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σdet ≈ TS ≥ 4 − 5

4FGL catalogue: 
TOT ASTRO ( PSR, QSR, BCU) 
TOT UNIDS  

FERMI-LAT GAMMA-RAY DATA & BETA-PLOT
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FERMI-LAT GAMMA-RAY DATA & BETA-PLOT
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dE

= N0 ( E
E0 )
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4FGL catalogue: 
TOT ASTRO ( PSR, QSR, BCU) 
TOT UNIDS  

Log-Parabola:  
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(UnIDs)
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DARK MATTER

27%

68%

5%

DM
Dark energy

Sun/
Earth 

Ngan W (2017) Using Bright Streams to Learn about 
Dark Matter. Front. Young Minds. 5:29. doi: 10.3389/
frym.2017.00029

V. Gammaldi et al. PRD 98, 083008 (2018), 
PRD 104, 083026 (2021)

See Judit’s Talk



DARK MATTER & BETA-PLOT
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Context: Indirect searches for Dark Matter (DM)

            Weakly Interacting Massive Particles (WIMPs)

dϕγ

dE
(E, ΔΩ, l . o . s) =

1
4π

⟨σv⟩
δ m2

χ

dNγ

dE
(E) × J(ΔΩ, l . o . s)

AstrophysicsParticle Physics



DARK MATTER & BETA-PLOT

J.Coronado-Blazquez et al. JCAP07(2019)020
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The gamma-ray flux expected by WIMP annihilation into Standard Model (SM) channels can be 
simulated via Monte Carlo event generator software (e.g. Pythia 8). The very well known 
PPPCB4DMID (Cirelli’s) interpolation of those fluxes (for several WIMP masses and SM channels) 
makes those results user friendly for DM searches. 

Here, we further fit those interpolations with a Log-Parabola (LP): 



J. Coronado-Blázquez et al., JCAP11(2019)045

DARK MATTER & BETA-PLOT
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DARK MATTER & BETA-PLOT
dN
dE

= Br ( dN
dE )

C1

+ (1 − Br)( dN
dE )

C2

CLASSIFICATION PROBLEM

Degeneracy of  
pulsar and DM signal
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This work, V.G. et al. MNRAS 520, 1348–1361 (2023)

Supervised learning



OUR STRATEGY

1. Training the classification algorithm on a sample of experimental 
(astrophysical - Astro) and expected ( Dark Matter - DM) dataset.  

2. Testing the classification accuracy on a subsample of data; 

3. Predicting prospective DM-source candidates among the unIDs 
dataset, with assigned probability . pDM

13

So far, the classification problem is based on two features  . 

We expect the classification accuracy improves by including more 
independent features. Intuitively straightforward, but many 
observational features are not available for DM.

(Epeak, β)
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SYSTEMATIC FEATURES
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Indeed, we focused on two observational features:


1. Detection significance : obtained by the likelihood analysis, which 
determines if the source exists, its position, spectral parameters, etc. 
It depends e.g. on the background template (the diffuse model and 
emission model of all the other sources in the source region) among 
other systematics we are not able to model.  

2. Uncertainty on the curvature : we expect that a lower detection 
significance corresponds to a worst characterisation of the source 
spectrum, but this is not all…. 

σd

β
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1. Detection significance : a source pre-selection based on detection 
significance improves the classification even only “by eye”.


σd

This work, V.G. et al. MNRAS 520, 1348–1361 (2023)

SYSTEMATIC FEATURES: DETECTION SIGNIFICANCE



SYSTEMATIC FEATURES: DETECTION SIGNIFICANCE

UnIDs
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1. -> If any DM source has been detected so far, it is among the unIDs. 
We assume that all the DM candidates are unIDs. Indeed, we use for the 
DM sample the same distribution of detection significance as the unIDs. 

This work, V.G. et al. MNRAS 520, 1348–1361 (2023)

1.  1.  



SYSTEMATIC FEATURES: UNCERTAINTY ON β
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2. Uncertainty on : we expect that a lower detection significance 
corresponds to a worst characterisation of the source spectrum,

β

This work, V.G. et al. MNRAS 520, 1348–1361 (2023)

but this is not all…. 



SYSTEMATIC FEATURES: UNCERTAINTY ON β
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2. Uncertainty on : we expect that a lower detection significance 
corresponds to a worst characterisation of the source spectrum, but the 
latter also depends on the 

β

Epeak

This work, V.G. et al. MNRAS 520, 1348–1361 (2023)



SYSTEMATIC FEATURES: UNCERTAINTY ON β
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This work, V.G. et al. MNRAS 520, 1348–1361 (2023)

2. -> we use for the DM sample a distribution of  which 
statistically depends on the , in agreement with the observed unIDs 
population

βrel = ϵβ /β
Epeak



FROM TWO TO FOUR FEATURES
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This work, V.G. et al. MNRAS 520, 1348–1361 (2023)



OUTLINE

22

• FERMI-LAT  SATELLITE, GAMMA-RAY DATA & BETA-PLOT 

• DARK MATTER & BETA-PLOT 

• SYSTEMATIC FEATURES 

• CLASSIFICATION ALGORITHMS AND SETUPS 

• RESULTS 



CLASSIFICATION ALGORITHMS

‣ LOGISTIC REGRESSION (LR) (SCIKIT-LEARN) 

‣ ARTIFICIAL NEURAL NETWORK (NN) (SCIKIT-LEARN) 
 
 

‣ NAIVES BAYES (NB) (PYTHON) 

‣ GAUSSIAN PROCESS (GP) (TENSOR FLOW) 
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LINEAR REGRESSION 

1-Feature (1-F) , n measurements(x)

CLASSIFICATION ALGORITHMS
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J(Θ) =
1
2

(h(x) − Y )2 ≡
1
2n

n

∑
i=1

((ΘTX)i − Y2
i )

f-Feature (f-F) , n measurements(x)

Best fit: getting the  parameters which minimize the (cost/lost) 
function (least square, likelihood, etc.)

θi

XT = {x1 . . . . xn}
θi = {θi

o, θi
1}i=1...n

h(x) = θo + θ1x

xx1 . . . . xN

h(x)

θo

θ1

h(X) = θi
o + θi

1Xi + . . . . θi
f X

f
i = θTX

[X] = [n × f ]

θi = {θo, θ1 . . . . θf}i=1...n

XT
j = {XT

1 . . . XT
n }j=1...f

Xi = {x1 . . . . xf}i=1...n

J(Θ) = J(θ0, θ1)

J(Θ) = J(θi
0, θi

1, . . . θi
f )i=1..n



LOGISTIC REGRESSION
CLASSIFICATION ALGORITHMS
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J(Θ) = −
1
n

[
n

∑
i=1

y(i) log(hθ(x(i))) + (1 − y(i))log(1 − hθ(xi))]

h(x) → g(z) =
1

1 + e−z
z = θo + θ1x + . . . ( + θ2x2 . . . ) Activation function

g(z) ≤ 0.5 → y(i) = 0 (e.g. Astro)

g(z) > 0.5 → y(i) = 1 (e.g. DM)

1F
Decision boundary 

Getting the  parameters which minimize the cost/lost functionθi



ARTIFICIAL NEURAL NETWORK 

CLASSIFICATION ALGORITHMS
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Rectified Linear 
Activation Function 
(ReLu)

The softmax function converts a vector of K 
real numbers into a probability distribution of 
K possible outcomes.

P(y = j |x) =
exTθj

∑K
k=1 exTθk

f(x) = max(0, x)

https://en.wikipedia.org/wiki/Probability_distribution


ARTIFICIAL NEURAL NETWORK 

CLASSIFICATION ALGORITHMS
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J(θ) = −
1
m

[
m

∑
i=1

y(i) log(hθ(x(i))) + (1 − y(i))log(1 − hθ(xi))] +
λ

2m

n

∑
j=1

θ2
j

LOGISTIC REGRESSION:  COST  FUNCTION

NEURAL NETWORK: COST FUNCTION

J(Θ) = −
1
m

[
m

∑
i=1

K

∑
k=1

y(i)
k log(hΘ(x(i)))k + (1 − y(i)

k )log(1 − hΘ(xi))k] +
λ

2m

L−1

∑
l=1

sl

∑
i=1

sl+1

∑
j=1

(Θ(l)
ji )2

hΘ(x) ∈ ℝk (hΘ(x))i = ith output



ARTIFICIAL NEURAL NETWORK:  THIS WORK 
CLASSIFICATION ALGORITHMS
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This work:

Activation function:

Rectified Linear Activation 
Function (ReLu)

 1 layer with 21 neurons 



SETUPS
‣ 2-FEATURES (2F) CLASSIFICATION (LR, NN, NB): Includes the 2-features introduced so 

far, indeed  


‣ 3-FEATURES AUGMENTED (3F-A) (LR, NN, NB):  An augmented dataset containing 
three features:   Instead of incorporating the uncertainty  as an 
extra feature, the strategy here is to augment the dataset by the following procedure: 
For each observation, we assume that the variable  follows a truncated Gaussian 
distribution, whose mean is precisely the observed value, and the standard deviation is 
precisely the observed uncertainty , but truncated such that . 


‣ 3F-B (GP): A dataset containing the three same features as above, i.e.  . 
However, now the uncertainties  are included in the statistical model. Concretely, this 
setup will concern exclusively the NIMGP model mentioned above. 

‣ 4-FEATURES (4F) CLASSIFICATION (LR, NN, NB): Includes the systematics uncertainty, 
by including two more features, that are:  where 

(Epeak, β)

(Epeak, βsampled, σd) βrel

β

ϵβ 0 < β ≤ 1

(Epeak, β, σd)
ϵβ

(Epeak, β, σd, βrel) βrel = ϵβ /β
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RESULTS

OA(y, ̂y) =
1

nsamples

nsamples−1

∑
i=0

1( ̂yi = yi)

OVERALL ACCURACY (OA): PERCENTAGE OF WELL 
CLASSIFIED DATA SET


TRUE NEGATIVE (TN) : PERCENTAGE OF WELL 
CLASSIFIED ASTRO SOURCES (NORMALISED TO 
THE TOTAL NUMBER OF ASTRO SOURCES)


TR UE POSIT IVE (TP) : PERCENTAGE OF WELL 
CLASSIFIED DARK MATTER SOURCES (NORMALISED 
TO THE TOTAL NUMBER OF DM SOURCES)
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V.G. et al. arXiv: 2207.09307

THE OVERALL CLASSIFICATION ACCURACY IMPROVES 
WITH THE INTRODUCTION OF SYSTEMATIC FEATURES 
FOR ALL THE TRAINED ALGORITHMS. 



UNIDS CLASSIFICATION WITH NN

2-FEATURES (2F) CLASSIFICATION 4-FEATURES (4F) CLASSIFICATION

32

The degeneracy is partially solved

Probability distribution for the full sample of 1125 unIDS  
and 100 classification runs

This work, V.G. et al. MNRAS 520, 1348–1361 (2023)



UNIDS CLASSIFICATION WITH NN-4F

33

Due to statistical fluctuations,  
we cannot claim for any robust DM candidate. 

M e a n n u m b e r o f u n I D s w i t h
  

in the NN-4F classification. The error bars 
are calculated as the standard deviation 
on 100 classifications 


 

 

pDM
k > 0.50, 0.68, 0.90, 0.99

The best candidates in the run 
have been classified with pk > 90% 
13 times over 100 classifications. 

This work, V.G. et al. MNRAS 520, 1348–1361 (2023)



CONCLUSIONS
‣ WE WORK ON A DERIVED PARAMETER SPACE, DEFINED BY THE OBSERVATIONAL SPECTRAL 

FEATURES  AND . IN THE SAME SPACE, WE INTRODUCE THE WIMP CANDIDATES, BASED 
ON THEORETICAL EXPECTATIONS.  

‣ WE TRAIN THE CLASSIFICATION ALGORITHM ON THE SAMPLE OF EXPERIMENTAL AND 
EXPECTED DATA. WE ASK TO THE ALGORITHM TO CLASSIFY UNIDENTIFIED SOURCES. 

‣ WHITIN THE 2-FEATURES  SET UP, THE DEGENERACY BETWEEN ASTRO AND DM 
SOURCES IS VISIBLE.  

‣ WE INCLUDE SYSTEMATIC UNCERTAINTY  IN CLASSIFICATION PROBLEMS, IMPROVING 
THE OVERALL CLASSIFICATION ACCURACY FOR ALL THE ALGORITHMS. 

‣ THE DEGENERACY OF ASTROPHYSICAL AND DARK MATTER SIGNAL IS PARTIALLY SOLVED. 

‣ THE RESULTS ARE IN STATISTICAL AGREEMENT WITHIN DIFFERENT RANDOM SEEDS. 

‣ NO ROBUST DARK MATTER CANDIDATES HAVE BEEN FOUND AMONG THE FERMI-LAT 
UNIDENTIFIED SOURCES.

Epeak β

(Epeak, β)

(σd, βrel)

34



WHAT’S THE NEXT?

‣ THIS IS ONLY THE FIRST ATTEMPT FOR APPLYING MACHINE LEARNING TO DM SEARCHES. 
 

‣ WE CAN IMPROVE THESE RESULTS BY INCLUDING NEW FEATURES OR IMPLEMENTING 
DIFFERENT HYPOTHESIS AND APPROXIMATIONS, ETC.  

 

‣ WE CAN IMPROVE THESE RESULTS BY APPLYING DIFFERENT MACHINE LEARNING 
TECHNIQUES.  

 

‣ SAME METHODOLOGY MAY BE APPLIED TO SIMILAR DATA SETS. 
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THANK YOU  
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BACK-UP SLIDES
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A SELECTION OF PREVIOUS WORKS
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• “Artificial Neural Network Classification of 4FGL Sources.” S. Germani et al., MNRAS (2021);  

• “Machine Learning application to Fermi-LAT data: sharpening all-sky map and emphasizing  
variable sources.” S. Sato et al., Astrophys.J. 913 (2021);  

•  “Searches for  Pulsar-like candidates from unidentified objects in the third catalog of  hard 
Frmi-LAT (3FGHL) sources with machine learning techniques.” C.Y. Hui et al. MNRAS (2020);  

• “3FGLzoo. Classifying 3FGL Unassociated Fermi-LAT Gamma-ray Sources by Artificial Neural 
Networks.” David Salvetti et al., MNRAS (2017);

Previous works developed as machine learning application to the unidentified sources of 
the Fermi-LAT catalogues - focused on identifying astrophysical sources. See e.g.: 

• “Spectral and spatial analysis of the dark matter sub halo candidates among Fermi Large Area 
Telescope unidentified sources.“ J. Coronado-Blázquez et al., JCAP11(2019)045.   

• “Unidentified gamma-ray sources as targets for indirect dark matter detection with the Fermi 
Large Area Telescope.” J. Coronado-Blázquez et al., JCAP07(2019)020

Previous works developed as dark matter searches among unidentified sources of the 
Fermi-LAT catalogues - adopt benchmark analyses (without machine learning. See e.g.:



Logistic	Regression:	minimization
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Coursera by Stanford -
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Logistic	Regression:	minimization

Coursera by Stanford -



GAUSSIAN SAMPLING OF  UNCERTAINTY β

β β + ϵββ − ϵβ

M = 60

0 < β ≤ 1 Is required if  is small and  is big β ϵβ

42



GAUSSIAN SAMPLING OF  UNCERTAINTY β
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PRELIMINARY



Related issues:  

-Increasing the number of data from N (Astro+DM datasets) to 
MxN makes the learning process slower;  

- After the learning step and in order to classify the unIDs, the 
method would also require the sample of the unIDs uncertainty, 
that is useless for the classification intent itself. 

GAUSSIAN SAMPLING OF  UNCERTAINTY β

44



1. 10^(-3)GeV < E_peak < 10^6 GeV , reliable range of the Fermi-LAT sensitivity in energy


2. Balanced data: same number of DM and Astro


3. Log scale classification


4. Standardised data: each feature is normalised with respect to their medium values. 


5.Training/Testing data set split:  
 
RepeatedStratifiedKFold(n_splits=N_splits, n_repeats=N_Repeats) 
Number of folds, N_splits=5  -> Train set = 4530 (80%) data Test set=1132  (20%) 
Number of times cross-validator needs to be repeated, N_Repeats=20 
N_class=N_splits x N_Repeats= 100

DATA PRE-PROCESSING 

Stratified: The split into N_folds preserve the 
percentage of samples for each class 
and without repeated data 
in different folds.  
 
Repeated: the cross-validation is repeated 
a number of times with different random seed

45

PRELIMINARY



RepeatedStratifiedKFold(n_splits=N_splits, n_repeats=N_Repeats) 
Number of folds, N_splits=3  -> Train set = 3774 (80%) data Test set=1888  (33%) 
Number of times cross-validator needs to be repeated, N_Repeats=2 
N_class=N_splits x N_Repeats= 6

DATA PRE-PROCESSING: CHECK 

Stratified: The split into N_folds preserve the percentage of samples for each class and without 
repeated data in different folds.  
 
Repeated: the cross-validation is repeated a number of times with different random seed

46
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UNIDS CLASSIFICATION WITH NN-2F

PRELIMINARY

PRELIMINARY



NAIVE BAYES
CLASSIFICATION ALGORITHMS

48

P(y |x) =
P(y)P(x |y)

P(x)

The “naive” assumption is the conditional independence between every pair of 
features given the value of the class variable. The solution is obtained by fitting the 
model for each class separately using the correspondingly labelled data.

P(x) = ∑
k

pk(x |y)p(y)

P(y) Prior on the class, e.g.  is the probability that a source is astro before to 
analyse the gamma-ray spectra

P(y0)

P(y |x) Posterior: corresponding probability, 

e.g.   after the analysis of gamma-ray spectra (posterior)P(x |y0)

Assuming the Bayes’ theorem: 

P(x |y) Likelihood, i.e. the most complete probabilistic description of the scientific case 

Typically intratable 



NAIVE BAYES
CLASSIFICATION ALGORITHMS
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Schematic illustration of the joint probabilities of each of the two classes plotted 
against x.  is equivalent to the minimum misclassification rate decision rule, which 
assigns each value of  to the class having the higher posterior probability

p(x |Ck)
x = x0

x

C.M. Bishop, Springer 2006.

Decision boundaryOptimal decision boundary 
(red region disappears)

Decision regions

Classified class 2Classified   class1

E r r o r s 
a r i s e 
f r o m 
b l u e , 
g r e e n 
and red 
regions



NAIVE BAYES
CLASSIFICATION ALGORITHMS

C.M. Bishop, Springer 2006.
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Having found the posterior probabilities , we use decision theory to 
determine class membership for each new input x. If our aim is to minimize the 
chance of assigning x to the wrong class, then intuitively we would choose the 
class having the higher posterior probability (e.g. here astrophysical sources).

p(Ck, x)

 Illustration of the reject option. Inputs such that the larger of the two posterior 
probabilities is less than or equal to some threshold will be rejected.



CLASSIFICATION ALGORITHMS
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GAUSSIAN PROCESS WITH NOISY INPUTS 
Based on:



CLASSIFICATION ALGORITHMS
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GAUSSIAN PROCESS WITH NOISY INPUTS 

Credit: Bryan Zaldivar



N-SPLITS TRAINING/TESTING SET
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