

# In situ mass calibration of Large-R jets via Forward Folding method other tt events at 13 TeV

Esteban Fullana<sup>1</sup>, Juan Fuster<sup>1</sup>, Davide Melini<sup>2</sup>, <u>Luis Monsonis</u><sup>1,\*</sup>, Alberto Prades<sup>1</sup>, Marcel Vos<sup>1</sup>

<sup>1</sup>Instituto de Física corpuscular (IFIC, CSIC-UV), 46100 Burjassot, Valencia, Spain <sup>2</sup>Technion - Israel Institute of Technology, Haifa, Israel

\*luis.monsonis.romero@cern.ch





A jet is a narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon



#### FF method

• A general transformation is applied to variable X:

 $X_{reco}^{folded} = X_{reco}s + (X_{reco} - X_{true}R)(r - s)$ 

where R is simulated response from nominal MC. Then, we can write:

- $< X_{reco}^{folded} >= s < X_{reco} >$ and  $RMS(X_{reco}^{folded}) = rRMS(X_{reco})$
- This means that, in the new distribution, the mean and RMS can be understood as the original ones but scaled by a factor s and r, respectively.
- Huge amount of MC templates can be built by mapping s and r over given range. The comparison of all those templates with data yields a  $\chi^2$ distribution which depends on s and r. Its minimization provides the template that best fits data (and consequently its s and r values associated).

# FF method

- A high-purity signal sample of Large-R jets with high- $p_T$  is obtained by selecting  $t\bar{t}$  events in the lepton + jet final state (only  $\mu$  channel is used)
- Two event selections are applied in order to obtain jets mainly formed from W or Top decays
- The relative JMS/JMR is derived by studying the jet mass spectrum of the Large-R jets that can contein either the full W or Top decay products, resulting in two different mass peak distributions
- $m^{folded} = sm^{reco} + (m^{reco} m^{truth}R_m(m^{truth}, p_t^{truth})(r s)$



# Selection of Detector level event

- One muon with  $p_T > 25 GeV$ .
- Jets with  $p_T > 25 GeV$ .
- At least one small-R jet with  $\Delta R(j,\mu) < 1.5$ .
- At least one b-tagged small-R jet.
- Large-R jets with  $\Delta R(j_i, j_k) > 2$ .
- For boosted top sample:  $\Delta R(b,j) < 1$ .
- For boosted W sample, :  $\Delta R(b, j) > 1$ .



Figure: Top mass distribution for Calorimeter mass jet.



Figure: Top mass distribution for TA mass





Figure: W mass distribution for Calorimeter mass jet.



Figure: W mass distribution for TA mass jet.

Reclustered Jet Mass [GeV]



Figure: W mass distribution for Reclustered Figure: Top mass distribution for mass jet.



Reclustered mass jet.



# Summary

- For control plots, data and MC samples are compatibles within the statistical (and systematical) errors.
- Results for JMS/JMR of calorimeter, track-assisted and reclustered jets are compatibles with 1.
- Results for JMS/JMR of reclusteres jets for W selection better than for calorimeter and track-assisted jets (for JMS results differ less than 0.5 % and for JMR less tha 10 %, less for fifth bin.

# JMS/JMR new derivations

Study of Reclustered jets substructure:

[400,500], [500-600], [600,2000] GeV.

- One small-R jets (one prong) for W distributions. Binning: [400-500], [500,600] GeV.
- Two small-R jets (two prongs) for W distributions. Binning: [200-225], [225,250], [250-275], [275,300], [300-325], [325,350] GeV. Two small-R jets (two prongs) for Top. Binning: [500-600], [600,2000] GeV.
- distributions. Three small-R jets (three prongs) for Top distributions. Binning: [350-500],
- 3500 ATLAS Internal  $t\bar{t} \rightarrow \mu + \text{jets}, |\eta_{\text{det}}| < 2.0$  $\sqrt{s}$  = 13 TeV, 80 fb<sup>-1</sup> 3000 ← Reclustered *R*=1.0 Top selection (PFlow+JES+JMS) Data, ≥ 1 prong 2500 Data, ≥ 2 prongs Data, ≥ 3 prongs Data, ≥ 4 prongs 2000 [ MC, ≥ 1 prong MC, ≥ 2 prongs MC, ≥ 3 prongs 1500 MC, ≥ 4 prongs 1000 [ 500 ├ 300 250 100 150

⊕30000 ATLAS Internal  $t\bar{t} \rightarrow \mu + \text{jets}, |\eta_{dot}| < 2.0$  $200 \text{ GeV} < p_{\perp} \le 350 \text{ GeV}$  $\sqrt{s}$  = 13 TeV, 80.5 fb<sup>-1</sup> b-jet tag:  $\Delta R(b; jet) > 1$ £ 25000 ← Reclustered R=1.0 (PFlow+JES+JMS) Data, ≥ 1 prong **ш** 20000 [− Data, ≥ 2 prongs Data, ≥ 3 prongs MC, ≥ 1 prong 15000 [ MC, ≥ 2 prongs MC, ≥ 3 prongs 10000 5000 -100 120 140 160 180 20 80 Reclustered jet mass [GeV]





# Summary

- Study of Reclustered jets substructure allows to obtain a purer sample where we eliminate the Chudakov peak and other jets that are not part of the W or the top.
- New results are compatibles with the inclusive results and statitiscal error more smalls (  $\chi^2$  fits shows narrower parabolas), except for the last bins of Top and W selection because there are less statistics.
- For the last bin of the JMS for Top selection using 2 or 3 prongs the result is worse than inclusive case. Is is due to the small statistics. For JMR the results between inclusive case and 2 or 3 prongs case are so different for the same reason.