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Introduction
Error mitigation is likely to be key in obtaining near term quantum advantage. In this work we present one of the first
implementations of several Clifford data regression based methods which are used to mitigate the effect of noise in real
quantum data. We explore the dynamics of the 1-D Ising model with transverse and longitudinal magnetic fields, high-
lighting signatures of confinement. We find in general Clifford data regression based techniques are advantageous in
comparison with zero-noise extrapolation and obtain quantitative agreement with exact results for systems of 9 qubits
with circuit depths of up to 176, involving hundreds of CNOT gates. This is the largest systems investigated so far in
a study of this type. We also investigate the two-point correlation function and find the effect of noise on this more
complicated observable can be mitigated using Clifford quantum circuit data highlighting the utility of these methods.

Data-driven error mitigation
Data-driven error mitigation uses classical post processing of quantum data to improve the zero-noise estimates of some
observable of interest. In this work ZNE [1], CDR [2] and vnCDR [3] are used to obtain noise-free estimates of various
observables. Furthermore, following the recent work showing the success of a simple mitigation strategy with an assumed
noise model [4], we demonstrate the utility of a similar approach where the parameters of an assumed noise model are
learned using near-Clifford circuits (pmCDR).

• Zero-noise extrapolation (ZNE) uses quantum circuit data collected at various hardware noise levels to estimate the
value of a noise free observable. Intuitively, by increasing the noise in a controlled manner and extrapolating to the
zero-noise limit one can obtain a more accurate estimate of an observable of interest. Despite widespread success ZNE
performance guarantees are limited due to uncertainty in the extrapolation. It is not always obvious how many noise
scaled data points to measure and what functional form to use to extrapolate to the zero noise limit. In real devices
often the base-level noise is too strong to enable an accurate extrapolation, particularly in circuits with significant
depth.

• Clifford data regression (CDR) makes use of Clifford circuits to mitigate the effect of noise. Quantum circuits com-
posed of mainly Clifford gates can be evaluated efficiently on a classical computer. In CDR near-Clifford circuits are
used to construct a set of noisy and exact expectation values for some observable of interest. This dataset is used to
train a simple linear ansatz mapping noisy to exact values,

f (µ̂0) = a1µ̂0 + a2, (1)

where µ̂0 to be the observable evaluated with hardware noise. This ansatz is motivated by a global depolarising channel
which appears to accurately describe the noise in a real device for small system sizes [4].

• Variable noise Clifford data regression (vnCDR) conceptually unifies ZNE and CDR into one mitigation strategy
where Clifford circuit quantum data is used to inform the functional form of the extrapolation to the zero-noise limit.
Intuitively, variable noise Clifford data regression reduces the risk of blind extrapolation and is expected to outperform
both ZNE and CDR in deep quantum circuits involving many qubits.

• Poor man’s CDR (pmCDR) reduces the computational cost of CDR when applied to circuits comprised of sev-
eral Trotter steps. In the case of a global depolarisation channel, the effective noise of N Trotter steps, εN , satisfies
1 − εN = (1 − ε)N , where ε is the noise associated with one Trotter step. The noise of deeper circuits, i.e. with more
Trotter steps, can be inferred by applying CDR to circuits with one and two Trotter steps.

Transverse-Longitudinal Ising model
A system which displays interesting many body dynamics is the transverse field Ising model (TFIM) with an additional
longitudinal field, providing a clear test bed for these mitigation methods.
The Hamiltonian of the quantum one-dimensional Ising model of length L with transverse and longitudinal fields is given
by

H = −J
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where J is an exchange coupling constant, which sets the microscopic energy scale and hX and hZ are the transverse and
longitudinal relative field strengths, respectively. This model is integrable for hZ = 0 while for hZ 6= 0 it is only integrable
in the continuum when hX = 1.

• Ferromagnetic phase: hX < 1 (with J > 0)→ Domain walls between the two ground states of H with hX = 0.
→ Fermions

|i〉 = |↑ · · · ↑i−1↑i↓i+1↓i+2↓i+3 · · · ↓〉 . (3)

• hZ 6= 0→ Confining potential between pairs of domain walls which increases linearly with the length of the domain.
→Mesons

|i, n〉 = |↑ . . . ↑i−1↓i . . . ↓i+n−1↑i+n . . . ↑〉 , (4)

We simulate the induced Hamiltonian dynamics using a first order trotterised evolution of the initial state. We decompose
the quantum circuit to execute one Trotter step into the native IBM gate set {RX(π/2), RZ(θ), X,CNOT}. This decom-
position leads to a depth of 11 per Trotter step with 2(Q− 1) CNOT gates for a system size Q > 2, where Q is the number
of qubits. For a fixed time step ∆t one can evaluate the dynamics up to time t by repeated action of this circuit NT times,
where NT = t/∆t.

Figure 1: Quantum circuit representation showing one step of a first order Trotter expansion of a 5-qubit encoded spin-
system.

Simulated spin chain confinement
We display the results obtained after applying the mitigation methods described above on the trotterised evolution of a
system of Q = 9 qubits. We explore the signatures of confinement by measuring the probability distribution of kinks
∆ZZ
i (t) = 1
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Z
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〉
), the evolution of the two point correlation function σZZi,j (t) ==
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and the
meson masses determined by extracting the dominant frequency of the oscillation of the magnetisation σZi (t) =
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〉
.
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Figure 2: Temporal evolution of Z-axis local magnetisation with hX = 0.5 and hZ = 0.9 for three initial states (in each
row) with the observables mitigated using various techniques (columns). In all panels the exact diagonalised dynamics
is shown as a black-solid line. Raw observables are shown in the left most column (a) calculated at two noise levels
C = {1, 3} (blue and light blue points respectively) using the IBMQ Paris quantum computer. Black points and dashed
lines show the trotterised dynamics.
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Figure 3: The observable ∆ZZ
i projected into the 2-kink subspace, measured at various sites and Trotter steps when

hX = 0.5, hZ = 0 (upper row), hX = 0.5, hZ = 0.5 (middle row) and hX = 0.5, hZ = 0.9 (bottom row) . The initial state
of the system is |↑↑↑↑↓↑↑↑↑〉.
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Figure 4: Correlation of qubits at sites along the x axis
with the central qubit for the TFIM with hZ = 0 and the
system initialised in the |↑↑↑↑↑↑↑↑↑〉 state.
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Figure 5: Frequencies obtained at hX = 0.5 and various
hZ values calculated from the exact diagonalised (dashed
lines), trotterised (a) and the median raw (b) and median
mitigated results (c)-(f). Frequencies obtained for initial
states |↑↑↑↑↑↑↑↑↑〉 (dots), |↑↑↑↑↓↑↑↑↑〉 (diagonal cross)
and |↑↑↑↓↓↑↑↑↑〉 (vertical cross) are plotted.

Conclusions
• We have simulated the dynamics of a quantum quench on the TFIM using a trotterised evolution on a quantum com-

puter.
• We applied several data-driven error mitigation techniques, as well as presenting a simplified implementation of CDR,

so-called pmCDR inspired by Ref. [4]. Clifford based mitigation methods show the best performance overall. We have
demonstrated quantitative accuracy can be obtained using CDR and vnCDR from observables produced by circuits
with depths of up to 176 involving hundreds of CNOT gates.

• We have shown it is possible to calculate the first meson masses with quantitative accuracy for systems of 9 qubits, the
largest system explored in a study of this type.
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