
Ultralight boson fields, also known as fuzzy dark 
matter or wave dark matter, are one of the most 
studied alternative dark matter models in cosmology in 
the recent years. In this talk, we discuss the general 
properties of the model and their connection to the 
formation of structure in the universe, at the linear and 
semi-linear regimes. Conversely, we also present the 
constraints that can be obtained for the model from 
observations of the large scale structure, specially for 
the mass of the boson particles and their self-
interaction.

Mathematical background
We consider a spatially flat, homogeneous and isotropic universe described by the FRW metric filled with barotropic 
fluids and a real scalar field  endowed with a potential . The Klein-Gordon equation of motion is 

, where  is the Hubble parameter. By means of a change to polar-like variables[3,4]: 

,   ,  , the new equations of motion are:

. We show in Fig. 1 the evolution of the SFDM EoS, 

, in which we see clearly the stage of rapid oscillations at late times. The numerical solutions were 
obtained from an amended version of CLASS[5], where all other cosmological parameters were fixed to their 
Planck18 values.
Observational constraints on the models parameters
In this work, we are interested in SFDM and its influence on the formation of cosmological structure. For this, we 
also describe the mathematical process to obtain accurate numerical solutions of the equations of motion, for the 
background and the regime of linear density perturbations. To obtain all the solutions, we work with an amended 
version of the Boltzmann code CLASS[4], using the equations of motion in the form of a dynamical system, which is 
appropriate to deal with the phase of rapid oscillations necessary for the scalar field to behave as CDM.
We can see in Fig. 2 the so-called matter power spectrum (MPS) of linear density perturbations of SFDM, and in 
comparison with those of standard CDM. Also shown are the data points of different experiments for the same MPS. 
The solid red curve represents the MPS for a boson mass of , which presents the typical sharp 
cutoff of density perturbations at small scales, a well known footprint of dark matter with ultralight bosons.
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One of the most amazing riddles in modern 
Cosmology is the existence of dark matter, which is 
allegedly driving the evolution of galaxies in the 
Universe. Being the precise nature of DM unknown, it 
is common to assume that is a cold component without 
any interaction with standard matter. For this reason it 
is called cold dark matter (CDM)[2].
One alternative model to CDM, and which is one of the 
compelling proposals in the recent years, is that of 
Scalar Field Dark Matter (SFDM). For SFDM, the dark 
matter particle is represented by a scalar field , 
endowed with quadratic potential of the form 

. The mass of this boson particle is 
usua l l y cons ide red to be o f the o rder o f 

ϕ

V(ϕ) = (1/2)m2
ϕϕ2

mc2 ∼ 10−22eV
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The stage of linear density perturbations, in the form of 
the MPS, can be used to put constraints on the boson 
mass. From Fig. 2, we can see, even by eye, that a 
mass as low as  is not allowed by 
data. Considering the last point on the right hand side 
of the MPS, it can be see that the boson mass should 
comply with , as the MPS for the 
latter mass is given by the dashed line in Fig. 2.
For a better determination of the observational 
c o n s t r a i n t s o n t h e b o s o n m a s s , w e u s e 
MontePython[5] and its likelihoods related to recent 
experiments like BOSS and UVLF. The resultant 
posteriors are shown in Fig. 3, and all of them show 
that experiments can only put lower constraints on the 
mass, being the strongest one that of UVLF with 

.[1]
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In the bottom panel of Fig. 1 we have the evolution
of the polar variable but now in terms of dimensionless
cosmic time 2m�t. Although the numerical solutions are
shown in di↵erent colors, it is clear that the correspond-
ing curves are superimposed on each other because their
behavior is the same.

It can be seen that the semi-analytical solutions agree
well with the numerical ones. In particular, the iterative
solution (26b) gives a reliable description of the early
and late time trends of the solutions, and it even gives a
good approximation to the oscillations of the numerical
solutions at intermediate times 2m�t ' 4, which is also
the time at which ✓ ' ⇡/2. That is, it also corresponds
to the time at which the scalar field EOS first crosses
the zero value w� ' 0. As this occurs within radiation
domination, we also find 2m�t = m�/H ' 4, which is the
typical time for the start of the oscillations estimated for
these field systems.

Surprisingly, the bottom panel of Fig. 1 also shows that
the late-time expression (26c) also seems to work very
well from the intermediate times onward, that is, almost
from the start of the rapid oscillations. This means that
we can safely write

✓(t > tosc) = 2m�t � 3⇡

4
. (27a)

That Eq. (27a) is also a very good approximation can
be understood from the properties of the sine integral
Si(x), which rapidly converges to its asymptotic value of
⇡/2, with small oscillations around it that rapidly decay
away. In what follows, we will use Eq. (27a) to describe
the behavior of the polar angle after the onset of rapid
oscillations of the field �.

We can also use Eq. (27a) also to convert the cuto↵
time t? into a cuto↵ polar angle ✓?, which is both a
dynamical variable and the argument in the modified
trigonometric functions (22). Hence, the relation be-
tween the cuto↵ values t? and ✓? is

2m�t? = ✓? +
3⇡

4
. (27b)

Equations (27) are a central result in the description of
our method. First, Eq. (27a) shows that the polar angle
evolves linearly with cosmic time t after the cuto↵ time.
Second, Eq. (27b) allows us to determine the cuto↵ point
of rapid oscillations via the polar angle ✓?, which is more
convenient from the numerical point of view and justifies
the use of the cuto↵ expressions (22).

To finish this section, in Fig. 2 we show the numerical
evolution of the scalar field EOS w� as a function again of
the dimensionless variable 2m�t, and we see that it first
passes through zero (for ✓ = ⇡/2) at around the time
2m�tosc ' 3.47, which we use to mark the time tosc for
the start of the rapid oscillations. Notice that in terms
of the usual mass-to-Hubble ratio, this is equivalent to
m�/Hosc ' 3.47, a value used as a reference in other
studies of field models.

FIG. 2. The numerical solution of the scalar field EOS w�

as a function of the variable 2m�t, under which all the di↵er-
ent cases collapse into a single curve (blue curve). The dashed
vertical lines mark the beginning of the rapid field oscillations
at tosc. The curve of the semi-analytical approximation (28)
(orange curve), which is well matched to the numerical solu-
tions at t > tosc, is also plotted. See the text for more details.

For comparison, we also plot in Fig. 2 the result of
the expression cos(2m�t � 3⇡/4). Notice that there is
very good agreement of this curve with the original EOS
w� almost from the start of the rapid oscillations, which
means that we can use the following expression for the
field EOS,

w�(t > tosc) = � cos (2m�t � 3⇡/4) . (28)

Equation (28) agrees with the common wisdom that the
EOS oscillates with a frequency directly related to the
field mass via 2m�. The phase of 3⇡/4 becomes negligible
at very late times, but as we shall see, it must be taken
into account for a correct description of the dynamics at
intermediate times of other variables after the onset of
the rapid oscillations.

C. The case of the energy density ⇢�

We have found semi-analytical results to follow the
evolution of the polar variable ✓(t), which are in good
agreement with the numerical results. However, one
should worry about the numerical accuracy as the scalar
field equations of motion must be solved together with
other matter components in Boltzmann codes, covering
an ample time interval for a complete description of di-
verse cosmological phenomena.

Here, we perform some accuracy tests using the
amended version of the Boltzmann code CLASS, taking
some guidelines from our semi-analytical results. Our
main concern is the choice of the cuto↵ value ✓?. As
we shall see, the cuto↵ procedure leaves a residual di↵er-
ence with respect to the expected late-time evolution of
a given variable that can be minimized if ✓? � 1.

Fig. 1. Evolution of the SFDM equation of state as a 
function of cosmic time , the latter being normalized in 
terms of the boson mass . At early times , 
but at late times the field enters a stage of rapid 
oscillations in the form .  See the 
text for more details.

t
mϕ wϕ ≃ − 1

wϕ ≃ − cos(2mϕt)

12

FIG. 7. MPS P (k) (top panel) and temperature spectrum D` (bottom panel) calculated for the field mass of m� = 10�24 eV,
together with their relative di↵erences with respect to MPS P100⇡(k) and the CDM temperature spectrum D100⇡

` . The labels
of the di↵erent curves refer to the cuto↵ variable ✓?. Note that the di↵erence for MPS given the choices of ✓? can be as large
as 100% in the range k = 2� 20h/Mpc (vertical gray-shaded region), while for the temperature spectrum it is less than 0.1%
(horizontal gray-shaded region). For reference, we include in the temperature spectrum the (black) curves given by ±3/`, which
represents an estimated precision threshold beyond which the parameter biases may be significant. The field mass was fixed to
m� = 10�24 eV in the numerical examples, but the black dashed line is for m� = 10�22 eV. The data points for the MPS are
the measurements from the Planck 2018 CMB [1], DES cosmic shear [49], SDSS galaxy clustering [50], SDSS Lyman-↵ [51],
and UV LF [52] data sets. See the text for more details.

Fig. 2. MPS of linear density perturbations of SFDM for a mass of . The MPS 
has a cutoff at small scales, which means small structure is suppressed with respect to standard 
CDM. The data points were obtained form different experiments as listed in the figure. See the 
text for more details.

mϕc2 = 10−24eV
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FIG. 8. (Top panel) Triangle plots obtained from the MCMC
code MontePython using the likelihood of the UV galaxy lu-
minous function, for parameters !b, !sfdm and log(m�c

2/eV).
(Bottom panel) Plot of the shape distortion function R ob-
tained from the posterior distribution obtained for the field
mass m�. See the text for more details.

We solved the KG equation (3d) separately, but with
the same initial conditions as in the polar case through
transformation (36). It is not possible to accurately fol-
low the numerical evolution after the onset of the field os-
cillations, and then we only solved the KG equation (3d)
up to the equivalent time to ✓? = 100⇡ (2m�t? ' 100⇡).
After this time, the equations of motion are set directly
to �̇ = 0 and �̈ = 0, which means that the late-time solu-
tions of the field variables are just �(t > t?) = �(t?) and
�̇(t > t?) = �̇(t?) (and the density remains artificially
constant afterwards).

The two sets of solutions, the original and the polar
ones, are plotted in compact form in the phase space
shown in Fig. 9. The thick curves correspond to the
system � � �̇, with the di↵erent colors representing the
field mass m�, while the solutions of the polar system,

all in black lines, are superimposed. We see that the
agreement between the corresponding curves is exact up
to t = t?.

FIG. 9. The phase space of the field variables � and �̇, writ-
ten in their dimensionless form as in Eqs. (36). The colored
curves are numerical solutions from the original field variables,
whereas the black curves are those obtained from the polar
method. The curve labels represent the value of the field mass
m� in units of eV. See the text for more details.

The same comparison exercise for field density ⇢� is
shown in Fig. 10, using the same colors for the di↵erent
curves as in Fig. 9. Furthermore, we normalize the den-
sity to the present value of the CDM density ⇢CDM0, to
highlight that the final value of the field densities coin-
cides with the equivalent CDM case. The upper panel
shows that the two sets of solutions coincide exactly, in-
cluding the oscillatory phase, which is also confirmed by
the comparison in the lower panel: the discrepancies ap-
pear at late times in the oscillatory phase and the cuto↵
in the solution of the field variables (see the explanation
below Eq. (36)).

As a final example, we show in Fig. 11 the SFDM
EOS calculated directly from the pressure-to-density ra-
tio w� = p�/⇢�, using the same unit system as in Fig. 2.
The variable in the horizontal axis is the dimensionless
quantity 2m�t, under which all curves corresponding to
a given field mass m� become the same curve. The EOS
oscillates rapidly around the zero value, and we again see
that there is excellent agreement between the numerical
results of the two approaches.

B. Linear density perturbations

We repeated the comparison of the solutions with the
case of linear density perturbations. This time we solved
the linearly perturbed KG equation (12), again using the
same initial conditions for the two sets of variables, the
originals ' and '̇ and the polar ones �0 and �1. Al-
though the perturbed polar variables are ↵ and #, see
Eqs. (13), recall that our final perturbed variables are
those of Eqs. (14) and their corresponding equations of
motion (15).

Fig. 3. Observational constraints on the boson mass 
 from eBOSS, BOSS and UVLF. See the text for 

more details.
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