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PAST AND FUTURE CMB EXPERIMENTS

Planck (done!) Simons Observatory 
(happening now)

LiteBIRD
(space based)

CMB-S4



T AND E MODES ARE NOW NAILED!
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NEXT TARGET: B-MODES
primordial gravitational waves, large scale lensing…



PLANCK FOCAL PLANE



PLANCK FOCAL PLANE
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INTENSITY FOREGROUNDS
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POLARIZED FOREGROUNDS

10 30 100 300 1000

Frequency (GHz)

1
0

-1
1
0

0
1
0

1
1
0

2

R
M

S
 b

ri
g

h
tn

es
s 

te
m

p
er

at
u

re
 (

µ
K

)

CMB

Thermal dust

Synchrotron

30 44 70 100 143 217 353

Sum fg



POLARIZED FOREGROUNDS
• two main foregrounds - synchrotron and thermal dust

• both are strongly polarized, with abundant B-mode content

• synchrotron is power law, dominant at low frequency

• thermal dust is modified black body, dominant at high frequency

• primordial B-modes are sub-dominant at all frequencies



ADDITIONAL COMPLICATION - WATER!
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COMPONENT SEPARATION

• different components have different frequency dependence!

• two basic strategies: fit component spectra (Gibbs samplers), or 
construct minimal variance linear combination (ILC, BLUE, etc.)

• Planck used 4 pipelines (Commander, NILC, SEVEM, SMICA)

• spatial and morphological information not fully exploited yet…



INTENSITY COMPONENTS



POLARIZED COMPONENTS



QUICK ASIDE - HEALPIX VIEWER

https://github.com/andrei-v-frolov/healpix-viewer

https://github.com/andrei-v-frolov/healpix-viewer
https://apps.apple.com/ca/app/healpix-viewer/id1660836459?mt=12


COMPONENT SEPARATION ON GPU
• Gibbs samplers are massively parallel - perfect fit for GPU…

• I coded up simplified (3 component, no beams) Commander model

• uses Barzilai-Borwein optimizer, can be extended with spatial priors

• takes 30ms to separate three nside=2048 maps on M1 laptop…

• this means you can do component separation in real time now!



QUICK AND DIRTY (REAL TIME)



COMMANDER 2018 (HOURS)



QUICK ASIDE II - NON-LOCAL MEANS
Input map

0.000631 0.0548

Gaussian-smoothing

0.000631 0.0548

Non-local means

0.000631 0.0548

Residual

-0.005 0.005

average smarter, not harder: average similar pixels, not nearby ones!
arXiv:2306.00211

https://arxiv.org/abs/2306.00211


BACK TO FOREGROUNDS…
modelling large-scale polarized emission



THERMAL DUST EMISSION



SYNCHROTRON EMISSION



DUST AND SYNCHROTRON

the intensity of two polarized foregrounds is not quite correlated!



SHORT SUMMARY
• thermal dust is ~20K black body, modified by ~2.6 power law

• intensity traces dust distribution (complicated, but optically thin),  
polarization fraction traces magnetic field configuration (simple)

• synchrotron is -3.1 power law, extremely polarized

• intensity traces electron distribution (complicated, optically thick), 
polarization fraction traces magnetic field (averaged, not so simple)



POLARIZED DUST EMISSION

• polarization is caused by grain alignment due to magnetic field:

I = ∫ Sνe−τνdτν [1 − p0 (cos2 γ −
2
3 )]

{Q
U} = ∫ Sνe−τνdτν {cos 2ψ

sin 2ψ} p0 cos2 γ

 is intrinsic polarization fraction ~0.21,  and  are angles of magnetic fieldp0 γ ψ



POLARIZED DUST EMISSION

• geometric factors in emission integral from magnetic field orientation:

𝔭 ≡
B2

ϕ + B2
θ

B2
= cos2 γ

𝔮 ≡
B2

ϕ − B2
θ

B2
= cos2 γ cos 2ψ

𝔲 ≡ −
2BϕBθ

B2
= cos2 γ sin 2ψ



MAGNETIC FIELD MODEL

• split magnetic field into large-scale and random components:

B = B̄ + δB

• dust samples magnetic field, giving average geometric factors

⟨X⟩ =
1
sν ∫ Sν e−τνdτν X, sν = ∫ Sν e−τνdτν

• all complexity is in dust column density distribution, fit large-scale !B̄



EXPANDING TO LINEAR ORDER…

• intensity and polarization split into large-scale and random parts:

I = sν(1 + 2
3 p0)−sνp0 [𝔭[B̄] +

∂𝔭
∂B

B̄

⟨δB⟩ +…]
Q = sνp0 [𝔮[B̄] +

∂𝔮
∂B

B̄

⟨δB⟩ +…]
U = sνp0 [𝔲[B̄] +

∂𝔲
∂B

B̄

⟨δB⟩ +…]



ESTIMATORS OF MAGNETIC FIELD

• estimator of dust column depth: I + P = sν(1 + 2
3 p0)+O(δB2)

• estimators of magnetic field geometry:

q̃ ≡
Q

I + P
=

3p0

3 + 2p0 [𝔮[B̄] +
∂𝔮
∂B

B̄

⟨δB⟩ +…]
ũ ≡

Q
I + P

=
3p0

3 + 2p0 [𝔲[B̄] +
∂𝔲
∂B

B̄

⟨δB⟩ +…]



MAGNETIC FIELD RECONSTRUCTION

• one can fit large-scale (smooth) magnetic field optimizing

χ2
B̄ = (q̃ − ε𝔮[B̄])2 + (ũ − ε𝔲[B̄])2, ε =

3p0

3 + 2p0

• optimization problem is large, use L-BFGS-B optimizer and wait…

• this seems a bit simple-minded, but it works! but why?…

• looks like dust does not have too much averaging along line of sight, 
samples magnetic field mostly from a single layer…



MAGNETIC FIELD RECONSTRUCTION
p f

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

polarization fraction in 353 GHz dust map versus reconstruction with ℓmax = 15



MAGNETIC FIELD LINES

ℓmax = 1



MAGNETIC FIELD LINES

ℓmax = 5



MAGNETIC FIELD LINES

ℓmax = 10



MAGNETIC FIELD LINES

ℓmax = 20



RECONSTRUCTED SPECTRUM
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RECONSTRUCTED SPECTRUM
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RECONSTRUCTED SPECTRUM
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RECONSTRUCTED SPECTRUM
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RECONSTRUCTED SPECTRUM
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ℓmax = 20 there seems to be
a break at !ℓ ∼ 10

large scale (local)
and turbulent
components?



DUST POLARIZATION FRACTION
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LARGE SCALE COMPONENT
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TURBULENT COMPONENT
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RANDOM PART IS QUITE GAUSSIAN!
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DUST POLARIZATION IS SIMPLE!
large-scale spatial template common to all frequency channels,
can be extracted (and reliably subtracted), residual is Gaussian!



SYNCHROTRON IS NOT SO SIMPLE…

• synchrotron polarization also depends on magnetic field, but sampled 
by electron density, and it does depend on field magnitude…

• polarization fraction is reduced by averaging along the line of sight, 
getting explicit reconstruction is more complicated…

• logarithmic variables are still the best to describe map statistics



POLARIZATION FRACTION TENSOR

• transform polarization tensor into polarization fraction tensor:

[i + q u
u i − q] = ln [I + Q U

U I − Q]
• this is an invertible transformation on IQU maps:

i =
1
2

ln (I2 − P2), q =
1
2

Q
P

ln
I + P
I − P

, u =
1
2

U
P

ln
I + P
I − P

• useful for defining likelihoods and priors, also reconstruction…



SYNC POLARIZATION FRACTION
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DUST POLARIZATION FRACTION
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SHORT SUMMARY

• dust polarization is actually fairly simple on large scales!

• synchrotron is more complicated, not entirely correlated to dust

• additional data could be rolled in (Faraday rotation in particular)

• I am working on GPU algorithms for visualization, data clean-up, 
and component separation… still in progress, but it’s fun!



THANKS!


