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Introduction:

A 4 Tesla superconducting magnet has been developed by CIEMAT for a

compact cyclotron for radioisotope production in the framework of AMIT

project (Advanced Molecular Imaging Techniques) in collaboration with other

Spanish companies. For the refrigeration of the SC magnets an autonomous

cryogenic cooling system (CSS) has been developed in collaboration with

CERN.

The CSS is based on a closed loop forced-flow refrigeration configuration,

where certain amount of cryogen is cooled down in a commercial cryocooler

and it is pumped into the final user application to achieve the desired

temperature. This refrigeration equipment has low Carnot efficiencies at low

temperatures

What is Magnetic Refrigeration?

Magnetic refrigeration is based on the magnetocaloric effect (MCE), which is the

reversible temperature change of a magnetic material upon the application or

removal of a magnetic field

Model:

A magnetic refrigeration stage would be included after the 2nd stage of the

cryocooler in the CSS. The design of such system will require the study of: the

magnetic source, the fluid dynamics and the magnetocaloric material.

A finite difference model has been developed to analyze the thermal and fluid

dynamic behavior of such solution where first law and second law equations are

iteratively solved.

Results:

The magnetic field signal has been optimized to maximized the refrigeration

power. In Figure 6, the thermomagnetic cycle undergone by the MC material is

shown. An analysis of the optimal MC material as a function of temperature has

revealed that GGG would be the material of choice for temperatures lower than

14K, and ErAl2 for higher temperatures.

Conclusion:

A finite difference model of a magnetic refrigeration stage has been developed

to analyze and compare the different operational parameters and variables that

comprises a magnetic refrigeration stage. The model allows to compare among

different MC materials and to optimize the fluid, magnetic and geometric

parameters.

Further work is needed in the definition of the magnetic source and hydraulics

of the system to completely define the characteristics, cooling power and

efficiency of the stage.
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Fig. 1. AMIT superconducting cyclotron and the

cryogenic supply system (CSS).

Fig. 2. Carnot cryocooler efficiency as a function of

temperature

Two variables define this effect:

the isothermal magnetic entropy

change, and the adiabatic

temperature change. The

adiabatic temperature change is

defined as:
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The total magnetic entropy

change is equal to:
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Fig. 3. Entropy of ErAl2 as a function of Temperature [K] and

Magnetic Field [B]
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Fig. 4. (a) Schematic of a magnetic refrigeration stage and (b) schematic of a differential regenerator model

adopted in the analysis

Fig. 5. Flowchart of the simulation procedure

Fig. 6. Cycle of MC material Fig. 7. Specific power of GGG and ErAl2


