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OPTICAL PROPERTIES OF SILICON AND TIN NANOSHEETS
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INTRODUCTION

Silicene and Stanene belong to a large group of two-dimensional materials better known as Xenes. They are artificial graphene-like monoelemental
buckled lattices made of elements other than carbon. This class of materials shows a wide electronic diversity: within it, semimetals, semiconductors and
topological insulators can easily be found. This makes them particularly attractive for several new technology applications, such as spintronics,
nanoelectronics and photonics [1]. In order to have a direct access to their optical properties, we proposed sapphire as an optically transparent substrate
capable of stabilizing the two-dimensional structure of epitaxial silicon [2] and tin [3] nanosheets, without destroying their electronic states. The absolute
optical transmittance was measured on different samples, in the photon frequency range from Infrared to Ultraviolet. Using the RefFIT [4] data analysis
software, microscopic optical functions were extracted. The absorption spectra - as a function of thickness for silicon and as a function of temperature for
tin - are presented and discussed.

SAMPLE GROWTH AND SPECTROSCOPIC CHARACTERIZATION

Epitaxial growth in UHV 
conditions

Substrate preparation

𝐴𝑙2𝑂3(0001)

•Degassing at ~ 250 °C 
for several hours

Epitaxial deposition

Silicon or Tin

Encapsulation

~5𝑛𝑚 Amorphous 𝐴𝑙2𝑂3

•Reactive 
co-deposition of Al+𝑂2
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𝐸𝑚𝑎𝑥: π→π* transition for 
silicene (1.4 eV) and 
graphene (4.6 eV) 

➢ At the 2D limit freestanding-
like silicene behavior is 
observed: two resonances 
close to π→π* (1.6 eV) and 
σ→σ* (4 eV) transitions [5] 

➢ The silicon nanosheets 
optical conductivity shows a 
low-energy electrodynamics

➢ The behavior of universal 
conductance, as function of 
layer thickness is consistent 
with a Dirac-like electronic 
dispersion

𝐺0 𝜔 ~ 6.08 x 10−5Ω−1

𝐺1(𝜔) = σ1 𝜔 𝑑

𝐴(𝜔) = 𝛼(𝜔)𝑑

𝛼(𝜔) =
2𝜅(𝜔)𝜔

𝑐

➢ The optical behavior of the tin films at the 2D limit 
is very similar to each other, independently of 
growth temperature 

➢ The trend is similar to those predicted by theory
➢ Expected electronic transitions for free-standing 

stanene:
• π→π*  at ~2 eV
• σ→σ* at 3.1 and 4.0 eV 

➢ The absorption of tin films 
strongly differs from those of 
common tin oxide and from 
those conventional elemental 
tin phases

CONCLUSIONS

➢ The optical behavior of tin films at the 2D limit strongly differs from those 
of tin oxide and from those of elemental tin phases

➢ The absorption spectra show characteristic signatures, similar to those 
expected in the absorption spectrum of the freestanding stanene

➢ The use of an optically transparent substrate allowed us to investigate 
the optical properties of silicon and tin at the 2D limit 

➢ The behavior observed in the IR part of the optical conductivity spectra of 
2D silicon films suggest the presence of Dirac fermions

➢ The optical conductivity of silicon nanosheets, at the 2D limit, show 
interband transition features, like ideal silicene
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Optical scheme for transmittance 
measurements in THz-IR spectral region
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➢ The spectral range from THz to UV has been
scrutinized combining FT-IR spectroscopy and NIR-
Vis-UV dispersive spectrometry

➢ The absolute optical transmittance was measured and
analyzed using the software RefFIT

➢ A multilayer Drude-Lorentz model was developed, 
consisting of two layers: one for the 𝐴𝑙2𝑂3 substrate 
and the other for the thin film

➢ Microscopic optical properties were determined
through a K-K constrained fit of the experimental
measurements
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𝐼0 𝜔

Transmittance

෤𝑛(ω) = 𝑛 ω + 𝑖κ(ω)

෥σ(ω) = σ1 ω + 𝑖σ2(ω)
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