
1. Original context: glassy energy landscape

- High-dimensional parameter spaces in

disordered systems (spin-glass systems and

DNNs alike) induce rough energy landscapes

[1], which are nearly worst-case scenarios for

optimisation.

- Common consequent issues include slow

convergence of stochastic gradient descent

(SGD) methods and the presence of large sub-

optimal basins.

- These traits are the cause of a class of

properties known as ‘glassy behaviour’:

permanent non-equilibrium, slow dynamics,

aging, quenched disorder.

2. Swap Monte Carlo for glass simulation

- In simulated models of glassy materials, we can

randomly swap bigger and smaller spheres

during thermal relaxation, without affecting the

final state [2].

- This effectively makes optimisation faster and

less restricted to the shape of the landscape.

Thermalisation times can be greatly shortened,

depending on sphere size statistics (known as

‘polydispersity’) [3].

- The training stage of DNNs shares several characteristics with the dynamics of physical

glassy systems [4]. If swap Monte Carlo can be successfully implemented in DNN training,

then a new similarity is found and we can accelerate training; else, there is a significant

difference to look into. However, as from the case of spheres it is not clear whether

swapping should occur purely in parameter space or also permuting dynamic variables.

3. Swapping parameters

- Benchmarking DNN protocols typically involves image recognition

systems. We have used a numerically normalised version of CIFAR-10.

- For parameter swapping, several levels are available: between different

feature vectors, between colour channels of an image, or between

pixels. Examples include “swap the values of all channels between two

pixels of one image” and “swap two channels of all pixels of all images”,

thus greatly varying in swap intensity. This is equivalent to shuffling the

system’s disorder at a local, relatively low-dimensional scope, making

new optimisation paths available and easing the process on average.

Learning-wise, we are providing the system with slightly noisier training

data, which is then reset so that simulated data corruption does not

accumulate.

4. Swapping weights and biases

- Swapping weights and biases effectively dashes dynamical trajectory

along some dimensions, thus exploring nearby regions of the energy

landscape that may not be accessible through standard SGD methods. In

learning terms, we are affecting the ‘memory’ of the system, by re-

arranging neuron information. The geometry of the loss function is not

altered in this case.

- There are also sub-structures for swapping dynamic variables: in-row,

in-column or fully mixed swapping, intra- or inter-layer permutation,

mixing biases and weights.

5. Conclusions
Feature swapping can accelerate training by as much of a factor of 2. Figure

below: training loss (blue) and accuracy (green) over iteration time for

several feature swapping protocols vs training without swapping (grey).

Weight swapping slows and impedes learning covariantly with swap intensity

(figure above, analogous colour coding); however, swapped learning

processes contain local information about the energy landscape.
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Figure A: visual representation of the 1SA protocol: one image is
selected (1), from which two randomly selected channels are swapped
(S), for all pixels (A) in the image.

Figure B: visual representation of an all-column weight swap: the values

of two randomly selected rows are swapped, for all columns in a given

layer.


