LARGE-SCALE B-MODE POLARIZED FOREGROUNDS Andrei Frolov, SFU <u>frolov@sfu.ca</u>

COSMOLOGY 2023 in Miramare, 29 August 2023

PAST AND FUTURE CMB EXPERIMENTS

Planck (done!)

Simons Observatory (happening now)

LiteBIRD (space based)

CMB-S4

TAND E MODES ARE NOW NAILED!

NEXTTARGET: B-MODES primordial gravitational waves, large scale lensing...

PLANCK FOCAL PLANE

30 GHz 44 GHz 70 GHz 100 GHz 143 GHz 217 GHz 353 GHz 545 GHz 857 GHz

INTENSITY FOREGROUNDS

POLARIZED FOREGROUNDS

POLARIZED FOREGROUNDS

- two main foregrounds synchrotron and thermal dust
- both are strongly polarized, with abundant B-mode content
- synchrotron is power law, dominant at low frequency
- thermal dust is modified black body, dominant at high frequency
- primordial B-modes are sub-dominant at all frequencies

ADDITIONAL COMPLICATION - WATER!

COMPONENT SEPARATION

- different components have different frequency dependence!
- two basic strategies: fit component spectra (Gibbs samplers), or
- Planck used 4 pipelines (Commander, NILC, SEVEM, SMICA)
- spatial and morphological information not fully exploited yet...

construct minimal variance linear combination (ILC, BLUE, etc.)

INTENSITY COMPONENTS

POLARIZED COMPONENTS

https://github.com/andrei-v-frolov/healpix-viewer

COMPONENT SEPARATION ON GPU

- Gibbs samplers are massively parallel perfect fit for GPU...
- I coded up simplified (3 component, no beams) Commander model
- uses Barzilai-Borwein optimizer, can be extended with spatial priors
- takes 30ms to separate three nside=2048 maps on MI laptop...
- this means you can do component separation in real time now!

QUICK AND DIRTY (REALTIME)

+0.0006

COMMANDER 2018 (HOURS)

I_STOKES [K_CMB]

+0.0006

QUICK ASIDE II - NON-LOCAL MEANS

Input map

Gaussian-smoothing

average smarter, not harder: average similar pixels, not nearby ones!

Non-local means

Residual

arXiv:2306.00211

BACKTO FOREGROUNDS... modelling large-scale polarized emission

THERMAL DUST EMISSION

+1

SYNCHROTRON EMISSION

+1

DUST AND SYNCHROTRON

the intensity of two polarized foregrounds is not quite correlated!

- thermal dust is ~20K black body, modified by ~2.6 power law
- intensity traces dust distribution (complicated, but optically thin), polarization fraction traces magnetic field configuration (simple)
- synchrotron is -3.1 power law, extremely polarized
- intensity traces electron distribution (complicated, optically thick), polarization fraction traces magnetic field (averaged, not so simple)

SHORT SUMMARY

POLARIZED DUST EMISSION

polarization is caused by grain alignment due to magnetic field:

 $I = S_{\nu}e^{-\tau_{\nu}}d\tau_{\nu}$

 $\begin{cases} Q \\ U \end{cases} = \int S_{\nu} e^{-\tau_{\nu}} d\tau_{\nu} \begin{cases} \cos 2\psi \\ \sin 2\psi \end{cases} p_0 \cos^2 \gamma$

 p_0 is intrinsic polarization fraction ~0.21, γ and ψ are angles of magnetic field

$$\left[1-p_0\left(\cos^2\gamma-\frac{2}{3}\right)\right]$$

POLARIZED DUST EMISSION

• geometric factors in emission integral from magnetic field orientation:

 $\mathfrak{p} \equiv \frac{B_{\phi}^2 + B_{\theta}^2}{R^2} = \cos^2 \gamma$ $\mathbf{q} \equiv \frac{B_{\phi}^2 - B_{\theta}^2}{R^2} = \cos^2 \gamma \cos 2\psi$ $\mathfrak{u} \equiv -\frac{2B_{\phi}B_{\theta}}{B^2} = \cos^2\gamma\sin 2\psi$

split magnetic field into large-scale and random components:

dust samples magnetic field, giving average geometric factors

$$\langle X \rangle = \frac{1}{s_{\nu}} \int S_{\nu} e^{-\tau_{\nu}} d\tau_{\nu} X, \qquad s_{\nu} = \int S_{\nu} e^{-\tau_{\nu}} d\tau_{\nu}$$

MAGNETIC FIELD MODEL

 $\mathbf{B} = \bar{\mathbf{B}} + \delta \mathbf{B}$

• all complexity is in dust column density distribution, fit large-scale B!

EXPANDING TO LINFAR ORDER

intensity and polarization split into large-scale and random parts:

ESTIMATORS OF MAGNETIC FIELD • estimator of dust column depth: $I + P = s_{\nu} \left(1 + \frac{2}{3} p_0 \right) + O(\delta B^2)$

- estimators of magnetic field geometry:

$$\tilde{q} \equiv \frac{Q}{I+P} = \frac{3p_0}{3+2p_0}$$
$$\tilde{u} \equiv \frac{Q}{I+P} = \frac{3p_0}{3+2p_0}$$

MAGNETIC FIELD RECONSTRUCTION

- one can fit large-scale (smooth) magnetic field optimizing $\chi_{\bar{\mathbf{B}}}^2 = \left(\tilde{q} - \varepsilon \mathbf{q}[\bar{\mathbf{B}}]\right)^2 + \left(\tilde{u} - \varepsilon \mathbf{u}[\bar{\mathbf{B}}]\right)^2, \qquad \varepsilon = \frac{3p_0}{3+2p_0}$ • optimization problem is large, use L-BFGS-B optimizer and wait...
- this seems a bit simple-minded, but it works! but why?...
- looks like dust does not have too much averaging along line of sight, samples magnetic field mostly from a single layer...

MAGNETIC FIELD RECONSTRUCTION

polarization fraction in 353 GHz dust map versus reconstruction with $\ell_{max} = 15$

 $\ell_{\text{max}} = 1$

 $\ell_{\text{max}} = 5$

 $\ell_{\text{max}} = 10$

 $\ell_{\text{max}} = 20$

there seems to be a break at $\ell \sim 10!$

large scale (local) and turbulent components?

DUST POLARIZATION FRACTION

LARGE SCALE COMPONENT

TURBULENT COMPONENT

RANDOM PART IS QUITE GAUSSIAN!

DUST POLARIZATION IS SIMPLE! large-scale spatial template common to all frequency channels,

can be extracted (and reliably subtracted), residual is Gaussian!

- by electron density, and it does depend on field magnitude...
- getting explicit reconstruction is more complicated...
- logarithmic variables are still the best to describe map statistics •

SYNCHROTRON IS NOT SO SIMPLE...

• synchrotron polarization also depends on magnetic field, but sampled

polarization fraction is reduced by averaging along the line of sight,

- transform polarization tensor into polarization fraction tensor:
- this is an invertible transformation on IQU maps:

$$i = \frac{1}{2} \ln (I^2 - P^2), \qquad q = \frac{1}{2}$$

• useful for defining likelihoods and priors, also reconstruction...

POI ARIZATION FRACTION TENSOR

 $\begin{vmatrix} i+q & u \\ u & i-q \end{vmatrix} = \ln \begin{vmatrix} I+Q & U \\ U & I-Q \end{vmatrix}$

 $\frac{Q}{P} \ln \frac{I+P}{I-P}, \qquad u = \frac{1}{2} \frac{U}{P} \ln \frac{I+P}{I-P}$

SYNC POLARIZATION FRACTION

DUST POLARIZATION FRACTION

- dust polarization is actually fairly simple on large scales!
- synchrotron is more complicated, not entirely correlated to dust
- I am working on GPU algorithms for visualization, data clean-up, and component separation... still in progress, but it's fun!

SHORT SUMMARY

additional data could be rolled in (Faraday rotation in particular)

