Determining parameters of a black-hole accretion-disk system from the observation of shadow
Umpei MIYAMOTO (Akita Prefectural Univ., JAPAN) E-mail: umpei@akita-pu.ac.jp
Kenta HIOKI (Sumitomo Mitsui Bank. Corp.)
Based on: Phys. Rev. D 107,040402 (2023) (arixiv:2210.02164)
Cosmology 2023 in Miramare Aug. $28^{\text {th }}-$ Sep. $2^{\text {nd }} 2023$

Introduction

- Shadows of BHs (M87 and Sgr A*) were observed by EHT!!
- We will (hopefully) observe many BH shadows near future.
- Shadows of BH w/ and w/t Accretion Disk (AD) contain much info.
- M : mass
- $J=M a$: angular momentum $\left(0 \leq \frac{a}{M}<1\right)$
- i : inclination angle
- r_{o} : distance between BH \& observer
- Q : Can we determine these parameters solely by observing shadows?

BH shadow of M87 and Sgr A* (credit: Event horizon Telescope)

BH w/ Accretion Disk (credit: NASA)

Works so far \& Question

- Many papers study BH shadow
- Bare BHs (Synge '66, Bardeen '73, ...)
- BHs with AD (Luminet ' 79 , Falcke et al '00, Takahashi '04, ...)
- Determining $\left(\frac{a}{M}, i\right)$ of Kerr BH from shadow (Hioki-Maeda M09)
- Most works assume $r_{o} \rightarrow+\infty$

Info. of distance is lost
(Exceptions: Grenzenbach et al '14, Abdolrahimi-Mann-
Tzounis '15)

- Q: If we allow r_{o} to be FINITE, can we determine all
parameters (e.g. M) from shadow?
\rightarrow Let's consider Sch. BH with AD as $1^{\text {st }}$ step.
(Hioki-Maeda '09)

Setup: 3 parameters of our system (Schwarzschild BH + thin AD + observer)

$$
(c=G=1)
$$

Mass: $M \in(0,+\infty)$
Inclination angle: $i \in\left[0^{\circ}, 90^{\circ}\right)$
Emitter on AD: $r_{e} \in[6 M, 20 M]$
Observer: $r_{o} \in[20 M,+\infty)$

Results: Apparent shape of Accretion Disk

Determine $\left(\frac{r_{o}}{M}, i\right)$ from BH's Apparent Shape

\exists 1-to-1 corresp. between $\left(\frac{r_{o}}{M}, i\right)$ and (R, δ)

Determine $\left(M, r_{o}, i\right)$ from
flux \& accretion rate

- Energy flux on $\operatorname{AD} F_{o}(x, y)$ can be estimated
(Page-Thorne '74)

- Assuming that we know \dot{M}, we can estimate M by observing $F_{o}(x, y)$ and comparing it with $F_{o *}(x, y)$.
$M=\sqrt{\dot{M} \frac{F_{o *}(x, y)}{F_{o}(x, y)}}$

Conclusion \& Prospects

- We considered system of (Sch. BH) + (thin AD) + (Observer) w/ 3 parameters (M, r_{o}, i).
- $\left(\frac{r_{o}}{M}, i\right)$ can be determined by (R, δ) (size \& shape of shadow)
- $\left(M, r_{o}, i\right)$ can be determined by $\left(R, \delta, F_{o}\right)$ and \dot{M}.

Future works

- Kerr BH w/ and w/t AD
- Determining BH parameters from shadow's movie

BH w/ Accretion Disk (credit: NASA)

Appendix: How to draw 2d image: Stereographic projection onto (x, y) plane

