Minkowski Functionals as a tool to study **Non-Gaussianity and anisotropy:** new extensions to CMB polarization and beyond

Javier Carrón Duque

javier.carron@roma2.infn.it

TOR VERGATA In collaboration with: Alessandro Carones Domenico Marinucci Marina **Migliaccio** Nicola Vittorio

31st August 2023 **Cosmology 2023 in Miramare** ACCORDO ATTUATIVO N. 2021-43-HH.0

dell'Accordo Quadro ASI/INFN n. 2021-8-Q.0

Codice Unico di Progetto (CUP) F85F21006430005

PER

"Realizzazione di attività tecniche e scientifiche presso lo

Space Science Data Center - SSDC"

Minkowski Functionals as a tool to study **Non-Gaussianity and anisotropy:** new extensions to CMB polarization and beyond

Javier Carrón Duque

javier.carron@roma2.infn.it

TOR VERGATA **INFN**

In collaboration with: Alessandro Carones Domenico Marinucci Marina **Migliaccio** Nicola Vittorio

31st August 2023 **Cosmology 2023 in Miramare**

ACCORDO ATTUATIVO N. 2021-43-HH.0 dell'Accordo Quadro ASI/INFN n. 2021-8-Q.0 Codice Unico di Progetto (CUP) F85F21006430005 PER

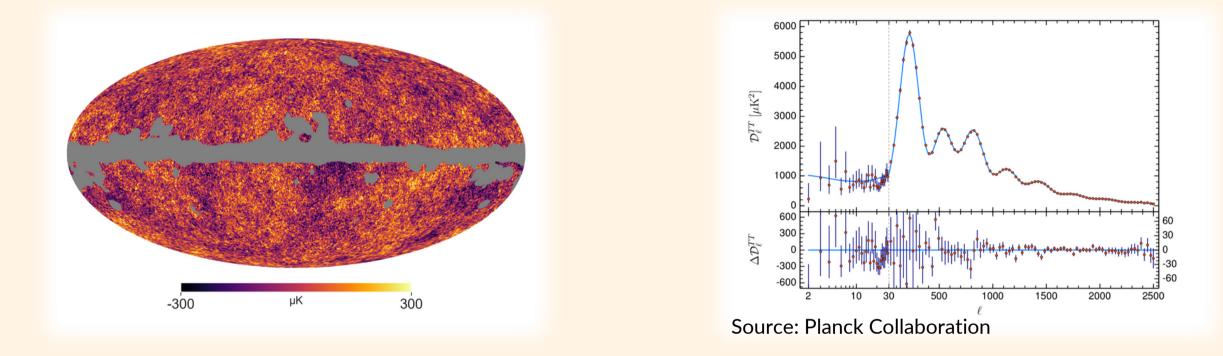
"Realizzazione di attività tecniche e scientifiche presso lo

Space Science Data Center - SSDC"

Outline

- Introduction
- Minkowski Functionals on CMB polarization
- Applications of Minkowski Functionals
- Software
- Conclusions

2/18 Introduction

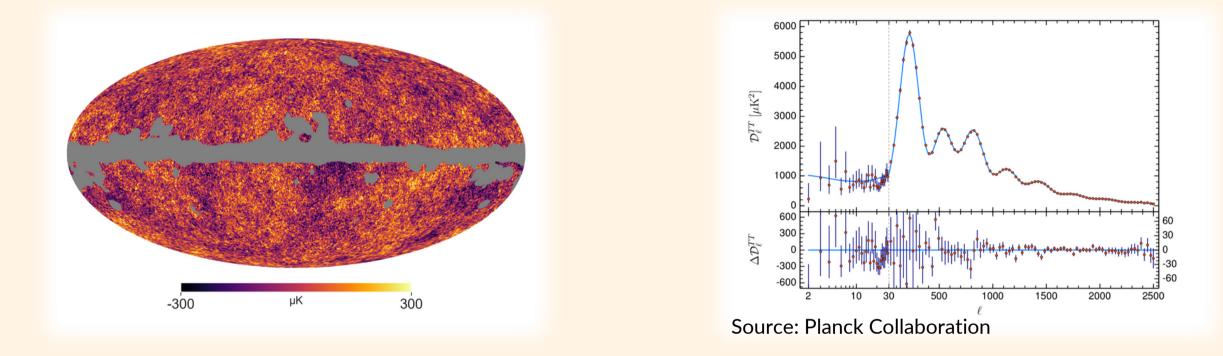

Javier Carrón Duque javier.

8 polarization ctionals

javier.carron@roma2.infn.it

Gaussian fields are easy to describe

• Gaussian \rightarrow Physical process fully described by 2pt correlation function



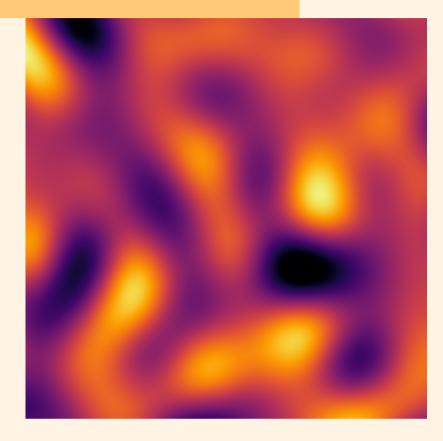
- Blind to non—Gaussianity and anisotropy
- Other tools: 3/4pt correlation functions, extrema statistics, Betti numbers, persistent homology, field-level inference, Machine Learning, Minkowski Functionals...

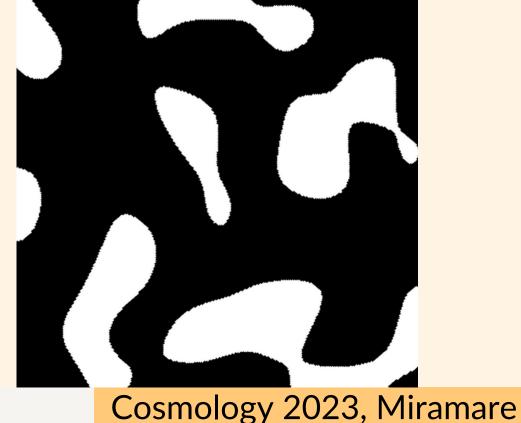
Javier Carrón Duque javier.carron@roma2.infn.it

Gaussian fields are easy to describe

• Gaussian \rightarrow Physical process fully described by 2pt correlation function

- Blind to non—Gaussianity and anisotropy
- Other tools: 3/4pt correlation functions, extrema statistics, Betti numbers, persistent homology, field-level inference, Machine Learning, Minkowski Functionals...
- f_{N} is very important, but not the only way


3/18 Introduction Javier Carrón Duque


javier.carron@roma2.infn.it

Minkowski Functionals are higher order statistics

- We consider a field (e.g., T or δ)
- Let *u* be a threshold (e.g., 2σ)
- We define the **excursion set** A(u) as the regions of the field above u
- Minkowski Functionals (MFs) are:
 - V_0 : area of A(u)
 - \circ V₁ : boundary length of A(u)
 - \circ V₂ : Euler–Poincaré characteristic of A(u) (#regions – #holes)

4/18Introduction Javier Carrón Duque javier.carron@roma2.infn.it

- For isotropic Gaussian fields, the expectation is known and variance is small
- The three factors decouple:

$$\mathbb{E}\left[V_j(A_u)\right] \approx \rho_j(u) \, V_0(\mathbf{x})$$

Javier Carrón Duque javier.carron@roma2.infn.it

 \mathbb{S}^2) $\mu^{j/2}$

- For isotropic Gaussian fields, the expectation is known and variance is small
- The three factors decouple: threshold,

 $\mathbb{E}\left[V_j(A_u)\right] \approx \rho_j(u) \ V_0(\mathbb{S}^2) \ \mu^{j/2}$

Threshold

5/18 Introduction

Javier Carrón Duque javier.carron@roma2.infn.it

- For isotropic Gaussian fields, the expectation is known and variance is small
- The three factors decouple: threshold, manifold,

 $\mathbb{E}\left[V_j(A_u)\right] \approx \rho_j(u) \, V_0(\mathbb{S}^2) \, \mu^{j/2}$

Threshold

Ambient manifold

Javier Carrón Duque

javier.carron@roma2.infn.it

- For isotropic Gaussian fields, the expectation is known and variance is small
- The three factors decouple: threshold, manifold, correlation length of the map

 $\mathbb{E}\left[V_j(A_u)\right] \approx \rho_j(u) \, V_0(\mathbb{S}^2) \, \mu^{j/2}$

Threshold


Ambient manifold

Property of the map (correlation length)

javier.carron@roma2.infn.it

5/18

- For isotropic Gaussian fields, the expectation is known and variance is small
- The three factors decouple: threshold, manifold, correlation length of the map

Property of the map (correlation length)

$$\mu^{1/2}$$

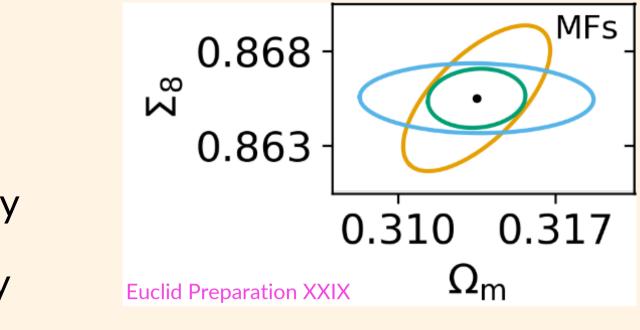
$$\left(-\frac{u^2}{2}\right)u$$

- Any deviation is due to non—Gaussianity and/or anisotropy
- Early Universe (e.g., T): test for primordial non—Gaussianity
 - Planck 2018 VII (isotropy & statistics)

Javier Carrón Duque

javier.carron@roma2.infn.it

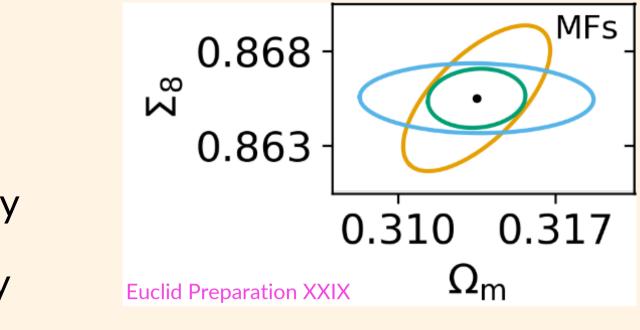
- Any deviation is due to non—Gaussianity and/or anisotropy
- Early Universe (e.g., T): test for primordial non—Gaussianity


• Planck 2018 VII (isotropy & statistics)

- Late Universe (e.g., κ): extract more cosmological information
 - Euclid Preparation XXIX (2023), Grewal+ (2022),

Zürcher+ (2022), ...

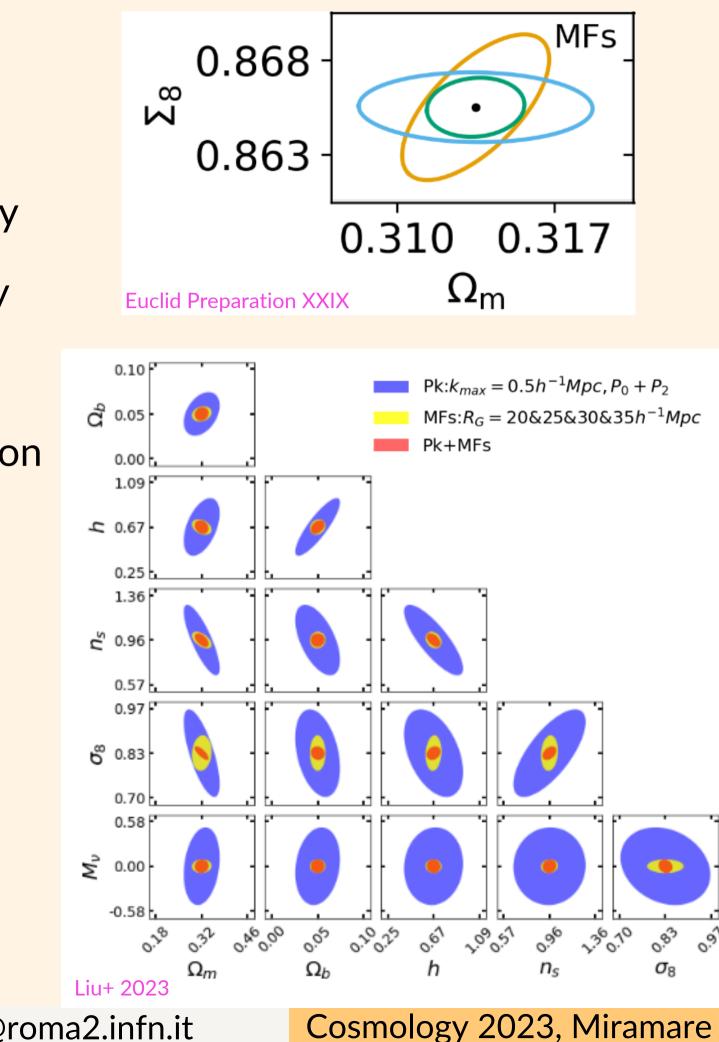
6/18 Introduction


Javier Carrón Duque

javier.carron@roma2.infn.it

- Any deviation is due to non—Gaussianity and/or anisotropy
- Early Universe (e.g., T): test for primordial non—Gaussianity
 - Planck 2018 VII (isotropy & statistics)
- Late Universe (e.g., κ): extract more cosmological information
 - Euclid Preparation XXIX (2023), Grewal+ (2022), Zürcher+ (2022), ...
- Foregrounds (*e.g.*, Galactic):
 - Martire+ (2023), Krachmalnicoff+ (2020), ...

Javier Carrón Duque



javier.carron@roma2.infn.it

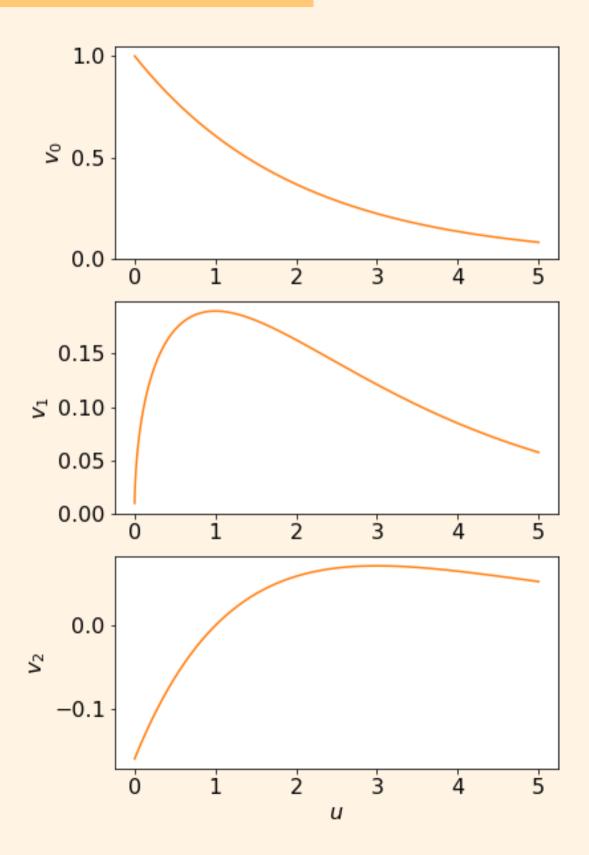
- Any deviation is due to non—Gaussianity and/or anisotropy
- Early Universe (e.g., T): test for primordial non—Gaussianity
 - Planck 2018 VII (isotropy & statistics)
- Late Universe (e.g., κ): extract more cosmological information
 - Euclid Preparation XXIX (2023), Grewal+ (2022),
 Zürcher+ (2022), ...
- Foregrounds (e.g., Galactic):
 - Martire+ (2023), Krachmalnicoff+ (2020), ...
- Large Scale Structure (*e.g.*, galaxy distribution):
 - Liu+ (2023), Appleby+ (2022), Spina (2021), ...

6/18 Introduction

Javier Carrón Duque javier.carron@roma2.infn.it

We extend MFs to modulus of polarization P²

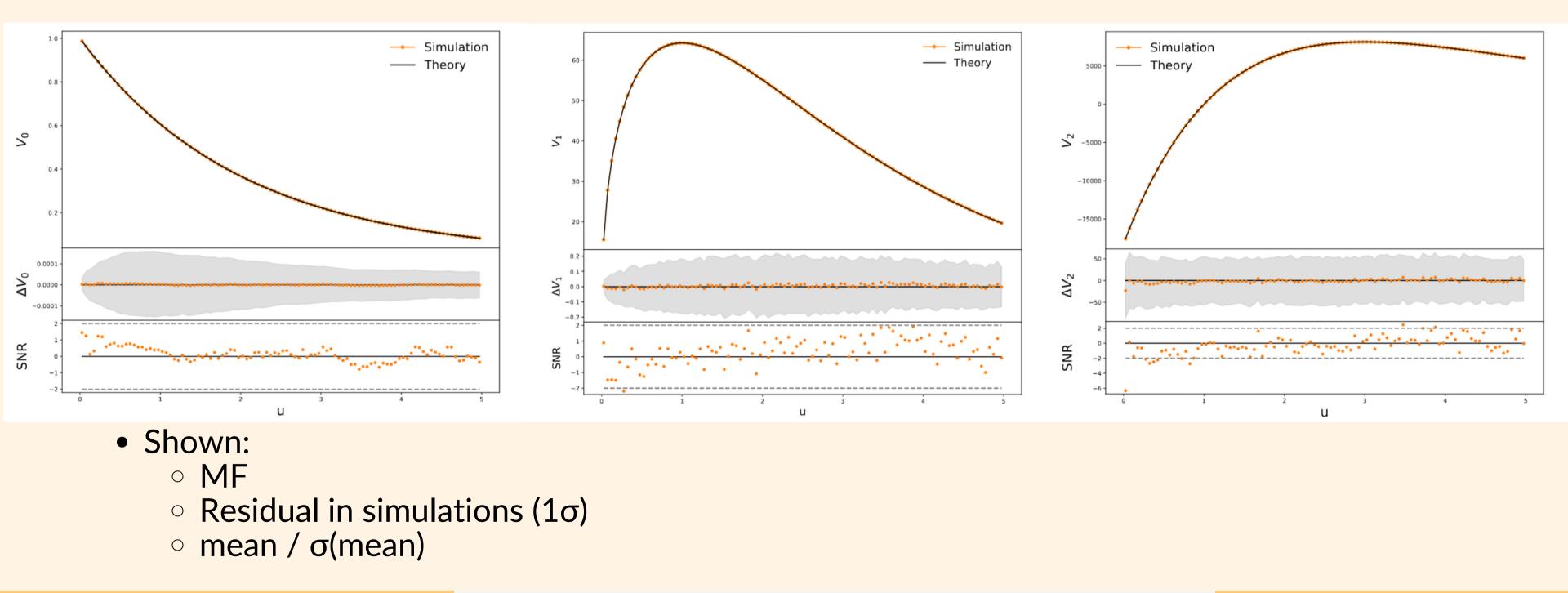
Minkowski Functionals of CMB polarisation intensity with Pynkowski: theory and application to Planck data


Alessandro Carones,^{1,2}* Javier Carrón Duque,^{1,2} Domenico Marinucci,³ Marina Migliaccio,^{1,2} Nicola Vittorio^{1,2} arXiv: 2211.07562

• We generalize the theoretical formula for $P^2 = Q^2 + U^2$

$$\frac{\mathbb{E}\left[V_0(A_u)\right]}{4\pi} = \exp(-u/2)$$
$$\frac{\mathbb{E}\left[V_1(A_u)\right]}{4\pi} = \frac{\sqrt{2\pi}}{8}\sqrt{\mu u}\exp(-\frac{u}{2})$$
$$\frac{\mathbb{E}\left[V_2(A_u)\right]}{4\pi} = \mu\frac{(u-1)\exp(-u/2)}{2\pi}$$

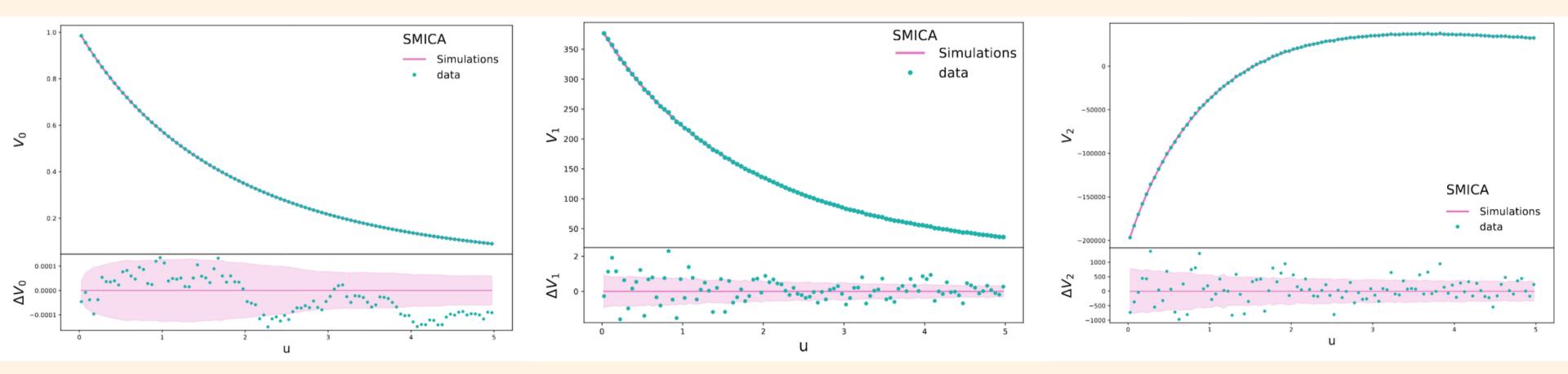
7/18 MFs in CMB polarization


Javier Carrón Duque

javier.carron@roma2.infn.it

Simulations are compatible with the theory (P²)

• Excellent compatibility between theory and isotropic Gaussian simulations


8/18 MFs in CMB polarization Javier Carrón Duque

arXiv: 2211.07562

javier.carron@roma2.infn.it

Planck is compatible with realistic simulations (P²)

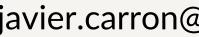
- Realistic simulations with anisotropic noise (observational s
- No significant deviation (SMICA & SEVEM)

9/18 MFs in CMB polarization

Javier Carrón Duque

javier.carron@roma2.infn.it

arXiv: 2211.07562


			χ^2	$p_{ m exc}$ (%)
strategy)	V_0	SMICA SEVEM	1.012 0.993	44.7 47.0
	V_1	SMICA SEVEM	1.010 1.144	47.7 17.0
	V_2	SMICA SEVEM	0.812 1.084	86.7 30.7

There is more information in the polarization field

- Polarization is a spin—2 complex field
- Information is lost in any scalar projection (P, E, B, Q, U, ...)

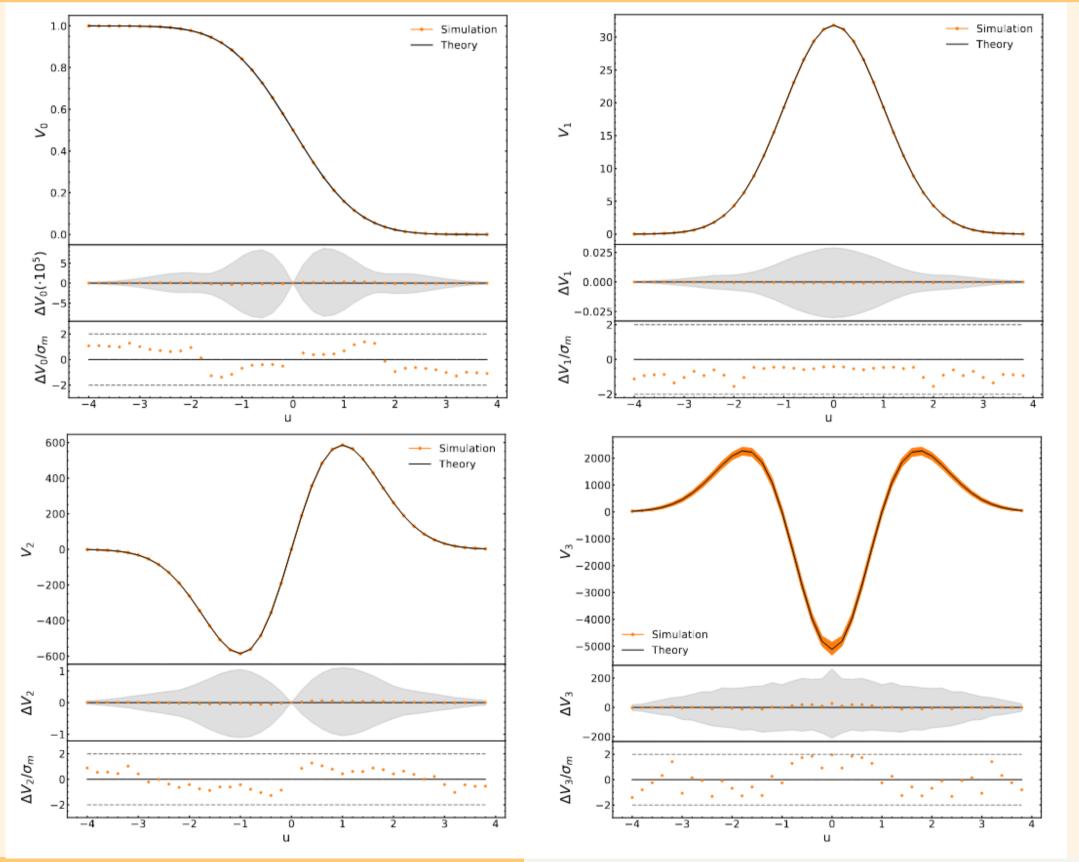
10/18 MFs in CMB polarization

Javier Carrón Duque javier.carron@roma2.infn.it

There is more information in the polarization field

- Polarization is a spin—2 complex field
- Information is lost in any scalar projection (P, E, B, Q, U, ...)
- We analyse the full polarization information using $f(\phi, \theta, \psi) = Q(\phi, \theta) \cos(2\psi) - U(\phi, \theta) \sin(2\psi)$
- This is defined in SO(3), a 3D manifold

J. Carrón Duque,^{*a,b*,1} A. Carones,^{*a,b*} D. Marinucci,^{*c*} M. Migliaccio,^{*a,b*} and N. Vittorio^{*a,b*}


10/18 MFs in CMB polarization

Javier Carrón Duque javier.carron@roma2.infn.it

Minkowski Functionals in SO(3) for the spin-2 CMB polarisation field

arXiv: 2301.13191

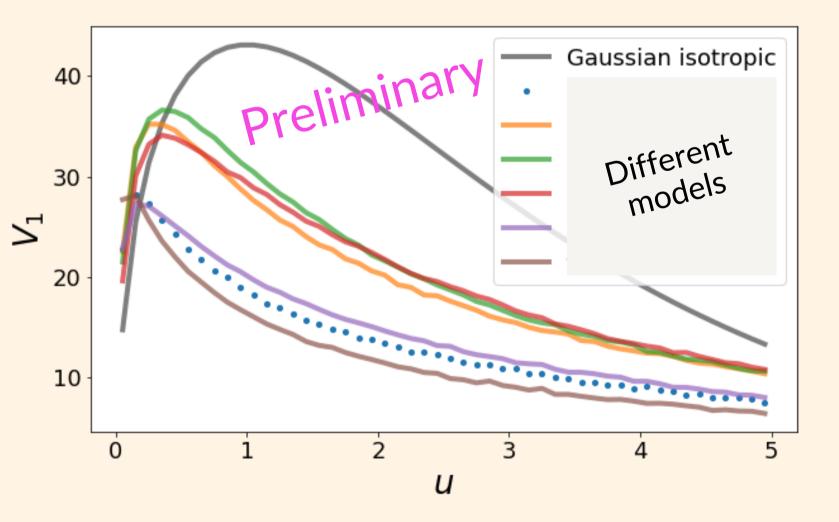
Simulations are compatible with the theory (f)

11/18 MFs in CMB polarization

Javier Carrón Duque

javier.carron@roma2.infn.it

arXiv: 2301.13191


- 3D space \rightarrow 4 MFs
- Shown:
 - MF
 - \circ Residual in simulations (1 σ)
 - mean / σ(mean)
- No significant deviation is found

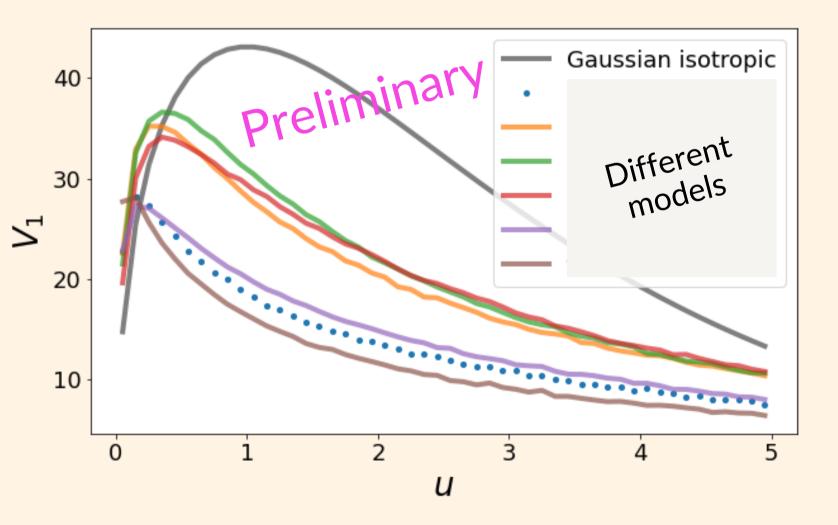
We analyse Galactic dust models

- Non–Gaussian foregrounds are important to test component separation methods
- Simulating non—Gaussian foregrounds is not trivial:
 - Modulation
 - Very different approaches from PySM
 - Generative Neural Networks

(forse: Krachmalnicoff&Puglisi, 2020)

• We are assessing different models

(w/ Giuseppe Puglisi)

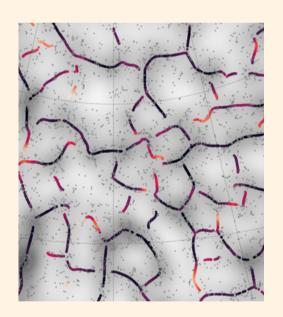

javier.carron@roma2.infn.it

We analyse Galactic dust models

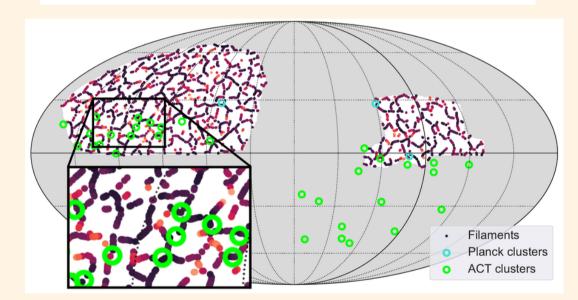
- Non–Gaussian foregrounds are important to test component separation methods
- Simulating non—Gaussian foregrounds is not trivial:
 - Modulation
 - Very different approaches from PySM
 - Generative Neural Networks

(forse: Krachmalnicoff&Puglisi, 2020)

• We are assessing different models

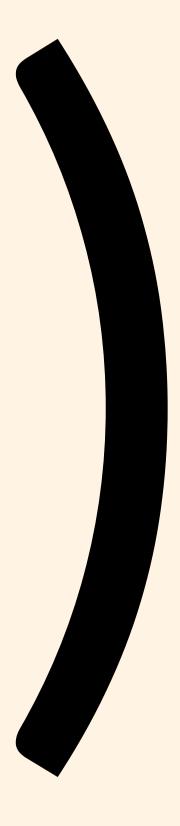

(w/ Giuseppe **Puglisi**)

javier.carron@roma2.infn.it


We produced a Cosmic Filaments catalogue

- Publicly available: www.javiercarron.com/catalogue
- 0.05 < z < 2.2
- Promising results in different areas

A novel cosmic filament catalogue from SDSS data*


Javier Carrón Duque^{1,2}, Marina Migliaccio^{1,2}, Domenico Marinucci³, and Nicola Vittorio^{1,2}

13/18 Applications of MFs

Javier Carrón Duque

javier.carron@roma2.infn.it

MFs can be applied to the 3D density field

• The LSS is NOT Gaussian: lots of information in its non—Gaussianities

Primordial non–Gaussianities Consequence of Inflation • MFs are well suited for some models • Blind or model dependent

- Can MFs distinguish both origins? • Can we include the effect of Gravity?
- Can MFs constrain cosmological parameters effectively? • Yes, at least with forward modelling
- How do they compare to other statistics?
 - Theoretical models, degeneracies, systematics, ...

14/18 Applications of MFs

Javier Carrón Duque javier.carron@roma2.infn.it

- Late Universe non–Gaussianities
 - Consequence of Gravity and
 - Baryonic effects
 - Dominant, especially at small scales

MFs can have many other applications

- We are exploring, among others:
 - Galactic dust polarised emission
 - Morphology of LSS
 - Forecast for future missions
 - CMB power asymmetry
 - + new ideas?

15/18 Applications of MFs

Javier Carrón Duque

javier.carron@roma2.infn.it

We develop Pynkowski as a Python package

- Pynkowski is fully documented and modular
- Theory module: theoretical prediction of different kinds of fields (Gaussian, χ^2 , f, ...)
- Data module: different kinds of data structures (np arrays, healpix maps, ...)
- Stats module: different higher-order statistics (MFs, maxima/minima distribution, ...)
- All modules are easy to expand

16/18

Software

pip install pynkowski

Javier Carrón Duque javier.carron@roma2.infn.it

Pynkowski is easy to use

```
import numpy as np
import healpy as hp
import pynkowski as mf # For Minkowski Functionals
# Define the thesholds for the excursion sets
us = np.linspace(-5., 5., 100)
# Load the CMB map and angular power spectrum
my_map = \dots
my_cls = hp.anafast(my_map) # or load from file
# Compute the Minkowski Functionals on my map
data_map = mf.Healpix(my_map, normalise=True, mask=None)
                                                             # Default parameters
v0_data = mf.V0(data_map, us)
v1_data = mf.V1(data_map, us)
v2_data = mf.V2(data_map, us)
# Compute the Minkowski Functionals on a Gaussian random field with the same power spectrum
```

gaussian_field = mf.SphericalGaussian(my_cls, normalise=True, fsky=1.)

```
v0_theory = mf.V0(gaussian_field, us)
v1_theory = \overline{mf}.V1(gaussian_field, us)
v2_theory = mf.V2(gaussian_field, us)
```

17/18

Software

Javier Carrón Duque javier.carron@roma2.infn.it

Cosmology 2023, Miramare

Python

Default parameters

\$ pip install pynkowski

Thttps://github.com/javicarron/pynkowski

Takeaway points

- Minkowski Functionals are useful tools to study non—Gaussianities and isotropy, with many applications in both the Early and Late Universe
- We have expanded the formalism to CMB polarization in two ways: the polarization intensity P^2 , and the full information in the spin map
- We have created Pynkowski to ease the application of MFs to the cosmological community

18/18Conclusions Javier Carrón Duque javier.carron@roma2.infn.it

Takeaway points

- Minkowski Functionals are useful tools to study non—Gaussianities and isotropy, with many applications in both the Early and Late Universe
- We have expanded the formalism to CMB polarization in two ways: the polarization intensity P^2 , and the full information in the spin map
- We have created Pynkowski to ease the application of MFs to the cosmological community

Thank you!

18/18Conclusions Javier Carrón Duque javier.carron@roma2.infn.it

