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Introduction

• The formation of  stellar mass black holes is well understood, whereas there is 
still no consensus on the formation of  supermassive black holes (SMBHs).

• Their masses are of  the order of  ≥ 105𝑀⊙ and they are present in most of  the 
large galaxies.

• The problem is explaining the high masses (≳ 109𝑀⊙) at high redshifts 
(z~7.5).
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Introduction

• Another method to explain the origin of  these black holes is by considering 
Population III.1 stars (McKee & Tan, 2008).

• These are the stars of  primordial composition and are formed in relative 
isolation from other stars and/or feedback sources.
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• Another method to explain the origin of  these black holes is by considering 
Population III.1 stars (McKee & Tan, 2008).

• These are the stars of  primordial composition and are formed in relative 
isolation from other stars and/or feedback sources.

𝑑feedbackA: Pop III.1

C: Pop III.1

B: Pop III.2

= 𝑑iso
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Introduction

• Tan, Smith & O’Shea (2010) showed that for varied accretion rates, the initial 
mass function peaks at around~100 𝑀⊙, with a tail extending to ~103 𝑀⊙.

• To achieve even higher masses for Pop III.1 stars, one can consider the energy 
input from WIMP dark matter self  annihilation inside the protostar (Spolyar, 
Freese & Gondolo 2008; Natarajan, Tan & O’Shea 2009).

• With this energy injection, the protostar can become large, but stay relatively 
cool so that the ionizing feedback is minimum.

• This allows the protostar to accrete most of  the baryonic content in its natal 
minihalo, i.e., around 105 𝑀⊙.
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Pinocchio

https://github.com/pigimonaco/Pinocchio

Credits: NASA, ESA, CSA, and STScI
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Uses Lagrangian Perturbation Theory to evolve the overdensities in a matter 
dominated universe (Monaco, Theuns & Taffoni 2002, Munari et al. 2017).

https://github.com/pigimonaco/Pinocchio

pinocchio

catalogs(z) histories

[('name', numpy.int64),
 ('Mass', numpy.float32),
 ('pos', numpy.float32, 3),
 ('vel', numpy.float32, 3),
 ('posin', numpy.float32, 3)]

[('name', numpy.uint64),
 ('nickname', numpy.int32),
 ('link', numpy.int32),
 ('merged_with', numpy.int32),
 ('mass_at_merger', numpy.int32),
 ('mass_of_main', numpy.int32),
 ('z_merging', numpy.float32),
 ('z_peak', numpy.float32),
 ('z_appear', numpy.float32)]

PINOCCHIO
PINpointing Orbit Crossing Collapsed Hierarchical Objects
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Results

Credits: NASA, ESA, CSA, and STScI
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Number density
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Number density

arXiv:2301.11464

(Illustris, 𝑚𝑡ℎ = 7.1 × 1010𝑀⊙)

(Chon+16)
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Number density

arXiv:2301.11464

(Illustris, 𝑚𝑡ℎ = 7.1 × 1010𝑀⊙)

(Chon+16)

Harikane+23
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Clustering

arXiv:2301.11464

JS, Monaco and Tan 2023
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Clustering evolution

arXiv:2301.11464
JS, Monaco and Tan 2023
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Gravitational 
Wave 
Background

Credits: NASA, ESA, CSA, and STScI
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Pulsar Timing Arrays

Credit: Christopher Moore, Robert Cole and Christopher Berry - http://rhcole.com/apps/GWplotter/, CC 

BY-SA 1.0, https://commons.wikimedia.org/w/index.php?curid=32227462
NANOGrav Collaboration
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SMBH merger events

JS+, in prep
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GWB from Pop III.1 model
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GWB from Pop III.1 model

JS+, in prep
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Summary and Conclusions

• Seeds forming from Pop III.1 stars with WIMP dark matter self  annihilation 
can reach up to 105𝑀⊙ before collapsing.

• Using dark matter catalogs from PINOCCHIO, we can identify the seeded 
halos and follow their evolution.

• The model is able to explain the current observed number density and predict 
a clear clustering signal.

• By assuming a simple black hole mass – halo mass relation, the model is able 
to explain the observed GWB.

• Future work involves using a more physical growth model of  black holes using 
semi analytical models to improve predictions for the GWB.

Thank you for your attention!
jasbir.singh@inaf.it
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Extra material

Credits: NASA, ESA, CSA, and STScI
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WIMP DM conditions

• Since the WIMP DM annihilation rates scale as 𝜌𝜒
2, this effect is most 

prominent if  the protostar is located at the center of  the minihalo, where the 
density of  DM particles is maximum.

• Protostars powered by this mechanism have been shown to grow up to ≿
105 𝑀⊙, starting from an initial mass of  2 to 5 𝑀⊙(Fresse et al. 2012; Rindler-
Daller et al. 2015).
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Occupation fraction

arXiv:2301.11464
JS, Monaco and Tan 2023
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Synthetic ultra deep field

arXiv:2301.11464 JS, Monaco and Tan 2023
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