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Recalling the 2HDM

• With respect to the SM Higgs Sector, a new complex Y = 1/2, SU(2)L doublet
scalar field is introduced, Φ → (Φ1, Φ2). This leads to 8 degrees of freedom:
3 Goldstone bosons (G±, G) absorbed by the EW bosons, 2 CP-even scalars
(h, H), 1 CP-odd scalar (A) and one pair of charged Higgses (H±).

• The most general gauge invariant renormalisable scalar potential is given by:
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Useful equations relating the potential parameters

Both doublets develop vacuum expectation values (v1, v2), where v1 = v cos β = vcβ, v2 = v sin β =
vsβ and v ≈ 246 GeV. From ∂Φi

V|(v1,v2) = 0:
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where λ345 = λ3 + λ4 + λ5. Eliminating v2:
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On the other hand, the previously mentioned CP-even eigenstates are obtained by a rotation of the
basis (Φ1, Φ2) via the angle α, which verifies:
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Alignment limit and the Fine-Tuning in the 2HDM

The alignment limit is the situation in which the light eigenstate, h, behaves as the SM Higgs: they
both present the same couplings to all the SM fields. By inspection of the normalized couplings to
the EW bosons and fermions
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we infer a mathematical characterization of the limit: cβ−α → 0. In this situation, several observ-
ables are susceptible of suffering fine-tuning (FT), i.e. they depend on a fine adjustment of the

fundamental parameters of the theory. From the fact that cβ−α =
−Z6v
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• Alignment without decoupling: Z6 → 0 and we find a FT in cβ−α ∝ Z6 =
∑
O(λi)-terms.

Fine-Tuning computation

By the Barbieri-Giudice Criteria, the FT in an observable Ω w.r.t. θi is
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d log Ω
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, ∆Ω ≡ max |∆θiΩ|, Ω is fine-tuned when ∆Ω� 1.

Instead of obtaining expressions Ω(θi), which are quite complex (e.g. tβ verifies a
quartic equation), we use eq1, eq2, eqα and eqβ as well as the Implicit Function
Theorem:
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The final analytical formulas are not shown due to their extensions.

Dependence of the FT on the extra-Higgs masses

We consider a nearly realized alignment, cβ−α = 0.01, and that mH = mA = mH± = m0 ∈
[200 GeV, 2000 GeV], where we set tβ = 1.1. We only display the most relevant results.

Fig. 1: Dependence on m0 of the fine-tunings in v2 and cβ−α due to m2
ij.

Regarding v2, ∆v2 ∼ m2
0
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h

for m0 � mh. With respect to cβ−α, using its expression and

the definition of the FT:
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implying that ∆mij
cβ−α has a contribution coming from ∆mij

v2. As a result, ∆mij
cβ−α,

∆mij
v2 � 1 for large masses and ∆mij

cβ−α � 1 also for small masses. Both FT are
minimum (in absolute value) for m0 ≈ 550 GeV. tβ seems not to be fine-tuned.

Dependence of the FT on tβ

As before, cβ−α = 0.01. We consider tβ ∈ [1, 40] and we set mH = mA = mH± = m0 =
550 GeV.

Fig. 2: Dependence of the v2 fine-tuning on tβ

For tβ →∞ we find that v2 ≈ v2
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12. This is, for large values of tβ the observable v2 is not
fine-tuned. Nevertheless, a hierarchy in the mass parameters is required.

The same happens when analysing ∆tβ. Once for example, v2 is fixed, the vacuum expec-

tation value v1 satisfies v1 ∼ m2
12v2
m2

11
. Again, a hierarchy appears but no FT is found.

Symmetries and Special Regions in the Parameter Space

In the exact alignment limit tα = −1/tβ. From the consistency of eqα and eqβ:

|m2
12(λ1 − λ2)| − |(m2

11 −m2
22)|
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Alignment is reached when both terms vanish. Possible symmetries in the Higgs potential accommodating this constraint are listed in the following table:

In practice, these symmetries have to be broken to provide a phenomenologically viable model. Anyway, it is interesting to explore the scalar potential parameter regions where these
(approximate) symmetries appear. We are now working on that and we hope to report soon about it.

• CP-conserving 2HDM: {m2
ij, λk} real.

• Avoidance of FCNCs: softly-broken discrete symmetry Z2 =⇒ λ6,7 = 0.

Apart from these two potentially fine-tuned observable, we also take into account the observable tβ, which takes part
in the EW breaking since now there are two vacuum expectation values. Therefore, we look over the observables
{tβ, v2, cβ−α}


