to remove noise, errors or impose requirements of algorithms
-Data cleaning \& annotation, Feature selection \& transforms, ...
- Must understand the type of ML algorithms needed to solve a particular problem (it may be a mix of different types)
- Most of the training strategies oriented to avoid overfitting (i.e. high train accuracy but low test accuracy)
- Finding best algorithms/ensembles may involve running multiple times with different settings (hyperparameter tuning)

WANT TO LEARN MORE?

- As for practical work, please do check tutorials and up-to-date examples available for popular ML \& DL frameworks (TensorFlow, PyTorch, scikit-learn, Spark ML, Torch, Keras,...)
$6^{\text {th }}$ Summer School on INtelligent signal processing for FrontlEr Research and Industry
30th August 2021, University Autónoma de Madrid

Introduction to Machine Learning and Deep Learning (Part I)
 Juan Carlos San Miguel

Associate Professor at UAM \& Researcher at VPULab \&
Director of Master in Deep Learning for Audio and Video Signal Processing Juancarlos.sanmiguel@uam.es
ANY QUESTIONS?

