SURVEY and ALIGNMENT in accelerators

Hélène Mainaud Durand

Who am I?

- Education:
- 1996: PhD in sciences -geodesy, from University Louis Pasteur, Strasbourg
- 1994: Diploma of topographical engineer from INSA Strasbourg
- 1994: Research master (D.E.A) on spatial systems and land settlement, University Louis Pasteur, Strasbourg.
- Professional experience:
- Since 2001: CERN, in charge of projects needing non-traditional alignment solutions. Deputy leader of the SMM group. In charge of survey \& alignment for the CLIC project, LHC low beta quadrupoles and HL-LHC project.
- 1999-2000: project manager at Alcatel Contracting
- 1996-1999: project engineer on alignment systems at Fogale Nanotech

Introduction

- Lecture based on examples from CERN and other labs
- Slides in white: lecture
- Slides in grey: outline
- Slides in green: short exercise or study case
- References are given in brackets [Jones] and full references can be found at the end of the slides.

Introduction

out of ALIGNMENT
What does alignment mean?
According to the Oxford dictionary: "an arrangement in which two or more things are positioned in a straight line"
In the context of particle accelerators, the things are: beam instrumentation \& vacuum devices, magnets, RF components, etc.
Why aligning components?
The Earth on which we build accelerators is in constant motion
Accelerators have to be kept aligned within given tolerances to make the beam pass through

Alignment tolerances [Fisher] [Ruland]

Error of placement which, if exceeded, leads to a machine that is uncorrectable - with an unacceptable loss of luminosity

Introduction

Survey, Mechatronics and Measurements

[^0]
Survey mandate :

- Geodetic aspects
- Dimensional metrology of accelerator and of detector components
- Positioning and alignment on beam lines
- Quality controls (infrastructure, installations, components)
- The R\&D related to these tasks

Outline

- Introduction to geodesy
- Steps of alignment

Study cases

- Instrumentation toolkit

Study cases

- Instrumentation toolkit Study cases
- Application to colliders: LHC, HL-LHC, CLIC and FCC
- Alignment R\&D

Introduction to geodesy

- Definition of datums
- Geoid and deflection of vertical
- Geodetic infrastructure
- Impact

Geodesy: definition (1)

Geodesy is the science of accurately measuring and understanding three fundamental properties of the Earth: its geometric shape, its orientation in space, and its gravity field- as well as the changes of these properties with time.

Why is it so important to take it into account?

- To align components of a collider, along a plane or a straight line, we need to know the shape of the Earth very accurately
- A large part of instrumentation is set-up to perform measurements w.r.t to gravity
- We need to define the relative position of all area on surface and underground: sites, buildings, tunnels, accelerators, experiments

Geodesy: definition (2)

A geodetic datum (or geodetic reference datum or geodetic reference system) is a coordinate system and a set of points, used for locating points on the Earth. Datum may be global, meaning that they represent the whole Earth or local (they represent an ellipsoid best fit to only a portion of Earth). There are hundreds of reference datums.

In such a geodetic system, a point is localized by its Cartesian coordinates (X, Y, Z). But such a geodetic system relies on an ellipsoid, where its geodetic coordinates are its latitude, longitude and height.

Geodesy: definition (3)

Global Geodetic system

GPS uses the World Geodetic System WGS84 to determine the location of a point on the Earth surface

Local Datum in Europe

Positioned for a particular application: continents, countries: ED50, MN95, etc.

Since reference datums can have different radii and different center points, a specific point on the Earth can have substantially different coordinates depending on the datum used to make the measurement: «datum shift», from zero to hundreds of meters.

Geodesy: definition (4)

CERN Datum

- CERN Geodetic Reference System (CGRF),
- CERN Coordinate System (CCS)
- CGRF is a reference surface depending on the accuracy requested and the size of the project

CGRF datum:
= plane for PS ($\varnothing=200 \mathrm{~m}$)
= sphere for SPS ($\varnothing=2.2 \mathrm{~km}$)
= ellipsoid for LHC ($\varnothing=8.6 \mathrm{~km}$) (horizontal)
= geoid for LHC (vertical)

3D view of the geoid (radial variations exagerated)

Geodesy: CERN reference systems

The geoid is a natural surface. The geoid is the gravity equipotential surface representing mean sea level, that is everywhere normal to the gravity vector (plumb line).
The geoid is irregular due to local mass anomalies (mountains, valleys or rock of various density)

Geodesy: deflection of vertical

The deflection of vertical is the angle of divergence between the gravity vector (normal to the geoid and the normal to the ellipsoid

Maximum deviation of vertical: $15^{\prime \prime}$ relative to the ellipsoid of CERN system

Computation of the equipotential surfaces at any altitude with a $10 \times 10 \mathrm{~km}$ grid, expressed in the local origin of CERN system combined with astro-geodetic measurements using the zenithal camera of ETH Zurich

[Jones]

Zenithal camera

Geodesy: deflection of vertical

Astro-gravimetric Equipotential Determination

Zenithal camera

SOURCES	ERROR [arcsec]		
	random	systematic	model
Astrometry			
Star Catalog (Tycho 2)	$0.01-0.1$	<0.01	UCAC3
Timing (GPS + Shutter)	<0.01	-	-
Scintillation	$0.1-1.0$	-	-
Anomalous Refraction	-	$0.01-0.3$	Ray Tracing ?
Tilt			
Instrumentation Noise	<0.05	-	-
Celestial Calibration	-	<0.03	
Ellipsoidal Coordinates			
Differential GNSS	$\ll 0.01$	-	

Astro-gravimetric equipotential determination: error sources

Determination of the vertical deflection

Units

Maximum deviation of vertical = 15"

- Express it degrees, radian, gon, cc.

Units

Maximum deviation of vertical = 15"

- Express it degrees, radian, gon, cc.

Second of arc $\left({ }^{(\prime)}\right)$	Minute of arc $\left({ }^{\prime}\right)$	Degree $\left({ }^{\circ}\right)$	Radian (rad)	Gon (gr)	Centi centigrad (cc)
$15^{\prime \prime}$	0.25	0.0042	0.000073	0.00463	46.3

Units in survey \& alignment:

- $1^{\prime \prime}$ (second of arc) $=1^{\circ} / 3600$
- $1^{\circ}=\pi / 180 \mathrm{rad}$
- 1 gon $=\pi / 200 \mathrm{rad}=1$ gradian
- Subdivision of gradian : c (centigrad) and cc (centi-centigrad)
- $1 \mathrm{cc}=1$ dmgon $=10^{-4}$ gon

Study case

What is the impact of curvature of the Earth on:

- A linac of 20 m
- A linac of 100 m
- A synchrotron ($\varnothing=200 \mathrm{~m}$)

Geodesy: impact

- Accelerators built in a tangential plane (slightly tilted to accommodate geological deformations)
- All points around an untilted circular machine lie at the same height.
- Linear machines cut right through the equipotential iso-lines:
- Center of a 30 km linear accelerator is 17 m below the end points

Curvature correction, plane to sphere or spheroid.

Distance $[\mathrm{m}]$	Sphere $\mathrm{H}_{\mathrm{S}}[\mathrm{m}]$	Spheroid $\mathrm{H}_{\mathrm{E}}[\mathrm{m}]$
20	0.00003	0.00003
50	0.00020	0.00016
100	0.00078	0.00063
1000	0.07846	0.06257
10000	7.84620	6.25749
25000	49.03878	39.10929

- One solution to accommodate

Effect of earth curvature on linear and circular accelerators

Three plane lay-out

Curvature correction.
[Ruland2]

Steps of alignment

Definition of alignment tolerances

Definition of alignment strategy
Installation and determination of surface geodetic network
Transfer of reference in the tunnel
Installation and determination of an underground geodetic network

Fiducialisation of the components
Definition of their theoretical trajectory

Definition of alignment tolerances

Alignment error table for the dipoles

Definition of alignment strategy

Geodetic surface reference network

- Physical realization of points in an underlying reference system (CGRF/CCS)
- Absolute reference for all subsequent geodetic and survey work
- Civil engineering
- Infrastructure
- Alignment

GNSS station

Geodetic pillar

- Networks with different orders of precision
- Mixture of permanent GNSS stations and geodetic pillars

Distance measurements between geodetic pillars using terrameter
GNSS measurements on a Geodetic pillar

What was achieved for HL-LHC

- Objectives: provide to Civil Engineering companies datum and associated accurate and precise reference points from the surface reference network.
- 15 pillars selected from the primary network, spread over the whole surface of LHC.
- Points determined from Global Navigation Satellite System (GNSS) observations, in order to get a precision and accuracy below 2 mm in planimetry and below 5 mm in altimetry. All points measured simultaneously twice, stationed during 48 h each time with individually calibrated geodetic antennas.

Transfer of geodetic network

Transfer of geodetic network

Nadir \& zenith plummet

Blades weight in an oil bath

Pit $\emptyset 1,5 \mathrm{~m}$

Nadiral telescope $\square \square$

Underground geodetic network

The underground networks consist of dense networks of monuments, preferably in the floor or on the walls. Several means are proposed for their determination: total station, direct levelling, gyrotheodolite measurements, in order to reach:

- an absolute accuracy of 3-4 mm along 3 km
- a relative accuracy in planimetry between 3 consecutive monuments of 0.3 mm r.m.s. by adding wire offset measurements and in altitude between 3 consecutive monuments of 0.1 mm .

Underground geodetic network

Deep levelling references will be distributed in the tunnels. These vertical references in invar will be sealed on stable rocks, with at their extremity a mechanical interface located just below the level of the floor, and totally independent from it. Levelling measurements will be linked to these deep levelling references considered as stable along time.

Deep reference concept

Underground geodetic network

As tunnel networks are usually long \& narrow, simulations allow to compute and prepare the best configuration

UH TUNNEL SECTION
LOOKING EAST

[Lecoq]

The objects to align

Each component/object to be aligned is equipped with at least two reference alignment targets and a reference for the control of the roll angle. These reference targets are called fiducials.

R
Coordinate system associated with a component: 2 fiducials +1 roll surface

R
Coordinate system associated with a component: 3 fiducials

They should be located on top of the jacks to ease the adjustment, in order to minimize level arm effects.

Definition of the theoretical trajectory

To align the objects, we need their theoretical trajectory, defined by physicists, using the MAD-X software [general-purpose tool for charged particle optics design and studies in accelerators and beam lines]:

- First in a horizontal local coordinates system x, y, z
- Then in the CCS system

Local coordinate system associated with a component

Fiducialisation

Fiducialisation is the determination of the reference axis of the component w.r.t. its external alignment targets (fiducials) accessible to survey measurements.

3 types of measurements according to the accuracy needed:

- Mechanical measurements using a gauge (typically for warm magnets)
- Laser tracker measurements when the requirements are of the order of 0.1 mm rms
- CMM measurements, for smaller components and requirements of the order of micrometers.

Fiducialisation

LHC dipole cross section

Measuring mole

LHC dipole measurements

The geometric axis is defined as the best fit of a series of points located in the center of each cold bore tube (with an auto-centering device going through it) and measured from both extremities

Alignment tolerances

Beam simulations provide the parameters of components and position tolerances (maximum permissible displacements in the direction of the 3 coordinates and roll) Absolute positioning tolerance: max. shape distortion by specifying how close is a component from its theoretical position
Relative positioning tolerance: alignment quality of adjacent components.

[Schwarz]

Alignment tolerances

Accelerator $/$ collider	Epoch	Radius $/$ circumference	Vertical (mm) $@ 10$	Radial (mm) $@ 10$
PS ring	50 's	$100 \mathrm{~m} / 650 \mathrm{~m}$	± 0.3	± 0.6
SPS	70 's	$1 \mathrm{~km} / 6 \mathrm{~km}$	± 0.2	
LEP (e+e-)	80 's	$5 \mathrm{~km} / 27 \mathrm{~km}$	$\pm 0.2-0.3$	
LHC (hh)	90 's	$5 \mathrm{~km} / 27 \mathrm{~km}$	± 0.15	

Ground motion

Example 1: vertical displacements along the LEP tunnel

- LEP tunnel is not in an horizontal plane: levelling measurements are corrected to be considered as a vertical offset w.r.t. LEP plane
- Some components were realigned from one year to another. What has been taken into account is not only the vertical offset, but also the vertical displacements performed on the jacks.

LEP levelling between 1992 and 1998

Ground motion

Groud motion around PT5 from 2006

Cumulative distance (m)

Example 2: zoom of the vertical displacement of the tunnel floor around point 1 and point 5 of the LHC (~300m from both sides of IP) between 2006 and 2018

New technical galleries
dug during LS1

Absolute alignment

Sequence of tasks:

- Marking on the floor: consists of marking the vertical projection of the geometrical mean of the beam line, the position of the elements, the interconnection points and the vertical projection of the head of jacks on the floor. Accuracy $\sim \pm 2 \mathrm{~mm}$
- Positioning of the jacks: the stroke of jacks compensates the errors of the floor, the errors in their positioning, cryostat construction errors and ground motion during the life of the accelerator. The jacks are positioned within $\pm 2 \mathrm{~mm}$. Then,
 the jacks are sealed on the floor and their position is checked again.

Absolute alignment

Sequence of tasks:

- First positioning: it takes place once the components are installed on their jacks. Each component is aligned independently with respect to the underground geodetic network. A component is considered aligned once its fiducials have reached their theoretical position.
- At the same time, a small local smoothing from magnet to magnet is carried out to decrease the influence of the small relative errors between the points of the geodetic network.

Relative alignment

Smoothing: the process can only start once the magnets are connected, under vacuum and are cold down, so that all the mechanical forces are taken into account. The objective is to obtain a relative radial and vertical accuracy of 0.15 mm over a distance of 150 m.
The smoothing initially corrects both residual errors in the first positioning and ground motion.

Relative alignment: smoothing

LSS2 : vertical smoothing

LSS2 : radial smoothing

Measurements of the Long Straight Section (LSS2) components of the LHC in 2013, 4 years after their final realignment, in vertical and in radial.

The instabilities are located in the area at the junction between the transfer tunnel TI2 and the LHC

Once we have:

- A coordinate reference system,
- The theoretical alignment position of the fiducials in the system
- Components equipped with the fiducials

We need the instrumentation \& devices to determine the position of components and adjust them in the tunnels...

Our tool kit

Software \& database

Optical \& digital levels

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Levels
- Laser tracker
- Total station
- AT40x
- Photogrammetry
- Alignment systems
- Adjustment

Levels

Height measurements between B and A using levels

Digital level and barcode rod

Leica NA2 \& NA2K levels

- Art. No. Leica NA2 automatic level:

Art. No. Leica NAK2 360 automatic level:
352036
352038
35203 352038
352039

- Art. No. Leica NAK2 400 automatic level:

Technical Data
Technical Data 1 km double-run
Standard deviation for 1 km double-run
levelling, depending on type of staff and on
procedure
With parallel
Telescope

Telescope
Standard eyepiece

FOK73 eyepiece loptionall
FOK117 (optional)
Clear objective apertu
Field of view at 100 m

Laser tracker

- Measure 3D coordinates by tracking a laser beam to a retro-reflective target

- Combination of two techniques:
- A distance meter to measure absolute distance (laser interferometer or Absolute Distance Meter)
- Angular encoders to measure the laser tracker's two mechanical axes

```
Accuracy* }\mp@subsup{}{}{*
    All accuracies are specified as maximum permissible errors (MPE) and calculated per
    ASME B89.4.19-2006 & draft ISO10360-10 using precision Leica 1.5" Red Ring Reflectors up to }60\textrm{m}\mathrm{ distance unless
    otherwise noted
    +/-0.5 \mu\textrm{m}/\textrm{m}
    +/-10 \mum
```


Distance accuracy AIFM
Dynamic lock on

```
+/-15 \mu\textrm{m}+6\mu\textrm{m}/\textrm{m}
```

```
+/-15 \mu\textrm{m}+6\mu\textrm{m}/\textrm{m}
```


Total station

Total station: angle measurements

Total station: point measurement

Different types of total stations

A total station in the LHC
Common Specifications for TDM/TDA5005 and TM5100A
Angular measurement
Standard deviation
per ISO17123-3, $1 \sigma^{\text {1) }}$
Units of measurement
$0.5^{\prime \prime}$ (0.15 mgon)

Display
(smallest selectable unit)

Specifications TDM/TDA5005

Point accuracy (total RMS $\approx 1 \sigma)^{2}{ }^{2}$
at $20 \mathrm{~m}(65 \mathrm{ft})$ measuring volume
$\leq 0.3 \mathrm{~mm}\left(0.012^{\prime \prime}\right)$

Distance measurement
Standard deviation (absolute)
per ISO17123-4, 1σ
at $120 \mathrm{~m}(365 \mathrm{ft})$ measuring volume ${ }^{3}$
$1 \mathrm{~mm}+2 \mathrm{ppm}\left(0.04^{\prime \prime}+2 \mathrm{ppm}\right)$ over the entire measurement range
$\pm 0.5 \mathrm{~mm}\left(0.02^{\prime \prime}\right)$
$\pm 0.2 \mathrm{~mm}\left(0.008^{\prime \prime}\right)$
$\pm \mathrm{m}, \mathrm{mm}$, feet, inch
0-5 decimal places, dependent on the selected unit

Units of measurement
Display
(smallest selectable unit)

LEICA AT40x

- Between a total station \& laser tracker - Mekometer distance meter (0.02 mm)
- Horizontal \& vertical encoders of TDA5000(1,5 dmgr)
- Measurement up to 160 m

AT40x in the LHC

```
Absolute Distance Performance*
Resolution: 0.1 \mum
Accuracy:+/- 10 \mum (+/- 0.00039")
Repeatability: +/- 5 \mum (+/- 0.0002")
```

```
Absolute Angular Performance*
Resolution: 0.07 arc seconds
Accuracy:+/- 15 \mum + 6 \mum/m
(+/- 0.0006" + 0.000072"/ft)
Repeatability: +/- 7.5 \mum}+3\mu\textrm{m}/\textrm{m
(+/-0.0003" + 0.000036"/ft)
```


$\mathrm{U}_{\mathrm{xyz}}$ Coordinate Uncertainty*

The measurement uncertainty of a coordinate " $U_{x y z}$ " is defined as the deviation between a measured coordinate and the nominal coordinate of that point. This measurement uncertainty is specified as a function of the distance between the laser tracker and the measured point.

Reflector:

$+/-15 \mu \mathrm{~m}+6 \mu \mathrm{~m} / \mathrm{m}(+/-0.0006$ " +0.000072 "/ft)

[^1]
A 3D portable CMM

	B89.4.22			ISO 10360-2		
Model	Measuring range	Point repeatability	Volumetric accuracy	MPEp	MPEe	Arm weight
7312	$1.2 \mathrm{~m} / 3.9 \mathrm{ft}$.	$0.014 \mathrm{~mm} / 0.0006 \mathrm{in}$.	$\pm 0.025 \mathrm{~mm} / 0.0010 \mathrm{in}$.	$8 \mu \mathrm{~m}$	$5+\mathrm{L} / 40 \leq 18 \mu \mathrm{~m}$	$10.2 \mathrm{~kg} / 22.5 \mathrm{lbs}$
7512	$1.2 \mathrm{~m} / 3.9 \mathrm{ft}$.	$0.010 \mathrm{~mm} / 0.0004 \mathrm{in}$.	$\pm 0.020 \mathrm{~mm} / 0.0008 \mathrm{in}$.	$6 \mu \mathrm{~m}$	$5+\mathrm{L} / 65 \leq 15 \mu \mathrm{~m}$	$10.8 \mathrm{~kg} / 23.8 \mathrm{lbs}$

Photogrammetry

Photogrammetry $=$ science of making measurements from photographs. Fundamental principle = triangulation. By taking photographs from at least 2 different locations, lines of sight can be developed from each camera to points on the object.

Advantages of photogrammetry

- Image acquisition needs no stable station
- Flexible use following object size
- Components < 1 m (1 sigma < $50 \mu \mathrm{~m}$)
- Components up to $15-25 \mathrm{~m}$ (1 sigma $<0.5 \mathrm{~mm}$)
- Mobile System
- Off-site interventions in factories
- Various assembly halls and experimental caverns

Concept of photogrammetry

- Limited measurement time for large amount of points
- Short interruption for installation, production process

Photogrammetry

Digital photogrammetry since 1997 at CERN

- Fully automated processing
- Underexposed, convergent images
- High redundancy, reliability
- Blunder detection at measurement and adjustment level

Reference points signalised by targets (increased precision)

- CERN Reference Hole 8 mm H7

Used in combination with other systems

- scale, link to accelerator geometry

Used in all LHC experiments and others

Reference point

Targets

Photogrammetry: applications

CMS Tracker Barrel

Photogrammetric measurements on the CMS tracker barrel

Max. difference to best-fit cylinder

- +1.49 mm
- -0.95 mm
- Deformation max. 0.38 mm
- Comparison on identical points

Photogrammetry: applications

Atlas Tile Barrel

Deformations to theoretical data on the ATLAS tile barrel

- Control of assembly of 64 modules, 9 m diameter (~ 1800 tons)
- Differences/deformations to theoretical data (+-8 mm)
- Image acquisition from scaffolding (distance < 2.0 m)
- 350 photos each side, precision 0.2 mm (1 sigma)

Software and Database Applications

Data processing\& analysis

- Local 3-D adjustment on the ellipsoid GRS80;
- Altitudes are referred to the known local geoid and are converted into ellipsoidal height;
- Generalized least-squares processing of all types of available data
- All angular measurements, observed relative to the local horizon, are re-expressed in the CCS through an appropriate rotation matrix;
- Direct levelling data is processed as vertical distances
- Statistical and variance analysis of the results;
- Generation of random and/or systematic perturbations for simulations;
- Preparation of files for weighted Helmert transforms;

Survey database

- Principal Client
- Survey Team
- Other Clients
- Operators, Layout, Integration, GIS

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Specific alignment systems
- Wire offsets
- BCAM
- Hydrostatic Levelling System (HLS) \& applications
- Wire Positioning System (WPS) \& applications
- Drawbacks of WPS \& HLS
- Laser based alignment systems
- Adjustment

Wire offset measurements

Measurement of the shortest distance between a point and line [AB]

Manual device
Accuracy 0.07 mm

Automatic device
Accuracy 0.1 mm

How to use a stretched wire in a circular collider?

- Wire length: 120 m
- Overlapping area to get redundancy
- Precision independent from the length of the wire
- Wire must be protected from air currents.
- Speed of measurements > $400 \mathrm{~m} /$ day, 80 points / day.

Wire offset measurement

Wire measurements configuration in the LHC

Wire offset measurement

BCAM : Brandeis Camera Angle Monitor

Based on image acquisition of reflective targets

BCAM
[Gayde]
BCAM:
\checkmark Viewing window $=30 \times 40 \mathrm{mrad}$;
\checkmark Precision $=5 \mu \mathrm{rad}$;
\checkmark Non-magnetic;
\checkmark Accept a total of 400 Gray.

Monitoring

- To gain time
- Improve accuracy
- No access needed

Requirements:

BCAM implantation in ATLAS detector

- Cover 6 DOF per moving detector
- Cycle < 30 sec.
- Resist to 1 Tesla magnetic field
- Radiation dose of 2 Gy for lifetime

System is based on:

28 BCAMs on feet/rails system

- 44 passive targets (prisms)

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Specific alignment systems
- Wire offsets
- BCAM
- Hydrostatic Levelling System (HLS) \& applications
- Wire Positioning System (WPS) \& applications
- Drawbacks of WPS \& HLS
- Laser based alignment systems
- Adjustment

Hydrostatic Levelling System (HLS)

Communicating vessels

Difference of height measurement

Hydrostatic Levelling Sensor (capacitive-based)

Based on communicating vessels
Water network = reference surface
1 sensor is installed on top of each vessel to measure the distance to the water surface contactless

$$
C=\frac{\varepsilon_{o} \varepsilon_{r} S}{d}
$$

Resolution: 0.2 mm
Measurement range: 5 mm
Repeatability: 1 mm
Bandwidth: 10 Hz

Hydrostatic Levelling Sensor (ultra sound)

HLS applications: ATLAS bedplates

HLS in ATLAS bedplates

«among» ATLAS bedplates ${ }_{65}$

HLS applications: ATLAS bedplates

HLS applications: ATLAS bedplates

HLS measurements during the installation of the ATLAS calorimeter from C to M position

HLS applications: ATLAS bedplates

HLS MEASUREMENT - BARREL TOROID COILS INSTALLATION

Installation of one BT coil (24 m long, 100 t)
effect on the Bedplates measured with the HLS

HLS applications: ATLAS bedplates

BEDPLATES HLS measurements [mean plane] (20.12.2004-01.01.2005)
ATLAS BEDPLATES -HLS measurements (26 Dec. 2004)

Earthquakes «seen» by HLS sensors at CERN in 2005

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Specific alignment systems
- Wire offsets
- BCAM
- Hydrostatic Levelling System (HLS) \& applications
- Wire Positioning System (WPS) \& applications
- Laser based alignment systems
- Adjustment

Wire positioning System (WPS)

Prototype (1990)

Version 2 in 2000

Version 1 in 1994

Version 2 CERN

Differential capacitive sensors

A capacitive measurement system converts a change in position, or properties of the dielectric material into an electrical signal (analog or digital).

WPS: associated wire

Carbon Kevlar

Carbon PEEK/PES

Zoom on carbon Kevlar wire

Carbon peek wire:

- Diameter: 0.4 mm
- Linear mass: $235 \mathrm{~g} / \mathrm{km}$
- Breaking tension: 230 N
- Conductivity $>0.025 \mathrm{~m} / \mathrm{\Omega} . \mathrm{mm} 2$

Other types of wires under study:

- Vectran (multifilament yarn spun from Liquid Crystal Polymer)
- Metallization of Vectran by silver plasma coating

WPS performances

Voltage: 0-10 V
Full Range : +/- 5 mm

WPS kinematic
supporting system

Zoom on «Absolute» calibration bench

WPS: impact of sag

Catenary of a wire

Determination of the wire sag using a superposition of HLS and WPS sensors

WPS: two configurations

"Relative" alignment (monitoring)

"Absolute" alignment (pre-alignment)

WPS \& HLS: alignment of LHC inner triplets

Sensors configuration on inner triplets
\square low beta triplet

WPS \& HLS: Alignment of LHC inner triplets

- LHC sensors readings under the spot line: used by OP to have a better understanding of the displacements observed on the beam
- Triplet 5R realigned with pilot beam on. First time in the world !!!

Alignment systems and gravity

Metrology networks must provide a straight alignment of accelerators linacs. Reference frames (wire and water surface) are influenced by gravity:
\checkmark Earth curvature, height, latitude
\checkmark Distribution of masses in the neighborhood

Maxi. deviation of the vertical: $15^{\prime \prime}$ at CERN
\checkmark Moon and sun attraction
Moon and sun act as disturbing masses, modifying the gravitational field Their impact on a given point vary according their position w.r.t the point.

Alignment systems and gravity

Impact on WPS system:
The non uniformity of gravitational field due to combined effects of latitude, height and deflection of vertical can deform the wire significantly (up to $15 \mu \mathrm{~m}$) but can be correctec (theoretical result that needs to be cross-checked experimentally).

Impact of HLS system:

HLS is affected by ocean and Earth tides but corrections can be applied [Boerez]
Effect of neighborhood masses must be taken into account

Geoid profile of 40 km

The uncertainty of the geoid determination must be strictly added to the uncertainty of vertical alignment. See [Guillaume].

Study case

What would you suggest as an alignment strategy for :

- Case 1:
- A linac of 10 m ,
- Six 1 m long RF cavities,
- Tolerance of alignment (1 σ) of their mechanical axis: 0.2 mm
- Case 2:
- A linac of 100 m ,
- 80 different components (quadrupoles, sextupoles, RF cavities),
- Tolerance of alignment (1б) of their reference axis: 0.2 mm

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Specific alignment systems
- Wire offsets
- Hydrostatic Levelling System (HLS) \& applications
- Wire Positioning System (WPS) \& applications
- Drawbacks of WPS \& HLS
- Laser based alignment systems
- Adjustment

Observing diffraction pattern of Fresnel zones plates (SLAC)

Fresnel Zone plates configuration (SLAC)
[Herrmannsfeldt]

Fresnel Zone plate (SLAC)

Observing diffraction pattern of an iris (Spring 8)

Iris diffraction pattern based alignment

Advantages	Drawbacks
Static targets	Measurement uncertainty depends on longitudinal position

Observing diffraction pattern of spheres (DESY)

«poisson» measurement concept (DESY)

Diffraction pattern of spheres (DESY)

Advantages	Drawbacks
Static targets	Limited number of targets (~ 16)
	Measurement uncertainty depends on longitudinal position

[Prenting]

Observing diffraction pattern of a plate (NIKHEF)

[Van der Graaf]

Optical Alignment System from NIKHEF concept

Advantages	Drawbacks
Static plate	Only 1 target

Observing laser spot with open / close QPD's (KEK)

QPD: quadrant photo-detectors

[Suwada]

 QPD picture (KEK)| Advantages | Drawbacks |
| :--- | :--- |
| Large number of photo-detectors | Uncertainty due to open/close photo-
 detectors |

Laser based system

LAMBDA project: principle

- Compact \& compatible with its environment
- Measurement repeatability $1 \mu \mathrm{~m}$, accuracy $5 \mu \mathrm{~m}$

[Stern]

Comparison of several laser based alignment systems

		Requested accuracy	Already achieved
Observing diffraction pattern	...of Fresnel zone plates (SLAC)	$500 \mu \mathrm{~m}(1 \sigma)$ over 3000 m	Estimated accuracy: $500 \mu \mathrm{~m}$ (1б) over 3000 m
	...of an iris (SPRING 8)	$10 \mu \mathrm{~m}(2 \sigma)$ over 10 m	Pointing stability: $10 \mu \mathrm{~m}$ (2б) over 10 m
	...of spheres (DESY)	$300 \mu \mathrm{~m}(1 \sigma)$ over 150 m	Estimated achievable accuracy: 100/200 $\mu \mathrm{m}$ (1б) over 150 m
	... of diffraction plate (NIKHEF)	$10 \mu \mathrm{~m}$ (1б) over 200 m	Estimated achievable accuracy: $1 \mu \mathrm{~m}$ (1б) over 140 m
Observing laser spot	...with open/close quadrant photo-detectors (KEK)	$100 \mu \mathrm{~m}(1 \sigma)$ over 500 m	Pointing stability: $40 \mu \mathrm{~m}$ Estimated accuracy: $100 \mu \mathrm{~m}$ (1б) over 500 m
	... with open/close shutters (CERN)	$10 \mu \mathrm{~m}(1 \sigma)$ over 200 m	Pointing stability: $5 \mu \mathrm{~m}$ (1б) over 35 m

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Specific alignment systems
- Wire offsets
- Hydrostatic Levelling System (HLS) \& applications
- Wire Positioning System (WPS) \& applications
- Drawbacks of WPS \& HLS
- Laser based alignment systems
- Adjustment

Standard means of adjustment

Wedge jack adjuster as used in APS.
The upper wedge is pushed up or down by displacing horizontally the lower wedge.
[Ruland2]

- Horizontal plane adjusted by the height of 3 vertical rods
- One or two sliding plates to adjust the horizontal
- Adjustment: pull/push the top plate sliding on

Push-push screw arrangement. the plate below.

Standard means of adjustment

Magnet positioning mount with roller cams.

Struts

 1 (Z) Lateral Struts

Kinematic suspension

ALS 20-ton machine screw jack strut.
ALS 5-ton machine screw jack strut.
Struts are length-adjustable rigid members with spherical joints at each end.
[Ruland2]

Standard means of adjustment

Polyurethane jack

«Indian» LHC jack

Motorized jacks

Different cases:

- Remote alignment in severe environment
- Active pre-alignment

LHC motorized jacks

"Short" magnets: Q1. Q3
"Long" magnets : Q2

Jack configuration in the LHC

Polurethane pastille

LHC motorized jack

Motorization concept of the LHC jack

Cam movers

Cam movers concept

(Base View)

2 m long girder for the qualification of cam movers at CERN

Cam configuration for 5 DOF displacements [Kemppinen]

Case of the LHC

Tunnel empty

Determination of underground geodetic network

Marking on the floor

Positioning of jacks

Initial vertical alignment

Initial longitudinal alignment

Initial longitudinal alignment

Vertical smoothing

Radial smoothing

Current challenges on HL-LHC

- Internal monitoring of cold masses
- Full Remote Alignment

HL-LHC: introduction

HL-LHC: introduction

\checkmark New IR-quads Nb3Sn (inner triplets)
\checkmark New 11 T Nb3Sn (short) dipoles
\checkmark Collimation upgrade
\checkmark Cryogenics upgrade
\checkmark Crab Cavities
\checkmark Cold powering
\checkmark Machine protection
\checkmark...

2 new challenges on survey \& alignment:
\checkmark Internal monitoring
\checkmark Full Remote Alignment System

HL-LHC: internal monitoring system

- From the LHC experience: we know at the micron level the position of the cryostat, but not what happens inside \rightarrow difficult to correlate with beam.
- Displacements up to $\pm 0.5 \mathrm{~mm}(3 \sigma)$ seen on the LHC dipoles after transport
- Strong interest from BE/ABP to know more accurately than in the LHC the longitudinal position of the cold mass

HL-LHC quadrupole cross-section

- Decision to include in the baseline the internal monitoring of the inner triplet cold masses using laser interferometer (less «invasive» solution)
- Validation of the commercial solution based on Frequency Scanning Interferometry (FSI), providing absolute distance measurements

FSI measurement concept

- Δ Phase (meas.) $=\frac{2 \pi}{c} * L_{M} * \Delta v$
- Δ Phase (ref.) $=\frac{2 \pi}{c} * L_{R} * \Delta v$

$$
\frac{\Delta \text { Phase (meas.) }}{\Delta \text { Phase (ref.) }}=\frac{L_{M}}{L_{R}}
$$

The distance measurement is deduced from the ratio between the phase change induced in an interferometer reference and an interferometer measurement by frequency scanning

FSI measurement

HL-LHC: internal monitoring system

Validation on independent benches
Performance of one line FSI \& study of an alternative

- Irradiation tests
- Thermal tests
- Precision, accuracy,...
$\left.\rightarrow \begin{array}{l}\text { Validation on Crab } \\ \text { cavities in SM18 \& SPS } \\ \text { Performance target at } \\ \text { warm, vacuum, cold, } \\ \text { and cross-comparison } \\ \text { with other systems }\end{array}\right]$

> Validation on a test magnet (Dipole)
> Validation of performance
> - Accuracy and precision
> - Long term stability
> - Cryo-condensation issues

HL-LHC inner triplet

[Mainaud Durand2]

HL-LHC: internal monitoring system

FSI measurement configuration in crab cavity cryostat

Feedthrough
CCR

HL-LHC: internal monitoring system

Crab cavity prototype installed in SPS

FSI measurements in the SPS prototype

- Successful cross-comparison with other systems at warm, at cold, under vacuum
- Accuracy of the absolute position of crab cavities using FSI : $\pm 0.05 \mathrm{~mm}$
- Relative position: a few micrometers

HL-LHC: internal monitoring system

Installation steps of the FSI target
[Mainaud Durand3]

Hollow prism

Ball Retro Reflector

HL-LHC: internal monitoring system

HL-LHC: internal monitoring system

α - is a sweep rate of the laser ($\alpha=\frac{d v}{d t}$ - laser frequency change in time);
c - speed of light; n - refractive index of light transmission medium;
τ - time of flight of laser to the target

HL-LHC: internal monitoring system

- Very robust measurement method - almost insensitive to the light intensity (high and very small power reflections visible over the noise background
- Possible to use low cost glass balls as a reflectors
- Possible to measure multiple targets within single laser scan
- Beam delivery optics can be very simple
- Possible to use with the collimated and divergent beams
- Simple and scalable Optics

New reflector in its isolated support

HL-LHC: internal monitoring system

Coordinates determination using FSI distance
measurements

HL-LHC: internal monitoring system

in section

FSI measurement concept

Coordinates after 3 thermal cycles
Accuracy of section determination

Direction	Accuracy (mm)
$\mathbf{X}:$ Radial [mm]	0.060
Y : Longitudinal [mm]	0.085
Z : Vertical [mm]	0.030

HL-LHC: Full Remote Alignment System

The Full Remote Alignment System (FRAS) will allow aligning rigidly (as a block, simultaneously) and remotely from the CERN Control Centre, all the components from Q1 to Q5 on both sides of the IP within \pm 2.5 mm .

It will allow:

- An important reduction of the dose taken by surveyors
- A reduction in the mechanical misalignment, allowing to decrease the required correctors strength
- A gain in aperture for several components through the reduction of tolerances.

- The initial alignment of the new components in the tunnel w.r.t. the underground geodetic network.
- The smoothing of the new components along an "ideal" line from Q7 Left - Inner tracker detector Q7 Right to make the first pilot beam pass through.
- After a few weeks of operation, as soon as enough luminosity will have been accumulated to check the real position of the IP, a rigid remote re-alignment of all components from Q5 Left to Q5 Right will be carried out according to the offsets seen in the inner tracker.
- During the first YETS of Run 4, all the motors will be recentered to benefit from the maximum stroke (if needed after the first months of operation), while the level of radiations is still low.
- The compensation of ground motion all along the following years, when needed, will be performed preferably during TS, as a machine requalification is required after each movement. Small machine movements (within a few tenths of a millimetre) could be allowed without requalification during the operation of a pilot beam.

HL-LHC: Full Remote Alignment System

Components in red and in green, compatible with a remote alignment (enough aperture and flexibility of bellows)

HL-LHC: Full Remote Alignment System

Solution proposed for the position determination

1. Measure the position of components using Laser tracker and permanent targets

Glass sphere

\checkmark Only at the end of YETS and LS \checkmark In the tunnel
2. Measure the position using permanent sensors installed on the cryostat

\checkmark Continuous and remote measurements
\checkmark From the CCC

HL-LHC: Full Remote Alignment System

Solution proposed for the adjustment solution

1. For components with a weight above 2 t : jacks, with motorization when needed

2. For components with a weight below 2 t : platforms, with motorization when needed

Adjustment possibilities using a platform

Full Remote Alignment System

«Standardized» adjustment platform

CLIC adjustment: space constrain

CLEAR components

Why a 5 DOF adjustment platform?

- More than 40000 DB quadrupoles to be aligned 2 per 2 on a common support within a budget of error $<20 \mu \mathrm{~m}$
- First tests used shims for the adjustment: the alignment took more than 1 day per quadrupole!
- Decision to develop a specific platform, with all adjustment knobs on the same side, in a limited volume.

Requirements:

- Stroke: $\pm 1 \mathrm{~mm}$ in X and Y , rotations adjustment within $\pm 4 \mathrm{mrad}$
- Micrometric adjustment for X and Y translations, 20μ rad for angular adj.

Full Remote Alignment System

«Standardized» adjustment platform

Full Remote Alignment System

«Standardized» adjustment platform with plug-in motors

Full Remote Alignment System

«Standardized» adjustment platform

Universal adjustment solution - concept of use plug-in motors: a) Platform measurement from distance using a laser tracker;
b) Installation of plug-in motors in less than one minute;
c) Remote adjustment from distance.

Universal adjustment platform

- manual operation concept

Universal adjustment solution - permanent motors version concept

Full Remote Alignment System

«Standardized» adjustment platform

(1) Spherical joints
(2) Flexural joints: Nitinol joints and flexible shaft

(1) (2)

R\&D in survey \& alignment:

Case of CLIC project
Case of FCC project Other developments

CLIC: introduction

- CLIC= Compact LInear Collider

- Project Implementation Plan under preparation for consideration by the European Strategy Update Process in 2020.

Footprint of the CLIC

CLIC: introduction

Beam off

Mechanical pre-alignment $\sim 0.2-0.3 \mathrm{~mm}$ over 200 m

Active pre-alignment $14-17 \mu \mathrm{~m}$ over 200 m
Beam on

Beam based Alignment \& Beam based feedbacks

CLIC: introduction

- Considering the number of components to be aligned, ground motion, such tight tolerances can not be obtained by a static on-time alignment system.
- Active pre-alignment: we associate movers and sensors to the components to maintain them in place.

Total budget error allocated to the associate positioning of the reference axes of the major accelerator components can be represented by points inside a cylinder over a sliding window of 200m.

Along BDS:

Radius equals to $10 \mu \mathrm{~m}$ over sliding windows of 500 m

Along Main Linac: over sliding windows of 200 m

Component type	AS	BPM	MB Quad	DB quad
Radius $(\mu \mathrm{m})$	14	14	17	20

CLIC: introduction

Components to be aligned:

Strategy:

2 steps:

- Fiducialisation \& initial alignment of the components and their support
- Transfer in tunnel and alignment in tunnel

Fiducialisation:

CLIC: alignment strategy

Initial alignment:

[Mainaud Durand5]

PACMAN project

PACMAN NETWORK
CERN, CH
Cranfield University, UK
Delft University of Technology, NL
ETH Zürich, CH
IFIC,ES
LAPP, FR
University of Sannio, IT
SYMME, FR
University of Pisa, IT
DMP, ES
ELTOS, IT
ETALON, DE
Hexagon Metrology, DE
METROLAB, CH
National Instruments, HU
SIGMAPHI, FR
TNO, NL
PACMAN = a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale
It is an Innovative Doctoral Program, hosted by CERN, providing training to 10 Early Stage Researchers.

PACMAN: a few interesting results

Even if your BPM and quadrupole quadrants were manufactured at a micrometric accuracy, the electric / magnetic axes are not so close from the mechanical axes.

TABLE V. Mechanical, magnetic, and electric axes center offset.

	X $[\mu \mathrm{m}]$	Y $[\mu \mathrm{m}]$	Uncertainty $[\mu \mathrm{m}]$
MBQ (magnetic vs mechanical)	-21.6	40.9	± 10
BPM (electric vs mechanical)	17.3	40.6	± 4
BPM/MBQ (electric vs magnetic)	-2.3	-7.5	± 1.2

TABLE III. Offset between the mechanical axis and the magnetic axis at 126 A .

Horiz. center	Vert. center	Yaw	Pitch
$32.2 \mu \mathrm{~m}$	$20.2 \mu \mathrm{~m}$	$-75.9 \mu \mathrm{rad}$	$-57.4 \mu \mathrm{rad}$

TABLE II. Offset between the magnetic axis at 4 and 126 A .

Horiz. center	Vert. center	Yaw	Pitch
$2.9 \mu \mathrm{~m}$	$3.1 \mu \mathrm{~m}$	$-2.3 \mu \mathrm{rad}$	$-5.1 \mu \mathrm{rad}$

PACMAN: a few interesting results

Determination of the position of the stretched wire, w.r.t. external targets: 3 methods:

- Coordinate Measuring Machine measurements (+wire measured using confocal sensor plugged on the CMM head): uncertainty $\sim 2 \mu \mathrm{~m}$
- Frequency Scanning Interferometry (absolute distance measurements)
- Micro-triangulation (angle measurements)

FSI demonstrated a very high accuracy: difference between FSI \& CMM measurement on coordinates $<2.5 \mu \mathrm{~m}$. Portable \& self calibrating

Micro-triangulation: after comparison with CMM measurements, 85% of the measured coordinates $<15 \mu \mathrm{~m}, 75 \%<10 \mu \mathrm{~m}, 42 \%<5 \mu \mathrm{~m}$, in a not optimal configuration.

- All components individually fiducialised (PACMAN process using stretched wire)
- Alignment on a common support using plug-in system, knowing the position of the targets.

PACMAN: scenario 2

- All components installed roughly on a common support
- Installation of a stretched wire to align all the components reference axes at a theoretical position on the common support (PACMAN process +5 DOF adjustment system)
- Determination of the position of the alignment targets once all the components are at the theoretical position

PACMAN \& summary

CLIC: alignment strategy

Summary of the results achieved

Components type	AS, BPM (Mm)		MB quad (um)		DB quad (um)	
YEAR	2012	2018	2012	2018	2012	2018
Fiducialisation	5 (TBC)		10 (TBC)		10 (TBC)	
Fiducials to pre-alignment sensor interface	5	5	5	5	5	5
Pre-alignment sensor accuracy	5	5	5	5	5	5
Sensor linearity	5	5	5	5	5	5
Straight reference	10 (TBC)	7 (in radial, TBC in vert.)	10 (TBC)	7 (in radial, TBC in vert.)	10 (TBC)	7 (in radial, TBC in vert.)
Total error budget	14	11	17	11	20	11

BUT... Active pre-alignment strategy validated only at $20^{\circ} \mathrm{C}$, not at $30^{\circ} \mathrm{C}$!

CLIC: alignment strategy

Geodesy	Study of MRN	Study of SPN	Fiducialisation
Relative determination of vertical deflection	Modelisation of a wire using Eigenfrequencies	Study of low cost sensors and industrialization	PACMAN studies on AS structures
New methods for vertical deflection measurements in pits	Development of corresponding least squares algorithms	Development of low cost linear actuators and industrialization	Development of a FSI bench for in-situ fiducialisation
Impact of gravitational fields on wires	Sensors configuration optimization,	Impact of an operation at $30^{\circ} \mathrm{C}$ on alignment simulations over long systems	Development of low cost adjustment platforms and industrialization
	Development of a new wire	FSI R\&D on sensors	Improve adjustment solution for the BPM
on the quadrupole			

FCC alignment

Future Circular Collider (FCC)

FCC alignment

- Absolute tolerance
- As no real values obtained, we are going to do the best we can (few mm)
- Relative tolerance
* All errors included

Accelerator collider	Radius/ Circumference	Vertical (mm) @1.	Transversal (mm) @1.	Roll angle (mrad)
LEP(e+e-)	$5 \mathrm{~km} / 27 \mathrm{~km}$	$0.2-0.3$	$0.2-0.3$	0.1
LHC (hh)	$5 \mathrm{~km} / 27 \mathrm{~km}$	0.15	0.15	0.1
CLIC (e+e-)	$2 * 25 \mathrm{~km}$	17 microns radially*		
FCC-hh	$16 \mathrm{~km} / 100 \mathrm{~km}$	$0.2\left(0.5^{*}\right)$	$0.2\left(0.5^{*}\right)$	1.0
FCC-ee	$16 \mathrm{~km} / 100 \mathrm{~km}$	0.1^{*}	0.1^{*}	0.1
HE-LHC	$5 \mathrm{~km} / 27 \mathrm{~km}$	$0.2\left(0.5^{*}\right)$	$0.2\left(0.5^{*}\right)$	$0.1 ?$

FCC alignment

Geodetic Infrastructure \& Activities

FCC alignment

Other Constraints

- Significant tunnel / ground motion possible (>1 mm / year in LHC)
- Maintenance Access
- Beamline elements
- Position Monitoring and Alignment System

FCC alignment

Provisional Survey Working Parameters

(E Er Interpretations \& Assumptions! To Confirm!!

- Tunnel Alignment Precision Requirement
- Main Ring: ~30 $\mu \mathrm{m}$ @ 1б
- Booster Ring: ~50 $\mu \mathrm{m}$ @ 1 σ
- Quadrupoles and Sextupoles
- Assembled on a Single Girder
- Frequent position monitoring required
- Re-alignment/Smoothing at least 1 / year
- Main Beam arcs => ~12000 beamline modules
- Booster arcs => ~10000 beamline modules

Provisional Survey Working Parameters Interpretations \& Assumptions! To Confirm!!

- Limited time for Survey tunnel activities
- During both installation and operation
- Maintenance Access
- Cannot disturb any Survey

Tunnel Reference Infrastructure

- CDR Position Monitoring and Alignment Solution

- Based on design for CLIC
- Consequences for Accelerator Installation
- Consequences for Geodesy

> We have to develop a new generation of alignment sensors and actuators making the remote alignment of accelerators affordable.

Other R\&D

FSI-based HLS

Capacitive based WPS

Study case: ESRF

What is the alignment strategy for :

- A synchrotron ($\varnothing=270 \mathrm{~m}$), including:
- 129 girders
- 1000 magnets

All info from this (very interesting) presentation:

Alignment of the ESRF Extremely Brilliant Source (EBS) IWAA2018 Fermilab David Martin ESRF

Study case: ESRF

Study case: ESRF

```
FIDUCIALISATION UNCERTAINTY
```

Laser Tracker			
Wre position	13	17	22
Measurement	9	10	9
Repeatability	3	3	12
Magnet measurements		7	7
Magnetic Fiducialisation	13	22	27
Magnet Shim Determination			29
Total	13	22	40

This is just one of many contributions to the overall alignment uncertainty

Study case: ESRF

Study case: ESRF

MAGNETS ARE INSTALLED ON THE GIRDER AND ALIGNED

The magnets are installed on the girders and aligned to their nominal positions

THE MAGNETS ARE OPENED AND THE VACUUM STRING IS INSTALLED.

Study case: ESRF

Study case: ESRF

Study case: ESRF

estimated installed uncertainties

Final magnet alignment uncertainties
for the EBS machine are currently
estimated to be:

Recall required tolerances:

	$\mathbf{U x}$ $[\mathrm{um}]$	$\mathbf{U y}$ $[\mathrm{um}]$	$\mathbf{U z}$ $[\mathrm{um}]$
Fiducialisation	13	22	40
Girder Rectitude	38	8	8
Magnet Opening/Closing	8	5	7
Alignment on girder	126	29	31
Transport	20	20	20
Alignment in tunnel*	25	15	15
Measurement in tunnel**	26	55	30
Total	$\mathbf{1 3 9}$	$\mathbf{7 1}$	$\mathbf{6 4}$
* Estimated from existing networks **			

** These values will certainly evolve downward

Machine	$\mathbf{\Delta y}$ $[\mathbf{u m l}$	$\mathbf{\Delta z}$ $\lceil\mathbf{u m l}$	$\mathbf{\Delta x}$ $[\mathbf{u m l}$
Long. Varying field dipoles	>100	>100	1000
High gradient quadrupoles, Combined function dipoles	60	60	500
Medium gradient quads	100	85	500
Sextupoles	70	50	500
Octupoles	100	100	500

Conclusion

Do not forget Survey \& alignment in your project, you will gain:

- Time
- Accuracy
- Efficiency

Lines of sight in tunnel, geodetic networks on surface, pits, coordinate systems and geodetic reference frames, must be defined asap, even before the official green light of the project.

Tolerances of alignment of all the components have to be defined asap to establish a clear strategy of alignment and chose the most appropriate solutions and instrumentation.

Conclusion

For the next generation of colliders, we need to develop robust, performant and low cost alignment sensors, optimizing also associated cables.

We will need to automatize standard operation, due to the limited access in the tunnel, important number of components to be marked, pre-aligned, etc.

The Micron World, in which steel acts like butter and in which temperature excursions are like Gulliver's Travels, has been tamed and industrialized on the laboratory scale. I do not believe the problems that we are going to encounter in the design of future linear colliders on a kilometer scale will turn out to be fundamental. Rather, the challenge will be to be innovative enough to find sound engineering solutions that we can afford. Further, we should involve the alignment community in all aspects of the design decision making process at the earliest moment.

ALIGNMENT AND VIBRATION ISSUES
IN TeV LINEAR COLLIDER DESIGN
G. E. Fischer

Stanford Linear Accelerator Center
Stanford University, Stanford, CA

Bibliography:

[Bestmann] P. Bestmann et al., The LHC collimator survey train, IWAA 2010, DESY, Hamburg, Germany, 2010
[Boerez] J. Boerez, Analyse et modélisation de l'effet des marées sur les réseau de nivellement hydrostatiques du CERN, 2013, Université Louis Pasteur Strasbourg, Strasbourg.
[Caiazza] D. Caiazza et al., New solution for the high accuracy alignment of accelerator components, Phys. Accel. Beams 20 (2017) 083501.
[Charrondière] C. Charrondière et al., Remote control of heterogeneous sensors for 3D LHC collimator alignment, ICALEPS 2013, San Francisco, US, 2013, ISBN 978-3-9540-139-7
[CLIC Note] F. Becker et al., An active pre-alignment system and metrology network for CLIC, 2003, CERN, CLIC Note 553
[Deelen] N. Deelen, The alignment of CLIC: RASCLIC versus WPS, Msc Thesis, Utrecht university, 2016
[Fisher] G. Fischer, Alignment and vibration issues in TeV linear colider design, Proc. International Conference on High Energy Accelerators, Tsukuba, 1989, SLAC-PUB-5024
[Gayde] JC Gayde et al., Alignment and monitoring systems for accelerators and experiments based on BCAM - First results and benefits of systems developed for ATLAS, LHCb, and HIE-Isolde, IPAC2018, Vancouver, BC, Canada, ISBN: 978-3-95450-184-7

Bibliography:

[Gayde2] JC Gayde et al., The ATLAS detector positioning system (ADEPO) to control moving parts during ATLAS closure, IWAA 2016, Grenoble, France.
[Guillaume] S. Guillaume, Determination of a precise gravity field for the CLIC feasibility studies, PhD thesis, 2015, ETH Zürich
[Herrmannsfeldt] W.B. Herrmannsfeldt, M.J. Lee, J. J. Spranza, K. K. Trigger, Precision alignment using a system of large rectangular fresnel lenses, Applied Opt. 7, 995-1005 (1968)
[Hugon] P. Hugon, Etude des méthodes optiques et mécaniques pour le transfert du réseau géodésique en surface au réseau souterrain, Msc Thesis, 2011, CERN, edms n ${ }^{\circ} 1113075$
[Jones] M. Jones, Geodetic definition (datum parameters) of the CERN coordinate system, ESTSU Internal note, 1999
[Kemppinen] J. Kemppinen et al., Cam mover alignment system positioning with wire position sensor feedback for CLIC, MEDSI, Barcelona, Spain, 2016, CERN-ACC-2016-0339, CLIC Note No 1072
[LeCocq] C. Lecocq, Alignment plan for the LCLS undulator, IWAA 2006, SLAC, 2006
[Mainaud Durand] H. Mainaud Durand, D. Missiaen, Alignment challenges for a future linear collider, IPAC2013, Shanghai, China, 2013, p. WEPMEO46
[Mainaud Durand2]H. Mainaud Durand et al., Frequency Scanning Interferometry to monitor the position of accelerators components inside their cryostat for the HL-LHC project, IWAA 2018, Fermilab, USA, 2018

Bibliography:

[Mainaud Durand3]H. Mainaud Durand et al., Frequency Scanning Interferometry as new solution for online monitoring inside a cryostat for the HL-LHC project, IPAC 2018, Vancouver, Canada, 2018
[Mainaud Durand4]H. Mainaud Durand et al., HL-LHC requirements and associated solutions, IPAC 2017, Copenhagen, Denmark, 2017, ISBN 978-3-9540-182-3
[Mainaud Durand5]H. Mainaud Durand et al., The new CLIC main linac installation and alignment strategy, $9^{\text {th }}$ IPAC, Vancouver, Canada, 2018.
[Mainaud Durand6]H. Mainaud Durand et al., Micrometric propagation of error using overlapping stretched wires for the CLIC pre-alignment, $8^{\text {th }}$ IPAC, Copenhagen, Denmark, 2017, pp.TUPIK098.
[Mainaud Durand7]H. Mainaud Durand et al., CLIC pre-alignment strategy: final proposal and associated results, IWAA 2018, Fermilab, USA, 2018
[Mayoud] M. Mayoud, Geodetic metrology of particle accelerators and physics equipment, IWAA 1999, Annecy, 1999
[Mergelkuhl] D. Mergelkuhl et al., Recent developments for a photogrammetric system to measure offsets w.r.t. stretched wires, IWAA 2018, Fermilab, Batavia, US, 2018.
[Micolon] F. Micolon et al., Thermal engineering of optical mirrors for use at cryogenic temperature inside a LC magnet cryostat, CEC/ICMC 2019, Connecticut Convention Center, US, 2019

Bibliography:

[Prenting] J. Prenting, Status report on the survey and alignment efforts at DESY, IWAA 2008, KEK, Japan.
[Quesnel] J-P Quesnel et al., The metrology of the LHC project: what news?, IWAA 1999, Grenoble, ESRF, 1999
[Rude] V. Rude et al., Validation of the crab cavities internal monitoring strategy, IWAA2016, ESRF, Grenoble, France, 2016
[Ruland] R. Ruland, Some alignment considerations for the Next Linear Collider, SLAC PUB-7060, 1993
[Ruland2] R. Ruland, Chapter 11: magnet support and alignment, Series on Synchrotron Radiation techniques and applications - volume 1 Synchrotron Radiation sources, Editor Herman Winich, 1994
[Schwarz] W. Schwarz, Some considerations on the alignment accuracy for accelerators, IWAA 1990, Hamburg, 1990
[Sosin] M. Sosin et al., Design and study on a 5 degrees of freedom adjustment platform for CLIC Drive Beam quadrupoles, IPAC2014, Dresden, Germany, 2014, p. TUPRI095

Bibliography

[Sosin2]	M. Sosin et al., Issues and feasibility demonstration of CLIC supporting system chain active pre-alignment using a module test setup (mock-up), CERN-ACC- Note 2016-0063, 2016
[Stern]	G. Stern, Study and development of a laser based alignment system for the compact linear collider, PhD thesis, 2016, ETH Zürich
[Suwada]	T. Suwada et al., Real-time observation of dynamic floor motion of the KEKB injector linac with a laser-based alignment system, Phys. Review Accelerators and Beams 20,
[Touzé]	O33501 (2017) T. Touzé, Proposition d'une méthode d'alignement de l'accélérateur CLIC, PhD thesis,
[Van der Graaf]CERN-THESIS-2011-071, CERN, 2011.	
H. Van der Graaf et al., RASCLIC: a long baseline 3-point alignment system for particule	
[Zhang]	accelerators, IWAA 2008, KEK, Tsukuba, Japan, 11-15 Feb., 2008. C. Zhang, S. Matsui, Developing an iris diaphragm laser alignment system for Spring-8 storage ring magnets, 12h IWAA, Fermilab, Batavia, Sept. 10-14, 2012.

A lot of materials from D. Mergelkuhl, D. Missiaen, JC Gayde, A. Herty, M. Jones, V. Rude, M. Sosin

[^0]: Survey, Mechatronics and Measurements (SMM) group
 The SMM Group develops and maintains a centralized competence in Survey, Mechatronic systems, tests and Measurement. The group is in charge of maintaining a competence in the development of radiation tolerant electronics, and provides support CERN wide for radiation tests and radiation monitoring for evaluating the dose to electronics installed in radiation areas. The group develops robotic platforms adapted to interventions in the accelerator environment, and deploys those solutions in collaboration with all groups in the Accelerator and Technology sector. SMM is able to provide computing support for data acquisition, data processing and data analysis, as well as for data storage related to all these activities.

[^1]: *Maximum Permissible Error (MPE)

