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FERMI-LAT GAMMA-RAY DATA & BETA-PLOT

4FGL catalogue: Tk _, .
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FERMI-LAT GAMMA-RAY DATA & BETA-PLOT

4FGL catalogue:
TOT ASTRO ( PSR, QSR, BCU)
TOT UNIDS -
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FERMI-LAT GAMMA-RAY DATA & BETA-PLOT

AFGL psr unidentified (UnlDs)
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DARK MATTER & BETA-PLOT

Context: Indirect searches for Dark Matter (DM)
Weakly Interacting Massive Particles (WIMPs)

d¢ 1 dN
—E,AQ,l.0.5) = ov) “(E)X J(AQ,L.0.5)
dE 41 ém)% dE

Particle Physics Astrophysics
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DARK MATTER & BETA-PLOT

The gamma-ray flux expected by WIMP annihilation into Standard Model (SM) channels can be
simulated via Monte Carlo event generator software (e.g. Pythia 8). The very well known

PPPCB4DMID (Cirelli’s) interpolation of those fluxes (for several WIMP masses and SM channels)
makes those results user friendly for DM searches.

Here, we further fit those interpolations with a Log-Parabola (LP):

10 10° 10° 107 103 10 10°
E [MeV] E [MeV]

—a—p-log (E/Eo) J.Coronado-Blazquez et al. JCAP07(2019)020
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DARK MATTER & BETA-PLOT
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DARK MATTER & BETA-PLOT

AN AN AN Degeneracy of
g < )C - _B”)< )C pulsar and DM signal

This work, V.G. et al. MNRAS 520, 1348—-1361 (2023)
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>

OUR STRATEGY

Training the classification algorithm on a sample of experimental
(astrophysical - Astro) and expected ( Dark Matter - DM) dataset.

Testing the classification accuracy on a subsample of data;

Predicting prospective DM-source candidates among the unlDs
dataset, with assigned probability pDM.

So far, the classification problem is based on two features (Epegks /) -

> We expect the classification accuracy improves by including more

independent features. Intuitively straightforward, but many
observational features are not available for DM.
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SYSTEMATIC FEATURES

Indeed, we focused on two observational features:

1. Detection significance o,;: obtained by the likelihood analysis, which
determines if the source exists, its position, spectral parameters, etc.
It depends e.g. on the background template (the diffuse model and
emission model of all the other sources in the source region) among
other systematics we are not able to model.

2. Uncertainty on the curvature [f: we expect that a lower detection
significance corresponds to a worst characterisation of the source
spectrum, but this is not all....
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SYSTEMATIC FEATURES: DETECTION SIGNIFICANCE

1. Detection significance o,;: a source pre-selection based on detection
significance improves the classification even only “by eye”.

This work, V.G. et al. MNRAS 520, 1348—-1361 (2023)
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SYSTEMATIC FEATURES: DETECTION SIGNIFICANCE

1. -> If any DM source has been detected so far, it is among the unlDs.
We assume that all the DM candidates are unlDs. Indeed, we use for the
DM sample the same distribution of detection significance as the unlDs.

Real data
Synthetic data

This work, V.G. et al. MNRAS 520, 1348—-1361 (2023)




SYSTEMATIC FEATURES: UNCERTAINTY ON

2. Uncertainty on [f: we expect that a lower detection significance
corresponds to a worst characterisation of the source spectrum,

This work, V.G. et al. MNRAS 520, 1348—-1361 (2023)

but this is not all....
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SYSTEMATIC FEATURES: UNCERTAINTY ON

2. Uncertainty on [f: we expect that a lower detection significance
corresponds to a worst characterisation of the source spectrum, but the

latter also depends on the Epeak

-2
Log(Epeak) [GeV] Epeak [GeV]

This work, V.G. et al. MNRAS 520, 1348—-1361 (2023)
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SYSTEMATIC FEATURES: UNCERTAINTY ON

2. -> we use for the DM sample a distribution of f,., = €3/ which

statistically depends on the £, ,, in agreement with the observed unIDs
population

This work, V.G. et al. MNRAS 520, 1348-1361 (2023)
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FROM TWO TO FOUR FEATURES

Astro
B DM
Bl uniDs

Astro
Em DM
I uniDs

This work, V.G. et al. MNRAS 520, 1348-1361 (2023)
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CLASSIFICATION ALGORITHMS

C@

» LOGISTIC REGRESSION (LR) (SCIKIT-LEARN)

> ARTIFICIAL NEURAL NETWORK (NN) (SCIKIT-LEARN)

» NAIVES BAYES (NB) (PYTHON)

f

> GAUSSIAN PROCESS (GP) (TENSOR FLOW) TensorFlow




CLASSIFICATION ALGORITHMS
LINEAR REGRESSION

Best fit: getting the 0 parameters which minimize the (cost/lost)
function (least square, likelihood, etc.)

HLPVNECILE <R,
/(©) = —(h(x) — ¥) = 2",;((@ X); — ¥?)

1-Feature (1-F) (x), n measurements

f-Feature (f-F) (x), n measurements

[X] =[nXf]

Xi={x;. . xbicy
T _ T r

)(j — {Xl . Xn }j=1...f
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CLASSIFICATION ALGORITHMS
LOGISTIC REGRESSION

Getting the 0 parameters which minimize the cost/lost function

] —« .. . . .
J(©) = — —[ ) yPlog(lyx™)) + (1 = yD)log(1 — hy(x"))
n

i=1
1 5 . .
h(x) — g(z) = T 2=0,+0x+...(+ Ox~...) Activation function
e
#% Decision boundary 9(2) > 0.5 > y® =1 (e.g. DM)

o
@
e
G
S
>

Variable 1

2(2) 0.5 - y? =0 (e.g. Astro)
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CLASSIFICATION ALGORITHMS

ARTIFICIAL NEURAL NETWORK

Neural Network (Classification) .. ..~ = = S
( ){(-‘1‘“", y W), (22, g2, o (et gy )

L = total no. of layers in network

S = no. of units (not counting bias unit) in
layer [

Layer 1 Layer2 Layer 3 Layer 4 |

Binary classification | Multi-class classification (K classes)
| N | K 1 0 0 0
| y=0orl | y € R™ ke [8]’ [(l)}, [(1)] : [8}

0 0 0 1
pedestrian car motorcycle truck

1 output unit | K output units

The softmax function converts a vector of K
real numbers into a probability distribution of
K possible outcomes.

Rectified Linear
Activation Function
(Relu)

f(x) = max(0, X) P(y=j|x) =
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CLASSIFICATION ALGORITHMS

ARTIFICIAL NEURAL NETWORK

LOGISTIC REGRESSION: COST FUNCTION

LA , , . o
J0) =——| Y P loglyx™) + (1 = yD)log(1 — hy(x'))] + o Y 62

i=1 =1

NEURAL NETWORK: COST FUNCTION

hO(x) € R¥ (hg(x)); = i™ output

L L=1 8 Sip
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CLASSIFICATION ALGORITHMS

ARTIFICIAL NEURAL NETWORK: THIS WORK

RepeatedStratifiedKFold

Activation function:

Rectified Linear Activation
Function (Relu)

©
[o4]
1

accuracy
Fit Time (s)

This work:
1 layer with 21 neurons

—— 1 layers

o— 2 layers
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SETUPS

2-FEATURES (2F) CLASSIFICATION (LR, NN, NB): Includes the 2-features introduced so
far, indeed (Epeqx, £)

3-FEATURES AUGMENTED (3F-A) (LR, NN, NB): An augmented dataset containing
three features:  (Ecq> Psampled 04) INstead of incorporating the uncertainty f, as an

extra feature, the strategy here is to augment the dataset by the following procedure:

For each observation, we assume that the variable f# follows a truncated Gaussian
distribution, whose mean is precisely the observed value, and the standard deviation is

precisely the observed uncertainty €5, but truncated such that O0<p<1.

3F-B (GP): A dataset containing the three same features as above, i.e. (E,eax f,0,) -

However, now the uncertainties €z are included in the statistical model. Concretely, this
setup will concern exclusively the NIMGP model mentioned above.

4-FEATURES (4F) CLASSIFICATION (LR, NN, NB): Includes the systematics uncertainty,
by including two more features, that are: (E ..y, J, 04 Pre) Where b = €5/
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RESULTS

OVERALL ACCURACY (0A): PERCENTAGE OF WELL
CLASSIFIED DATA SET

Rsamples™ 1

D 1G,=w)

samples — ;_q

OA(y,y) =

n

TRUE NEGATIVE (TN): PERCENTAGE OF WELL
CLASSIFIED ASTRO SOURCES (NORMALISED TO
THE TOTAL NUMBER OF ASTRO SOURCES)

TRUE POSITIVE (TP): PERCENTAGE OF WELL
CLASSIFIED DARK MATTER SOURCES (NORMALISED
TO THE TOTAL NUMBER OF DM SOURCES)

THE OVERALL CLASSIFICATION ACCURACY IMPROVES
WITH THE INTRODUCTION OF SYSTEMATIC FEATURES
FOR ALL THE TRAINED ALGORITHMS.

V.G. et al. arXiv: 2207.09307

OA(%) TN (%) TP (%)

85.4+1.5
85.0+0.2
86.7+1.5

86.2+0.8 86.1+3.0 86.4+34
85.0+0.2 879+1.8 82.3+.1.8
93.3+0.7 94.7+1.7 91.8+1.5
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UNIDS CLASSIFICATION WITH NN

Probability distribution for the full sample of 1125 unlIDS
and 100 classification runs

2-FEATURES (2F) CLASSIFICATION 4-FEATURES (4F) CLASSIFICATION
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This work, V.G. et al. MNRAS 520, 1348—1361 (2023)

The degeneracy is partially solved
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UNIDS CLASSIFICATION WITH NN-4F

Mean number of uniDs with

pP" > 0.50,0.68,0.90,0.99

In the NN-4F classification. The error bars
are calculated as the standard deviation

on 100 classifications

Due to statistical fluctuations,

The best candidates In the run
have been classified with px> 90%
13 times over 100 classifications.

NN, 4F
® o0 o]

600
#unlDs

This work, V.G. et al. MNRAS 520, 1348—-1361 (2023)

we cannot claim for any robust DM candidate.
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CONCLUSIONS

WE WORK ON A DERIVED PARAMETER SPACE, DEFINED BY THE OBSERVATIONAL SPECTRAL
FEATURES E ,, AND f. IN THE SAME SPACE, WE INTRODUCE THE WIMP CANDIDATES, BASED

pea

ON THEORETICAL EXPECTATIONS.

WE TRAIN THE CLASSIFICATION ALGORITHM ON THE SAMPLE OF EXPERIMENTAL AND
EXPECTED DATA. WE ASK TO THE ALGORITHM TO CLASSIFY UNIDENTIFIED SOURCES.

WHITIN THE 2-FEATURES (E,
SOURCES IS VISIBLE.

) SET UP, THE DEGENERACY BETWEEN ASTRO AND DM

eak’

WE INCLUDE SYSTEMATIC UNCERTAINTY (s, j..;) IN GLASSIFICATION PROBLEMS, IMPROVING
THE OVERALL CLASSIFICATION ACCURACY FOR ALL THE ALGORITHMS.

THE DEGENERACY OF ASTROPHYSICAL AND DARK MATTER SIGNAL IS PARTIALLY SOLVED.
THE RESULTS ARE IN STATISTICAL AGREEMENT WITHIN DIFFERENT RANDOM SEEDS.

NO ROBUST DARK MATTER CANDIDATES HAVE BEEN FOUND AMONG THE FERMI-LAT
UNIDENTIFIED SOURGES.
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WHAT’S THE NEXT?

THIS IS ONLY THE FIRST ATTEMPT FOR APPLYING MACHINE LEARNING TO DM SEARCHES.

WE CAN IMPROVE THESE RESULTS BY INCLUDING NEW FEATURES OR IMPLEMENTING
DIFFERENT HYPOTHESIS AND APPROXIMATIONS, ETC.

WE CAN IMPROVE THESE RESULTS BY APPLYING DIFFERENT MACHINE LEARNING
TECHNIQUES.

SAME METHODOLOGY MAY BE APPLIED TO SIMILAR DATA SETS.
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- ASELECTION OF PREVIOUS WORKS

Previous works developed as machine learning application to the unidentified sources of
‘the Fermi-LAT catalogues - focused on identifying astrophysical sources. See e.qg.:

e “Artificial Neural Network Classification of 4FGL Sources.” S. Germani et al., MNRAS (2021);

e “Machine Learning application to Fermi-LAT data: sharpening all-sky map and emphasizing
variable sources.” S. Sato et al., Astrophys.). 913 (2021);

e “Searches for Pulsar-like candidates from unidentified objects in the third catalog of hard
Frmi-LAT (3FGHL) sources with machine learning techniques.” C.Y. Hui et al. MNRAS (2020);

e “3FGLzoo. Classifying 3FGL Unassociated Fermi-LAT Gamma-ray Sources by Artificial Neural
Networks.” David Salvetti et al., MNRAS (2017);

Previous works developed as dark matter searches among unidentified sources of the
Fermi-LAT catalogues - adopt benchmark analyses (without machine learning. See e.qg.:

e “Spectral and spatial analysis of the dark matter sub halo candidates among Fermi Large Area
Telescope unidentified sources.” ). Coronado-Blazquez et al., JCAP11(2019)045.

e “Unidentified gamma-ray sources as targets for indirect dark matter detection with the Fermi
Large Area Telescope.” J. Coronado-Blazquez et al., JCAP07(2019)020
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Logistic Regression: minimization

Logistic regression cost function

f
Cost(hg(x),y) = { - —log(h:z: ‘ i — |l
lr

- og(l — hylx ify=20

T = Cost =0if y =1, hg(z) =1
Ify=1 [But as  hg(z) — 0

Cost — oo

~ Captures intuition that if hg(x) = 0,
(predict P(y = 1|z;6) = 0), but

we’ll penalize learning algorithm by a very
large cost.

Coursera by Stanford - Andrew Ng



Logistic Regression: minimization

Logistic regression cost function

el L e WS
I {!bg(lhe(?x)y if y =0
' -—\«BU-:‘)
1
4/: L

Coursera by Stanford - Andrew Ng



GAUSSIAN SAMPLING OF 5 UNCERTAINTY

M = 60
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GAUSSIAN SAMPLING OF 5 UNCERTAINTY

astro
17 B DM
B uniDs




GAUSSIAN SAMPLING OF 5 UNCERTAINTY

Related issues:

-Increasing the number of data from N (Astro+DM datasets) to
MxN makes the learning process slower;

- After the learning step and in order to classify the uniDs, the
method would also require the sample of the uniDs uncertainty,
that is useless for the classification intent itself.
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DATA PRE-PROCESSING

1. 107 (-3)GeV < E_peak < 1076 GeV , reliable range of the Fermi-LAT sensitivity in energy
2. Balanced data: same number of DM and Astro
3. Log scale classification
4. Standardised data: each feature is normalised with respect to their medium values.
5.Training/Testing data set split:

RepeatedStratifiedKFold(n_splits=N_splits, n_repeats=N_Repeats)

Number of folds, N_splits=5 -> Train set = 4530 (80%) data Test set=1132 (20%)

Number of times cross-validator needs to be repeated, N_Repeats=20
N_class=N_splits x N_Repeats= 100

RepeatedStratifiedKFold

Stratified: The split into N_folds preserve the
percentage of samples for each class

and without repeated data

in different folds.

Repeated: the cross-validation is repeated
a number of times with different random seed
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DATA PRE-PROCESSING: CHECK

RepeatedStratifiedKFold(n_splits=N_splits, n_repeats=N_Repeats)
Number of folds, N_splits=3 -> Train set = 3774 (80%) data Test set=1888 (33%)
Number of times cross-validator needs to be repeated, N_Repeats=2
N_class=N_splits x N_Repeats= 6

Stratified: The split into N_folds preserve the percentage of samples for each class and without
repeated data in different folds.

Repeated: the cross-validation is repeated a number of times with different random seed

RepeatedStratifiedKFold
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UNIDS CLASSIFICATION WITH NN-2F

400 600 800
#unlDs
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CLASSIFICATION ALGORITHMS
NAIVE BAYES

P(y)P(x|y)
P(x)

P(y) Prior on the class, e.g. P(y,) is the probability that a source is astro before to
analyse the gamma-ray spectra

P(y|x) Posterior: corresponding probability,
e.g. P(x]y,) after the analysis of gamma-ray spectra (posterior)

Assuming the Bayes’ theorem:  P(y|X) =

P(x|y) Likelihood, i.e. the most complete probabilistic description of the scientific case

P(x) = Z P |y)p(y) Typically intratable
k

The “naive” assumption is the conditional independence between every pair of
features given the value of the class variable. The solution is obtained by fitting the
model for each class separately using the correspondingly labelled data.
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CLASSIFICATION ALGORITHMS
NAIVE BAYES

4 Optimal decision boundary Decision boundary

AN

(red region disappears) — 1 T
p(Iv Cl )

Errors
arise
from
blue,
green
and red
regions ;.

< = ; >< >
Decision regions Rl C.M. Bishop, Springer 2006. RQ

Schematic illustration of the joint probabilities p(x | C,)of each of the two classes plotted
against X. x = X is equivalent to the minimum misclassification rate decision rule, which
assigns each value of X to the class having the higher posterior probability




CLASSIFICATION ALGORITHMS
NAIVE BAYES

Having found the posterior probabilities p(C),x), we use decision theory to

determine class membership for each new input x. If our aim is to minimize the
chance of assigning x to the wrong class, then intuitively we would choose the

class having the higher posterior probability (e.g. here astrophysical sources).

——
reject region

C.M. Bishop, Springer 2006.

lllustration of the reject option. Inputs such that the larger of the two posterior
probabillities is less than or equal to some threshold will be rejected.
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CLASSIFICATION ALGORITHMS
GAUSSIAN PROCESS WITH NOISY INPUTS

Based on:

Multi-class Gaussian Process Classification with Noisy Inputs

Autor (es): Villacampa-Calvo, Carlos wi; Zaldivar, Bryan; Garrido-Merchan, Eduardo C.;
Hernandez Lobato, Daniel

Entidad: UAM. Departamento de Ingenieria Informatica

Editor: Microtome Publishing

Fecha de edicion: 2021-01

Cita: Journal Of Machine Learning Research 22.36 (2021): 1-52
ISSN: 1532-4435 (print); 1533-7928 (online)
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CLASSIFICATION ALGORITHMS
GAUSSIAN PROCESS WITH NOISY INPUTS

VILLACAMPA, GARRIDO, HERNANDEZ, AND BZ, JOURNAL OF ML RESEARCH, 2020
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N-SPLITS TRAINING/TESTING SET




