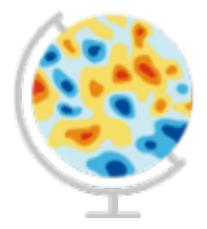
BAYESIAN END-TO-END CMB ANALYSIS FROM LEITO HEI

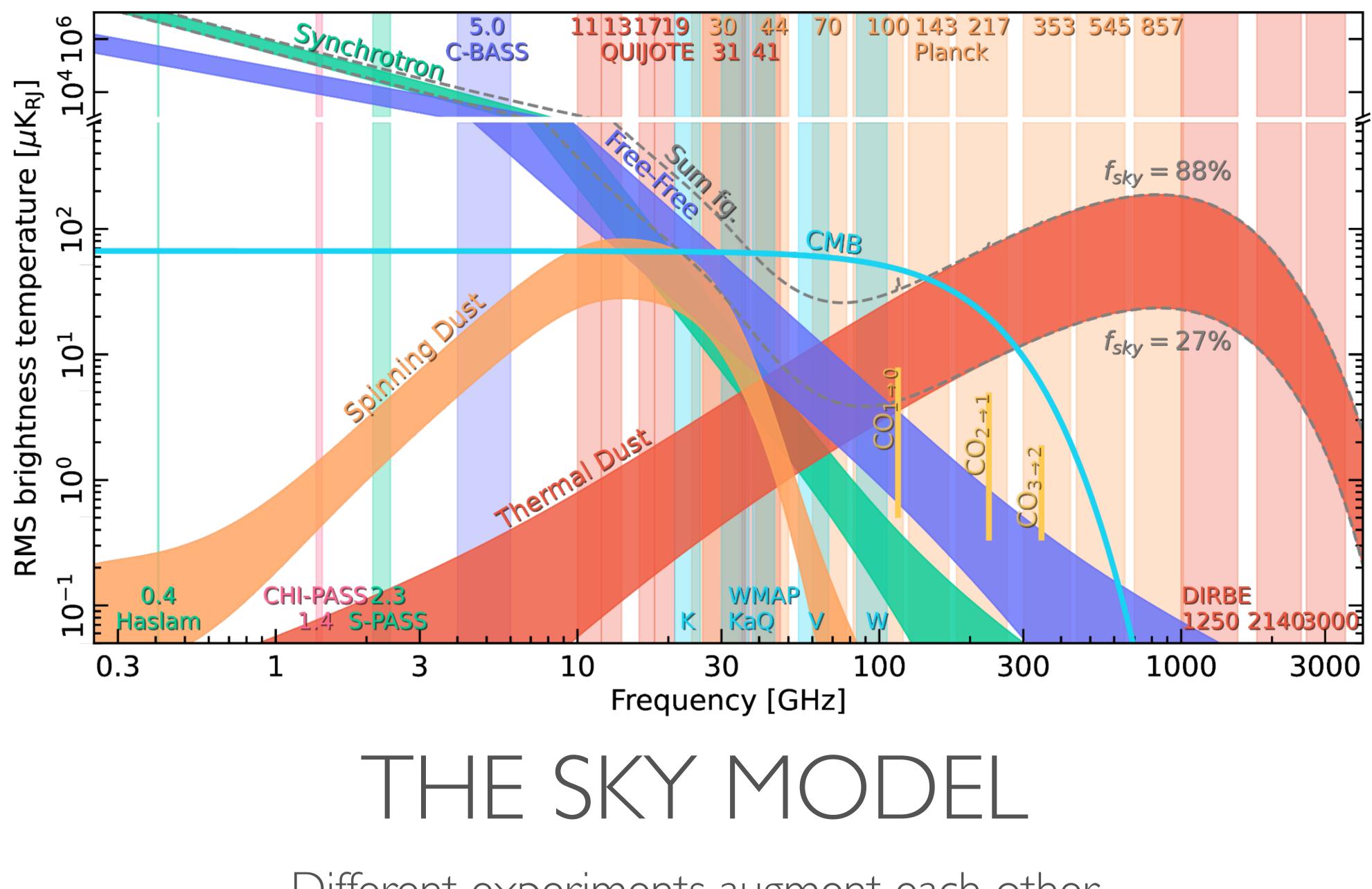

Artem Basyrov, PhD student Institute of Theoretical Astrophysics, University of Oslo

COLLABORATION

- BeyondPlanck
- Cosmoglobe
- LiteBIRD

Beyond Planación

Cosmoglobe


- degeneracies (component separation)
- the sky model to the instrument uncertainties)
- More technically: creating a modular algorithm suitable to be used for any future experiments
- parameters without preprocessing and human intervention in-between

• Joint analysis of several data sets together to avoid 'blind spots' (scanning strategies) and

• Integrated approach from the properties of the instrument to the sky model (and from

• More technically: a hands free pipeline from the TOD level to the maps and cosmological

Different experiments augment each other

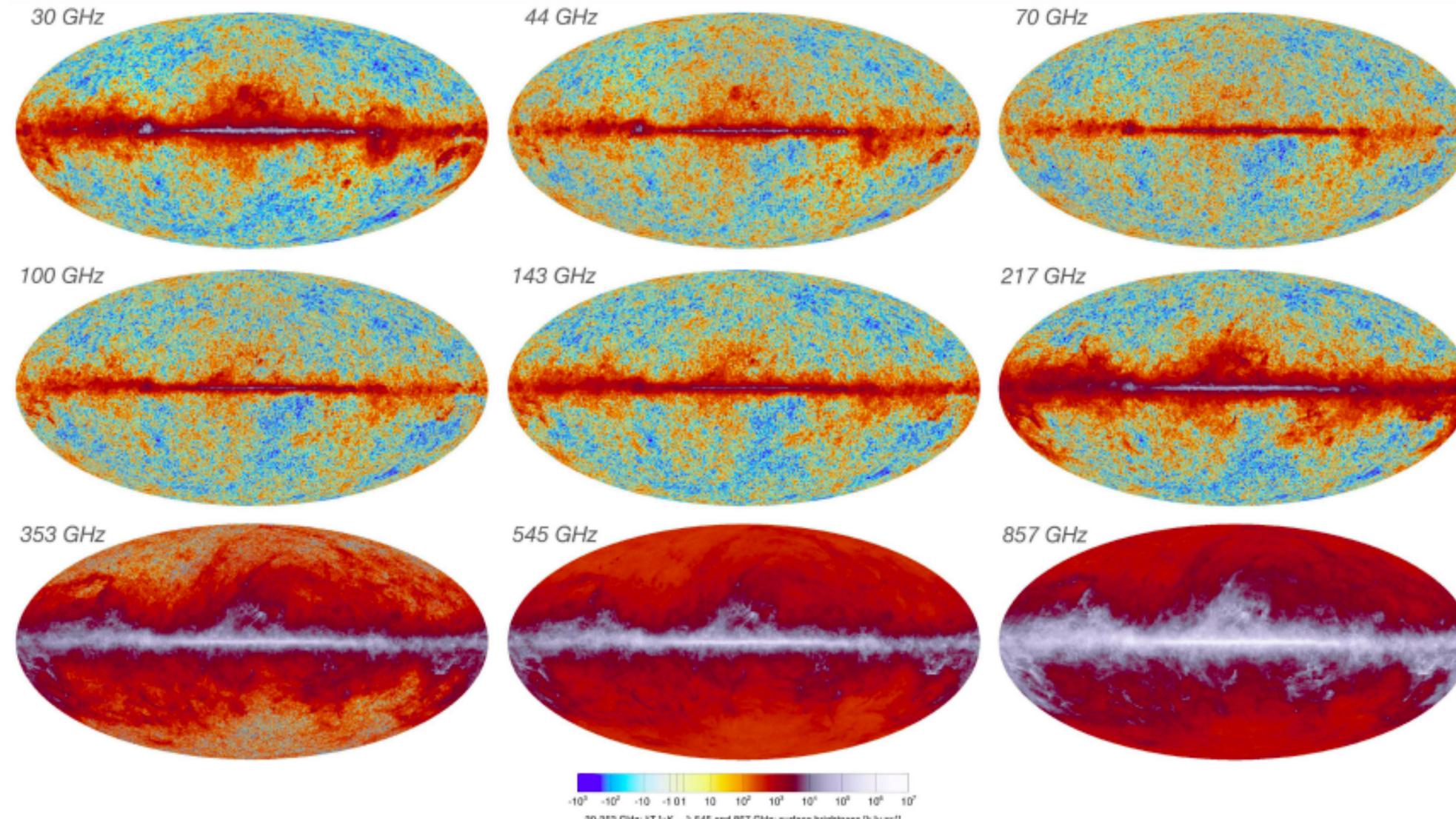
$$IHE SK$$

$$s = a_{\text{CMB}} \frac{x^2 e^x}{(e^x - 1)^2} \qquad x = h\nu/kT_0$$

$$+ a_{\text{s}} \left(\frac{\nu}{\nu_{0,\text{s}}}\right)^{\beta_{\text{s}}}$$

$$+ a_{\text{ff}} \left(\frac{\nu}{\nu_{0,\text{ff}}}\right)^{-2} \frac{g_{\text{ff}}(\nu; T_e)}{g_{\text{ff}}(\nu_{0,\text{ff}}; T_e)}$$

$$+ a_{\text{ame}} \left(\frac{\nu}{\nu_{0,\text{ame}}}\right)^{-2} \frac{f_{\text{ame}}(\nu \cdot \frac{30\text{GHz}}{\nu_p})}{f_{\text{ame}}(\nu_{0,\text{ame}} \cdot \frac{30\text{GHz}}{\nu_p})}$$


$$+ a_{\text{d}} \left(\frac{\nu}{\nu_{0,\text{d}}}\right)^{\beta_{\text{d}}+1} \frac{e^{h\nu_{0,\text{d}}/k_{\text{B}}T_{\text{d}}}{e^{h\nu/k_{\text{B}}T_{\text{d}}} - 1}$$

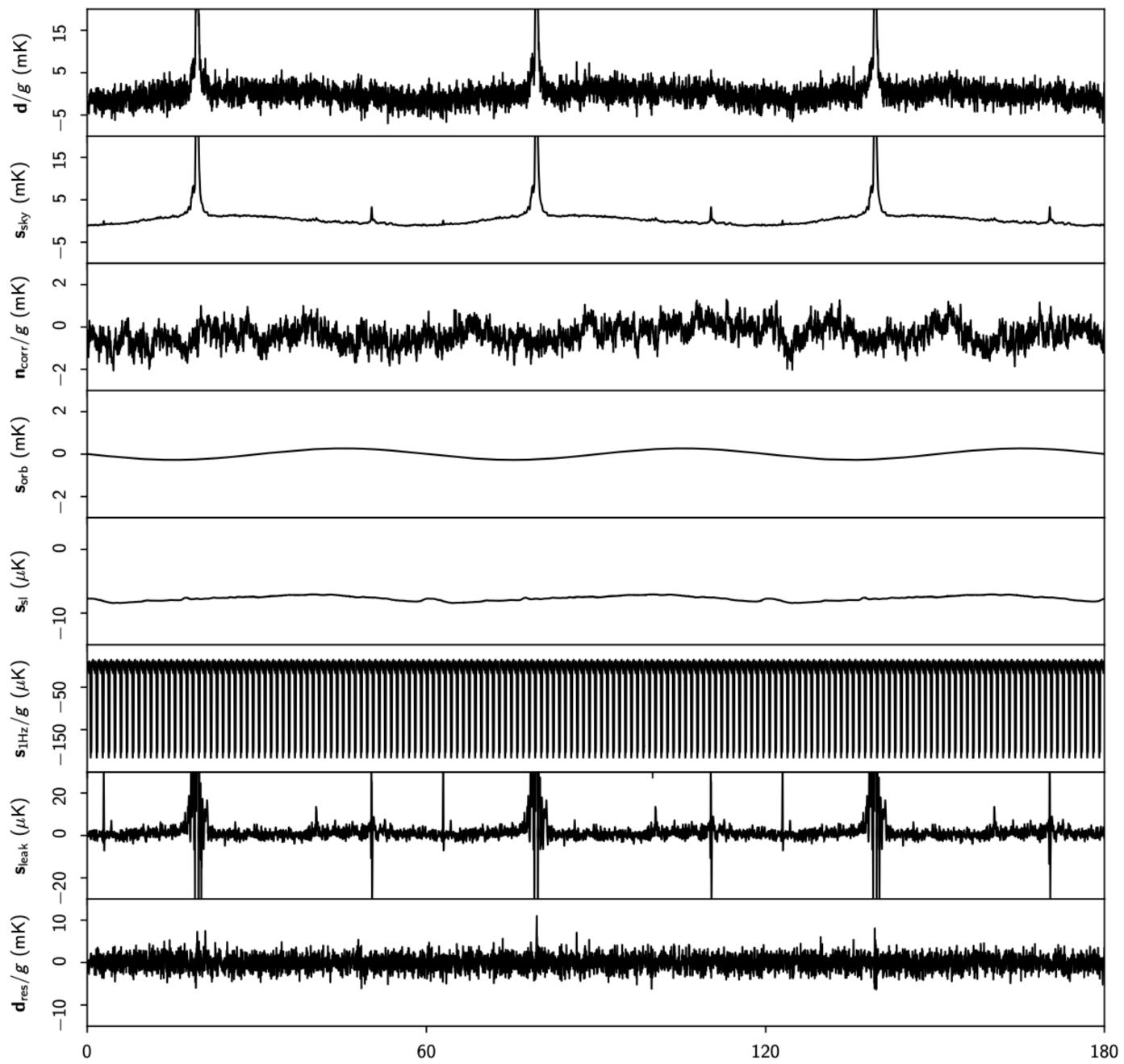
$$+ \sum_{j=1}^{N_{\text{src}}} a_{j,\text{src}} \left(\frac{\nu}{\nu_{0,\text{src}}}\right)^{a_{j,\text{src}}-2}$$

THE SKY MODEL*

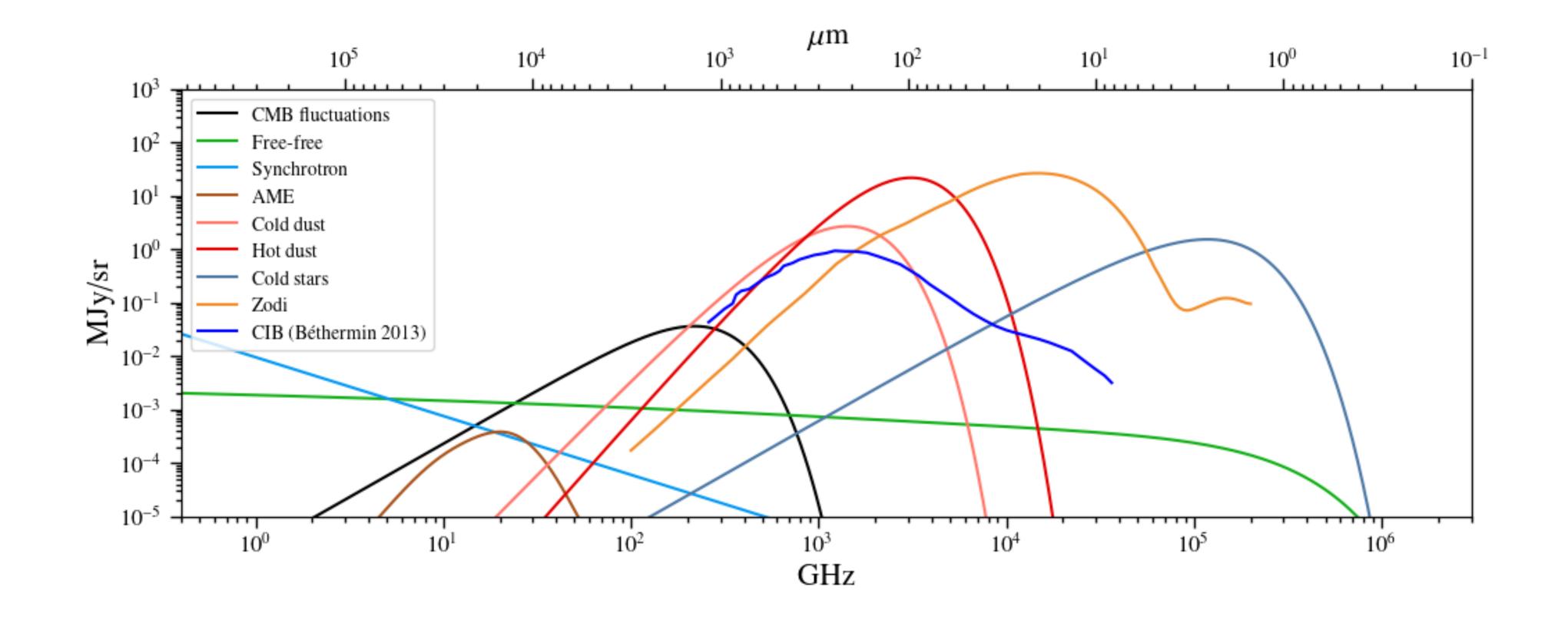
- Cosmic Microwave Background
- Synchrotron emission
- Free-free emission
- Anomalous Microwave (spinning dust) emission
- Dust emission
- Point source (stars, galaxies) emission

We can reconstruct the sky model using the maps from different frequencies

30-353 GHz: ST [sKuns]; 545 and 857 GHz: surface brightness [kJy ar*]


HOW TO CALCULATE THE RESIDUAL?

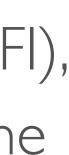
- Ideally the residual should be pure normal noise, meaning only the white noise remains in the system
- However, in a system as complex as Planck satellite there are many sources of 'noise'


$$\begin{aligned} r_{j} &= (d_{j} - n_{j}^{\text{corr}} - s_{j}^{1\text{Hz}})/g_{j} - s_{j}^{\text{sky}} - s_{j}^{\text{orb}} - s_{j}^{\text{fsl}} - \\ r_{j} - \text{residual TOD} \\ d_{j} - \text{raw TOD (actual data)} \\ n_{j}^{\text{corr}} - \text{correlated noise} \\ s_{j}^{1\text{Hz}} - \text{electronic 1Hz spike correction} \\ g_{j} - \text{instrumental gain} \\ \text{s} \quad s_{j}^{\text{sky}} - \text{sky signal} \\ s_{j}^{\text{orb}} - \text{orbital CMB dipole signal} \\ s_{j}^{\text{fsl}} - \text{far sidelobes correction} \\ s_{j}^{\text{leak}} - \text{bandpass and beam leakage correct} \\ \\ \text{Basyrov, A, et al: A&A 675, 7} \end{aligned}$$

ADDING MORE COMPONENTS!

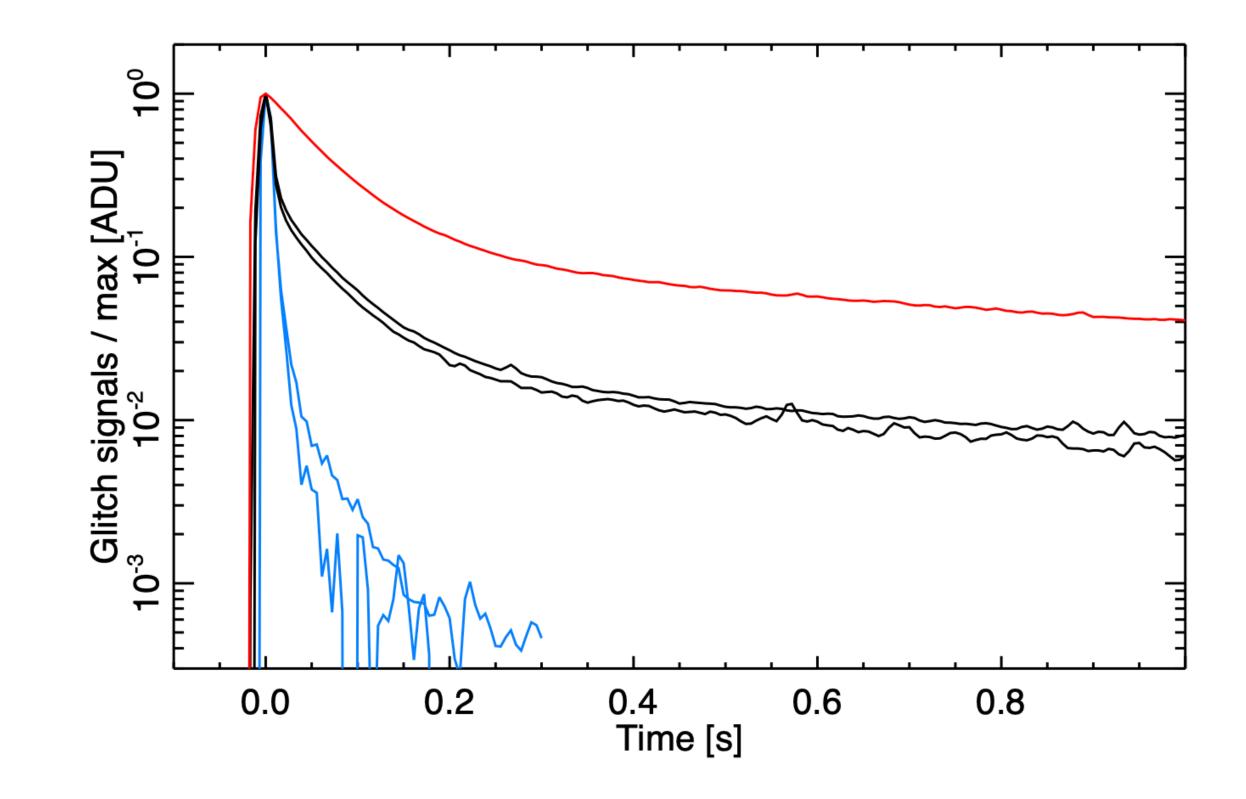
Interesting side-project going on is adding DIRBE, FIRAS, IRIS and other high frequency maps, which allows to solve the degeneracies

PLANCK HFI


- both linear (similar to LFI) and non-linear effects, which require correction

• The analogue-to-digital conversion (ADC) in the HFI was drifting with time, and has

• HFI cooler was actively trying to compensate **temperature variations** through out the whole mission (unlike passive cooler for LFI), which creates extra source of instrumental noise.


• **Cosmic rays** created extra signal depending on which part of the detector they would hit

• Since HFI was using a different detector technology (radiometers on LFI vs bolometers on HFI), and required higher angular sensitivity while measuring higher frequencies compared to LFI, the **bolometer transfer function** plays an important role in the deconvolution of data

COSMIC RAY

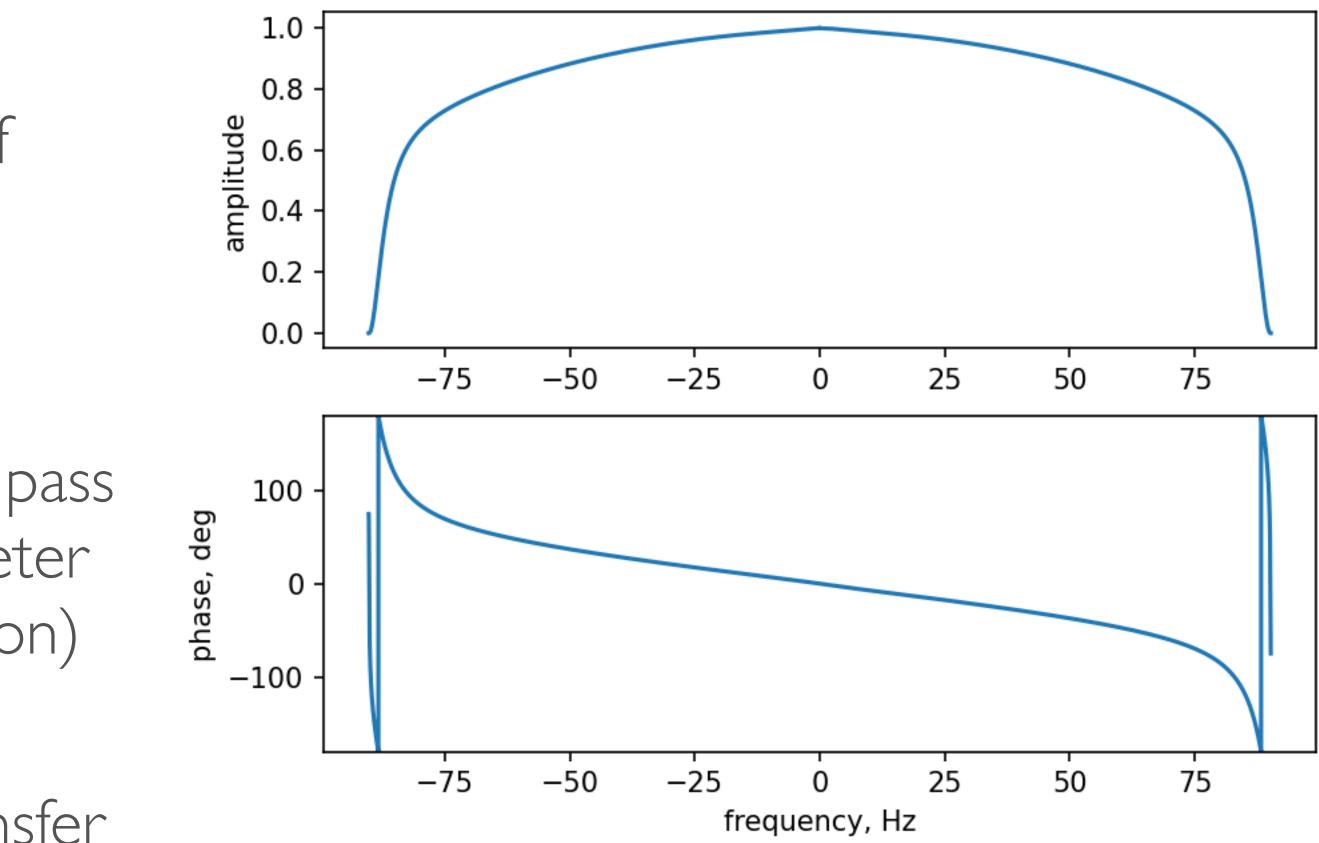
- The blue line shows an example for short glitches due to a direct impact on a thermometer
- The black line for long glitches due to an impact on the support structure of a bolometer's absorber
- The red line for slow glitches, the origin of which is a mystery not known to humankind

TRANSFER FUNCTION

• Describes a reaction of a bolometer to measuring a signal through the series of filters

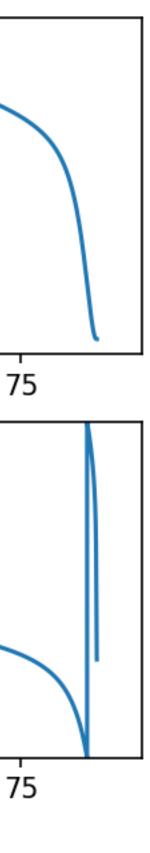
$$f_{\text{tran}}(\omega) = F(\omega)H'(\omega)$$

$$F(\omega) = \sum_{i=1,4}^{\infty} \frac{a_i}{1 + i\omega\tau_i}$$

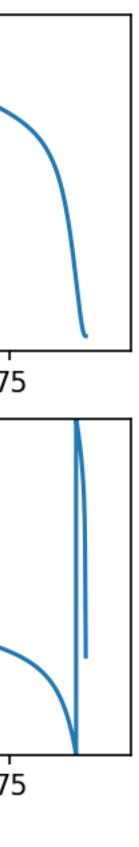

i = 1,5

*n*_i

 $H(\omega) =$

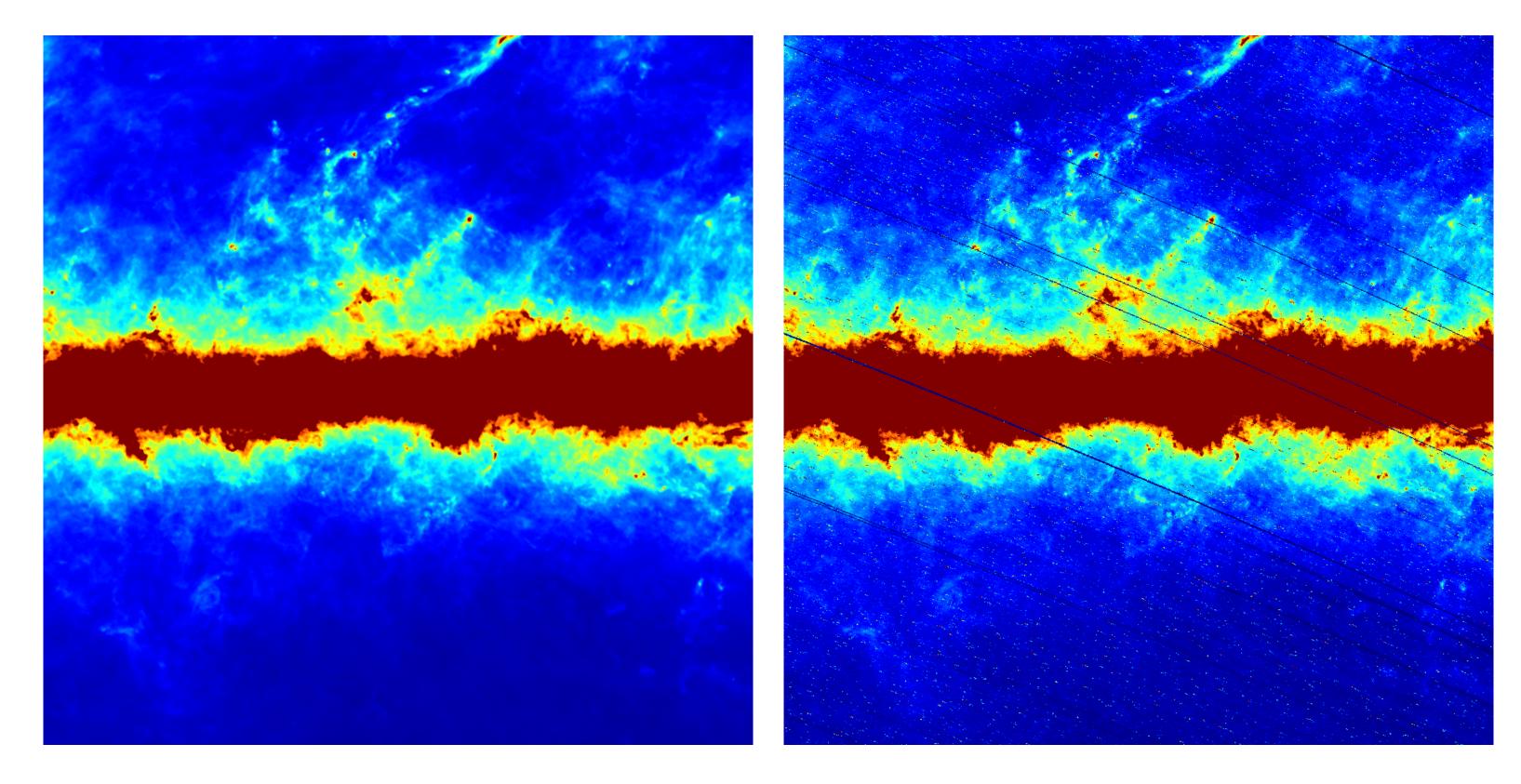

single pole low pass filters (bolometer transfer function)

effective electronics transfer function

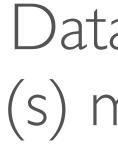


τη ακισμη μι ακιστισκι

	Filter	Description	Parameters	Function
	0	Stray capacitance low pass filter	$\tau_{\rm stray} = R_{\rm bolo} C_{\rm stray}$	$h_0 = \frac{1}{1.0 + \tau_{\text{stray}} s}$
Descri	1	Low pass filter	$R_1 = 1 \mathrm{k}\Omega$ $C_1 = 100 \mathrm{nF}$	$h_1 = \frac{2 + R_1 C_1 s}{2(1 + R_1 C_1 s)}$
measu filters	2	Sallen Key high pass filter	$R_2 = 51 \mathrm{k}\Omega$ $C_2 = 1 \mu\mathrm{F}$	$h_2 = \frac{(R_2 C_2 s)^2}{(1 + R_2 C_2 s)^2}$
	3	Sign reverse with gain	•••	$h_3 = -5.1$
$ran(\omega)$:	4	Single pole low pass filter with gain	$R_4 = 10 \mathrm{k}\Omega$ $C_4 = 10 \mathrm{n}\mathrm{F}$	$h_4 = \frac{1.5}{1 + R_4 C_4 s}$
$F(\omega) =$	5	Single pole high pass filter coupled to a Sallen Key low pass filter	$R_9 = 18.7 \mathrm{k}\Omega$ $R_{12} = 37.4 \mathrm{k}\Omega$ $C = 10.0 \mathrm{n}\mathrm{F}$ $R_{78} = 510 \mathrm{k}\Omega$	$h_5 = \frac{2 R_{12} R_9 R_{78} C_{18} s}{s^3 K_3 + s^2 K_2 + s K_1 + R_{12} R_9}$
$H(\omega) =$			$C_{18} = 1.0 \mu\text{F}$ $K_3 = R_9^2 R_{78} R_{12}^2 C^2 C_{18}$ $K_2 = R_9 R_{12}^2 R_{78} C^2 + R_9^2 R_{12}^2 C^2$ $+ R_9 R_{12}^2 R_{78} C_{18} C$ $K_1 = R_9 R_{12}^2 C + R_{12} R_{78} R_9 C_{18}$	



													~	:	
			Bolometer	a_1	$ au_1$ [ms]	a_2	$ au_2$ [ms]	a_3	$ au_3$ [ms]	a_4	$ au_4$ [ms]	$ au_{ m stray}$ [ms]	S phase		
			100-1a 100-1b	0.392 0.484	10.0 10.3	0.534 0.463	20.9 19.2	0.0656 0.0451	51.3 71.4	0.00833 0.00808	572 594	1.59 1.49	0.00139 0.00139		
			100-2a	0.474	6.84	0.421	13.6	0.0942	37.6	0.0106	346	1.32	0.00125		
			100-2b 100-3a	0.126 0.744	5.84 5.39	0.717 0.223	15.1 14.7	0.142 0.0262	35.1 58.6	0.0145 0.00636	293 907	1.38 1.42	0.00125 0.00125		
			100-3b 100-4a	0.608 0.411	5.48 8.2	0.352 0.514	15.5 17.8	0.0321 0.0581	63.6 57.9	0.00821 0.0168	504 370	1.66 1.25	0.00125 0.00125		
	Filter	Desc	100-4b	0.687	11.3	0.282		0.0218	62.0	0.00875	431	1.38	0.00125	Function	
			143-1a 143-1b	0.817 0.49	4.47 4.72	0.144 0.333	12.1 15.6	0.0293 0.134	38.7 48.1	0.0101 0.0435	472 270	1.42 1.49	0.00125 0.00125	1	
	0	Stray capacitance 1	143-2a	0.909	4.7	0.076	17.0	0.00634	100	0.00871	363	1.48	0.00125	$=\frac{1}{10+2}$	
			143-2b 143-3a	0.912 0.681	5.24 4.19	0.051 0.273	16.7 9.56	0.0244 0.0345	26.5 34.8	0.0123 0.0115	295 317	1.46 1.45	0.00125 0.00125	$1.0 + \tau_{\text{stray}}s$	
	1	T CL	143-3b	0.82	4.48	0.131	13.2 18.9	0.0354	35.1	0.0133	283 225	1.61	0.00083	$- 2 + R_1 C_1 s$	
• Descri	1	Low pass filter	143-4a 143-4b	0.914 0.428	5.69 6.06	0.072 0.508	6.06	0.00602 0.0554	48.2 22.7	$0.00756 \\ 0.00882$	84	1.59 1.82	0.00125 0.00125	$= \frac{1}{2(1+R_1C_1s)}$	
moacu			143-5 143-6	0.491 0.518	6.64 5.51	0.397 0.409	6.64 5.51	0.0962 0.0614	26.4 26.6	0.0156 0.0116	336 314	2.02 1.53	0.00139 0.00111		
measu			143-7	0.414	5.43	0.562	5.43	0.0185	44.9	0.00545	314	1.86	0.00139	$(R_2C_2s)^2$	
filters	2	Sallen Key high pa	217-5a	0.905	6.69	0.080	21.6	0.00585	65.8				0.00111		
			217-5b 217-6a	0.925 0.844	5.76 6.45	0.061 0.068	18.0 19.7	0.00513 0.0737	65.6 31.6	0.0094 0.0147	287 297	1.87 1.54	0.00125 0.00125	$(1 + R_2 C_2 s)^2$	
	2	Cian norrange swith a	217-6b	0.284	6.23	0.666	6.23	0.0384	24	0.0117	150	1.46	0.00111	51	
	3	Sign reverse with §	217-7a 217-7b	0.343 0.846	5.48 5.07	0.574 0.127	5.48 14.40	0.0717 0.0131	23 47.9	0.0107 0.0133	320 311	1.52 1.51	0.00139 0.00139	= -5.1	۱ ()
$f(\alpha)$ -		a : 1 1 1	217-8a 217-8b	0.496 0.512	7.22 7.03	0.439 0.41	7.22 7.03	0.0521 0.0639	32.5 27.2	0.0128 0.0139	382 232	1.79 1.73	0.00111 0.00125	1.5	50 75
$f_{\text{tran}}(\omega)$:	4	Single pole low pa	217-1	0.014	3.46	0.956	3.46	0.0271	23.3	0.00359	1980	1.59	0.00111	$= \frac{1}{1 + R_4 C_4 s}$	50 75
			217-2 217-3	0.978 0.932	3.52 3.55	0.014 0.034	26.1 3.55	0.00614 0.0292	42 32.4	0.00194 0.00491	686 279	1.6 1.74	0.00125 0.00125	1 + 14045	
			217-4	0.658	1.35	0.32	5.55	0.0174	26.8	0.00424	473	1.71	0.00111	2 $R_{12}R_{0}R_{78}C_{18}S$	
	5	Single pole high p	353-3a	0.554	7.04	0.36	7.04	0.0699	30.5	0.0163	344	1.7	0.00125	$= \frac{2 R_{12}R_9R_{78}C_{18}s}{s^3K_3 + s^2K_2 + sK_1 + R_{12}R_9}$	
$F(\omega) =$		Sallen Key low j	353-3b 353-4a	0.219 0.768	2.68 4.73	0.671 0.198	6.95 9.93	0.0977 0.0283	23.8 50.5	0.0119 0.00628	289 536	1.57 1.81	0.00111 0.00125	$S^{-}K_{3} + S^{-}K_{2} + SK_{1} + K_{12}K_{9}$	
			353-4b 353-5a	0.684 0.767	4.54 5.96	0.224 0.159	10.8 12.4	0.0774 0.0628	80 30.3	0.0149 0.0109	267 357	1.66 1.56	$0.00111 \\ 0.00111$		
			353-5b	0.832	6.19	0.126	11.1	0.0324	35	0.0096	397	1.66	0.00111		
			353-6a 353-6b	0.049 0.829	1.76 5.61	0.855 0.127	6.0 5.61	0.0856 0.0373	21.6 25.2	0.0105 0.00696	222 360	1.99 2.28	0.00125 0.00111		
			353-1 353-2	0.41 0.747	0.74 3.09	0.502 0.225	4.22 7.26	0.0811 0.0252	17.7 44.7	0.0063 0.00267	329 513	1.32 1.54	0.00097 0.00097		N
TT()			353-7	0.448	0.9	0.537	4.1	0.0122	27.3	0.00346	433	1.78	0.00125		
$H(\omega) =$			353-8	0.718	2.23	0.261	6.08	0.0165	38	0.00408	268	1.77	0.00111		50 75
			545-1 545-2	0.991 0.985	2.93 2.77	0.007 0.013	26.0 24.0	0.00139 0.00246	2600 2800			2.16 1.87	0.00111 0.00097		
			545-4	0.985	3.0	0.013	24.0 25.0	0.000240	2800 2500		•••	2.22	0.00097		
			857-1	0.974	3.38	0.023	25.0	0.00349	2200			1.76	0.00111		
			857-2 857-3	0.84 0.36	1.48 0.04	0.158 0.627	6.56 2.4	0.00249 0.0111	3200 17	0.002	 1900	2.2 1.52	0.00125 0.00126		
			857-4	0.278	0.4	0.719	3.92	0.00162	90	0.002	800	1.49	0.000120	Planck Collaborati	on: Planck 2013 results.VII.



WHAT'S THE DIFFERENCE?

- Besides from other effects, correction for which has not been implemented yet, the transfer function effect is the most obvious one
- The map looks slightly shifted, which is exactly the transfer function effect

d = Ts + n

The operator (T) describing the transfer function effect is a convolution operator in real space or a multiplication operator in Fourier space with transfer function (f) and Fourier transform (F)

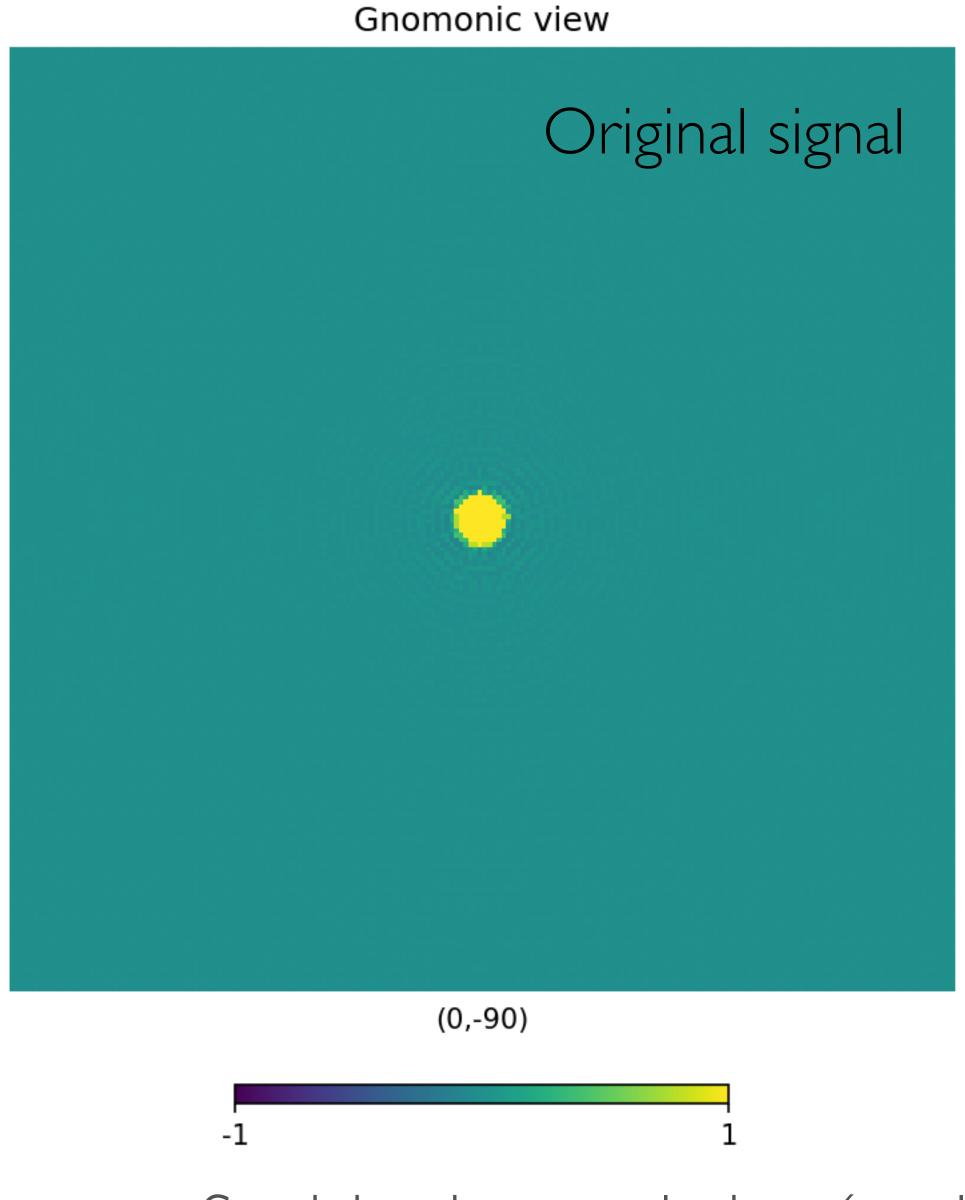
 $T = F^{-1} f_{tran}(\omega) F$

DATA MODEL

Data recorded from the detector (d) is a sky signal (s) modified with the detector transfer function (T) plus noise (n)

EXPERIMENT

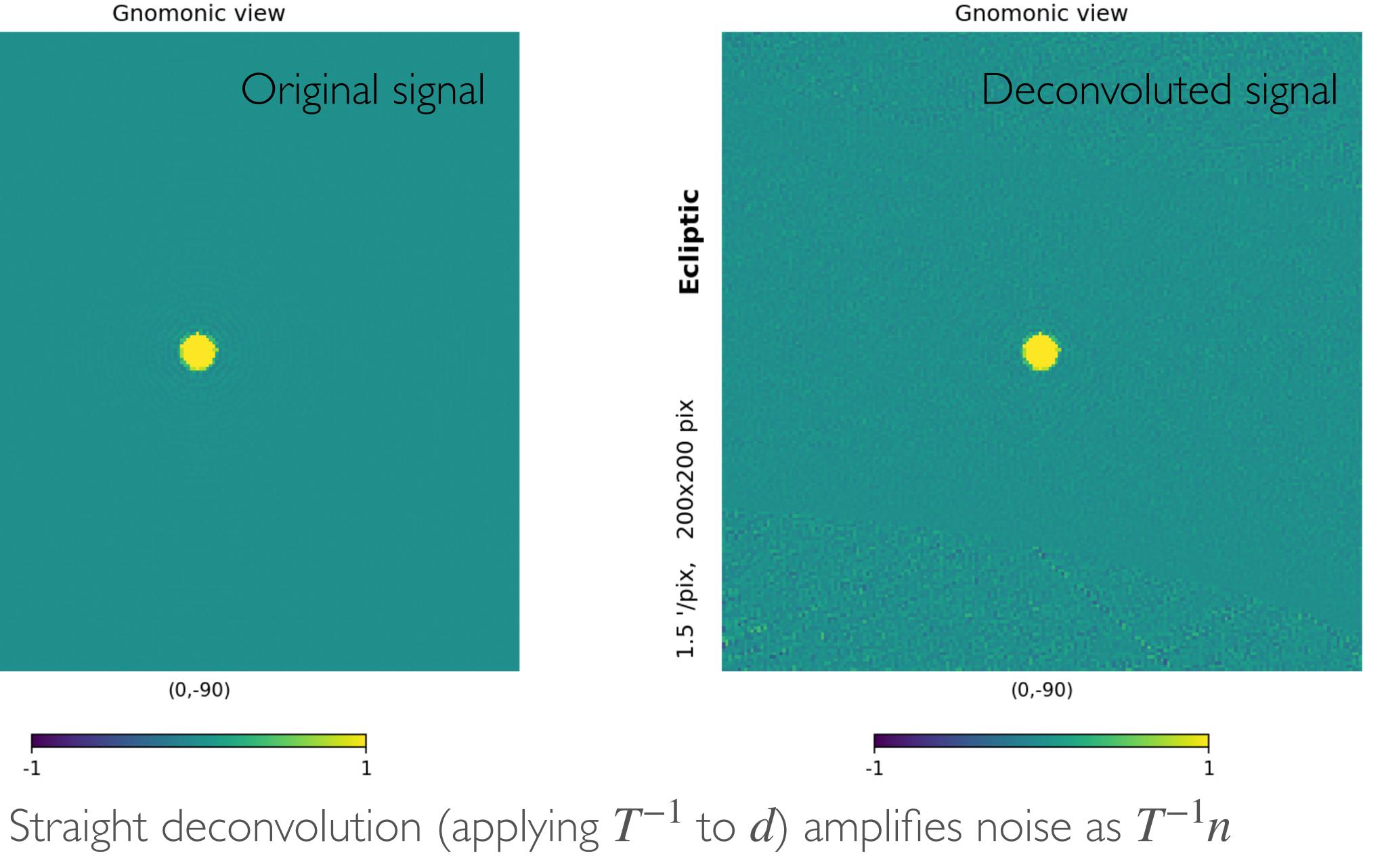
- Let's take the Planck HFI pointing
- Generate a bright beam at one of the often passed points (pole) (s)
- Apply a transfer function T
- Add normal noise n to data d

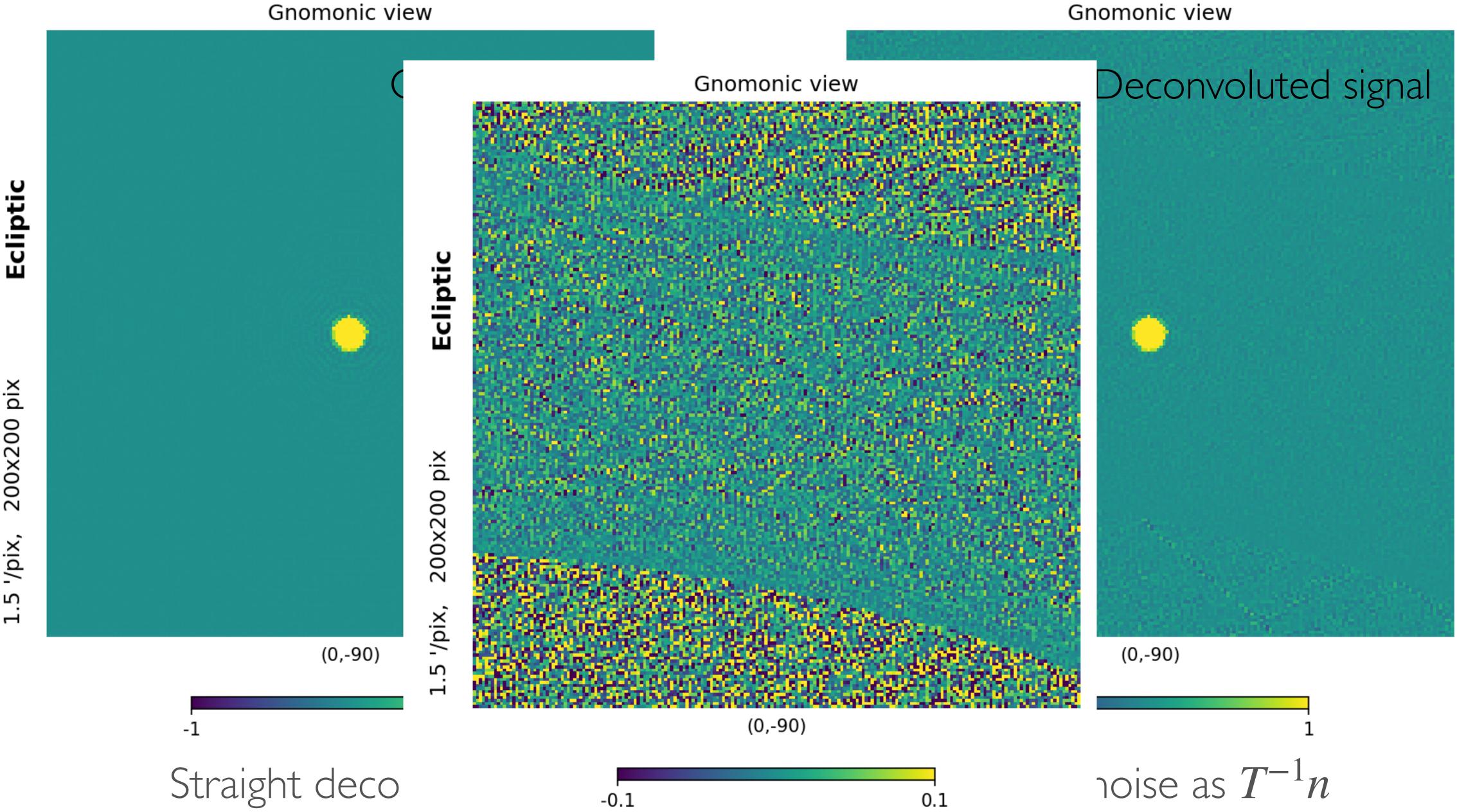


17

-1

1





Ecliptic

200x200 pix

1.5 '/pix,

pix

200×200

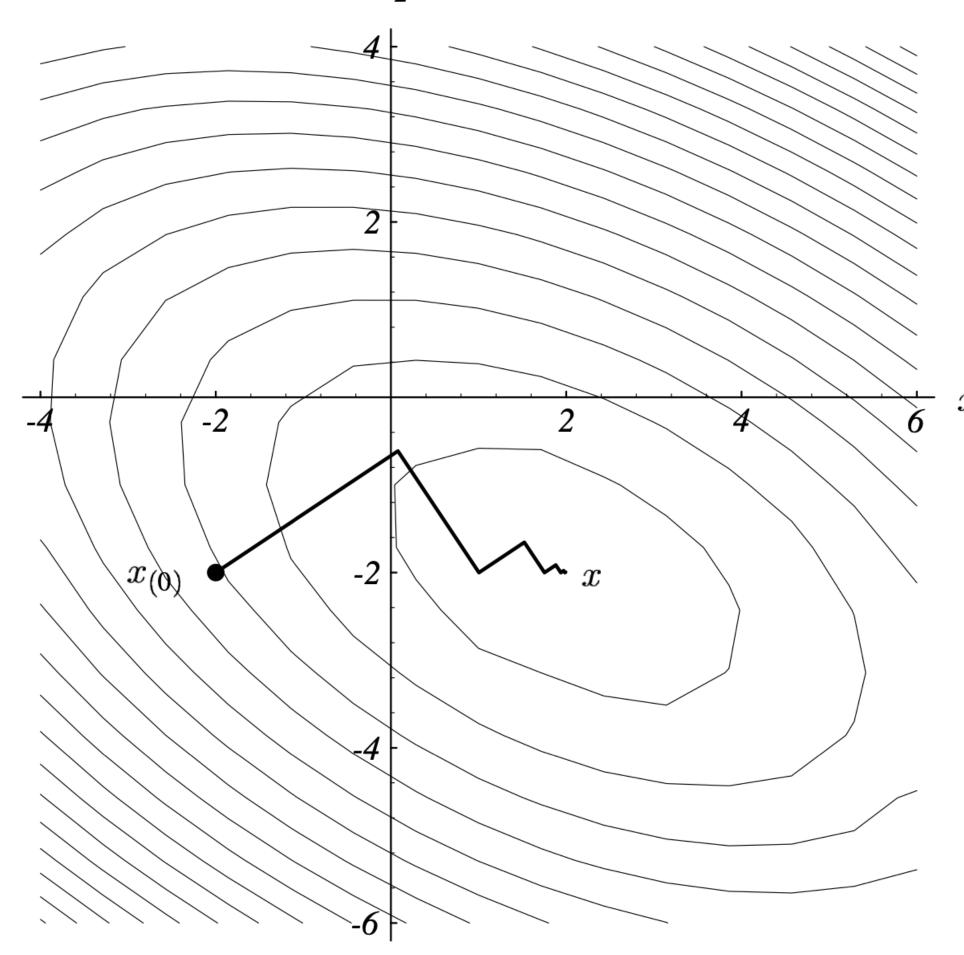
'/pix,

1.5

Gnomonic view

noise as $T^{-1}n$

DEALING WITH TRANSFER FUNCTION AT MAPMAKING LEVEL


- include the operator T into the mapmaking equation $(P^T T^T N^{-1} TP)m = (P^T T^T N^{-1})d$
- Instead of applying the inverse, we are applying the transpose, which is identical to shifting the data forward in time
- We are stacking the data and applying T along the pointing direction, decreasing white noise

• Instead of applying T^{-1} to the data d, as was done by Planck HFI, we can

- Extremely computationally heavy, since we are dealing with NTOD = $7 \cdot 10^{11}$, and NSIDE = 2048, corresponding to NPIX = 10⁷
- For example, the pointing matrix P = (NPIX, NTOD)
- However, it's still **possible** to solve for *m* using conjugate gradient method
- The basic mapmaking equation for LFI was $(P^T N^{-1} P)m = P^T N^{-1} d$

THE COST?

 x_2

 x_1

Thank you for your attention!