

Vacuum Systems

R. Kersevan CERN TE-VSC, Geneva

CERN accelerators complex

Montecarlo Simulation Codes: Molflow+ (molecular flow), and SYNRAD+ (synchrotron radiation)

Vacuum, Surfaces & Coatings Group Technology Department

5

6

Vacuum Considerations: How to Protect the Ring and the Experimental Beamlines from Accidental Loss-of-Vacuum Accidents

R. Kersevan, TE-VSC-VSM

ADUC and ELENA Meeting, 19 Jan 2016

ELENA: Extra-Low Energy Antiproton decelerator

- Transfer lines: 2.10⁻⁹ Torr
- Interface to experiments: 10⁻¹⁰ Torr (still to be confirmed, NEG coating for chambers after the interface valve if feasible, → <u>input needed</u> ←)

chambers after the interface value if feasible, \rightarrow input needed \leftarrow)

- ELENA: Extra-Low Energy Antiproton decelerator
- Typical electrostatic quadrupole/corrector package (FODO)
- Molflow+ model imported from CAD

Vacuum, Surfaces & Coatings Group Technology Department

8

- Electrostatic beamline components: electrodes are under vacuum
- All internal surfaces are NEG-coated
- Need to protect all NEG-coated surface in case of air-inrush
- Montecarlo simulation, time-dependent, is used to determine best position of fast gate valves (20 msec closure time)

Vacuum, Surfaces & Coatings Group Technology Department

9

• Generate molecules with velocities distributed as per Maxwell-Boltzmann, and initial temperature corresponding to "hot" supersonic gas jet

- Gbar beamline, short distance from ELENA ring
- Need for an acoustic delay line, to slow down the air inrush
- Determination of the position of the fast gate valve

TPMC simulation of air-inrush from <u>Gbar</u> towards LNR:

- A mass 29 a.m.u. (air) gas flow is simulated at the GV connecting to the Gbar beamline The gas flow is normalized to a pressure of 1 atmosphere at Gbar (at steady-state, solid curves)
- It is shown that even after only 0.1 s the other GV connected to the electrostatic deflector on LNR reaches the 1.0E-2 mbar range
- The beneficial effect of introducing a ~ 1m-long acoustic delay-line (ADL) is not sufficient to protect LNR (blue curves)

Differential pumping system

 This system allows to decouple a vacuum system from another one (e.g. in Linac source, between baked and unbaked vacuum system)
UHV

Commercial differential pumps

Pictures Edwards

Transmission probability, P_{TR} calculation for:

- 3.6 m-long, 5 cm diameter tube
- Same made up of 3x 1 m-long tubes separated by 30 cm-long 10 cm diameter pumping domes (with 500 l/s pump each)
- P_{TR} (tube) = 1.782E-2; P_{TR} (Diff.Pumping) = 1.852E-4; RATIO=96.2x

Comparison of vacuum system of two 4th generation light sources, Max-IV and ESRF-EBS

- Max-IV: 3 GeV, 500 mA, ¬ 500 m circumference
- ESRF-EBS: 6 GeV, 200 mA, ¬ 850 m circumference

Max-IV: comparison of its 22 mm ID circular chamber with ALBA light source; Max-IV: fully NEG-coated Cu; ALBA: SS

Very tight space between vacuum chambers and magnetic poles

Variable cross sections at dipoles with SR extraction port

3 b). Establish coating procedure/technology and produce chambers of complex geometry: Vacuum chamber for beam extraction.

Crotch absorbers are used to intercept the fraction of the SR fan which doesn't reach the beamlines

Feasibility of fully NEG-coated solution had been checked at ESRF on a dedicated photodesorption beamline (D31)

P. Chiggiato, R. Kersevan

1.5 GeV low-energy ring is not NEG-coated, and has vacuum chambers made of stainless steel, a "conventional" machine, with more relaxed dimensions and bigger conductance, copied from ALBA light source (Barcelona)

The ESRF upgrade, EBS (Extremely Bright Source), adopts a different design: very little NEG-coating, and use of machined SS and aluminium chambers, welded longitudinally

GIRDER 1

GIRDER 2

2408	2360
AL.	316LN sheet
1.50	1
CH51-1	CH6 1-1
2.0	BPKH
	2468 AL 0H511

GIRDER 4

GIRDER 3

	CHE	CHIB		CH					CHII	CH12	CH13	CH14	Diagnostic Cha Location (CH12
;th (mm)	2311	2578.9		REM71	13-3 ···		Lengt	ի (ոս)	1071	418.9	2627	750.9	
nst	stel N sheat	el			AN WAS	2	Mater	ici	316LN sheet	AL		316LN OFFE	Below CH13
kawiif Ingala	t		сн		1,83	34	Balky	KISE fingers			(197)	1	CH14
sarber	CH5 1-2 CH5 2-2	Creich 2 D19 1-2 CHarl 2		15	Kil	1	Absor	ber			CH13 1 1	CH14 1 1	
PN .	BRM7		Los	and a	11/2018	10	BPM		BPW8 BPW9		1.65	BPM10	
				10-4	lenth (m)	CH4 286 P	CH7 19*	CH10 1-3			CH4	0	
					Maintal	2460 #1000	and) sheet	24/3 eneral			1	0	
					Fallen 187 Engers	1		1	-CH7	5.	5	100	
					Abeceber	CH4 1-	GF 1-2 GF 2-2	1	6	R.	-		
					REN	•3	TEM: TEM:	*					
						Diagnosti	is chambe	rs (Girder 4)		1	CH	10	
								Ba				1	
						and a second sec		and the second second second				-	

At the ESRF-EBS 100% of the SR generated by the dipoles is intercepted by lumped absorbers

ļ	ABSORBE	RS POWER DI	STRIBUTION		
Chambe	IT.	Abs name	T Power [W]	Power dens max [W/mm2]	
Chamber	r 2	CH2 1-1	196	1.4 * (≠ for Helical)	
Chamber	r 3	Crotch 1	1103	90(@ normal incidence)	$\rightarrow \checkmark$
Chamber	r 4	CH4 1-1	393.4	13	
Chamber	r 5	CH5 1-1	325.5	8.6	$ \longrightarrow $
Chamber	r 6	CH6 1-1	968.5	14	
Chamber	r 7	CH7 1-7	986.5	12.9	
Chamber	r 7	CH7 2-2	522.5	14.2	- (1)
Chamber	r 8	CH8 1-2	1160.9	11.6	
Chamber	r 8	CH8 2-2	1261.2	11.9	
Chamber	r 9	Crotch 2 part 1	1883.4	70 (@ normal incidence)	
Chamber	r 9	Crotch 2 part 2	1262	126	
Chamber	r 9	CH9 3-3	1871	(54)	(·
Chamber	r 13	CH13 1-1	562.4	12.7	
Chamber	r 14	CH14 1-1	631.7	2.2	

At the ESRF-EBS 100% of the SR generated by the dipoles is intercepted by lumped absorbers

	ABSOR	BERS POWER DI	STRIBUTION	
Cham	ber	Abs name	T Power [W]	Power dens max [W/mm2]
Chamb	oer 2	CH2 1-1	196	1.4 * (≠ for Helical)
Chamb	ber 3	Crotch 1	1103	90(@ normal incidence)
Chamb	ber 4	CH4 1-1	393.4	13
Chamb	ber 5	CH5 1-1	325.5	8.6
Chamb	ber 6	CH6 1-1	968.5	14
Chamb	oer 7	CH7 1-7	986.5	12.9
Chamb	per 7	CH7 2-2	522.5	14.2
Chamb	ber 8	CH8 1-2	1160.9	11.6
Chamb	ber 8	CH8 2-2	1261.2	11.9
Chamb	per 9	Crotch 2 part 1	1883.4	70 (@ normal incidence)
Chamb	ber 9	Crotch 2 part 2	1262	26
Chamb	ber 9	CH9 3-3	1871	(54)
Chamb	per 13	CH13 1-1	562.4	12.7
Chamb	per 14	CH14 1-1	631.7	2.2

At the ESRF-EBS 100% of the SR generated by the dipoles is intercepted by lumped absorbers

ļ	ABSORBE	RS POWER DI	STRIBUTION		
Chambe	IT.	Abs name	T Power [W]	Power dens max [W/mm2]	
Chamber	r 2	CH2 1-1	196	1.4 * (≠ for Helical)	
Chamber	r 3	Crotch 1	1103	90(@ normal incidence)	$\rightarrow \checkmark$
Chamber	r 4	CH4 1-1	393.4	13	
Chamber	r 5	CH5 1-1	325.5	8.6	$ \longrightarrow $
Chamber	r 6	CH6 1-1	968.5	14	
Chamber	r 7	CH7 1-7	986.5	12.9	
Chamber	r 7	CH7 2-2	522.5	14.2	- (1)
Chamber	r 8	CH8 1-2	1160.9	11.6	
Chamber	r 8	CH8 2-2	1261.2	11.9	
Chamber	r 9	Crotch 2 part 1	1883.4	70 (@ normal incidence)	
Chamber	r 9	Crotch 2 part 2	1262	126	
Chamber	r 9	CH9 3-3	1871	(54)	(·
Chamber	r 13	CH13 1-1	562.4	12.7	
Chamber	r 14	CH14 1-1	631.7	2.2	

All photon absorbers have been carefully analysed and designed: Ray-tracing, followed by Finite-Elements thermo-mechanical analysis

Contrary to the simple one circular tube of Max-IV, the ESRF-EBS team has designed basically a different cross-section for each chamber, to follow the many magnets' pole profiles

VACUUM CHAMBER LAYOUT

VACUUM CHAMBER LAYOUT

VACUUM CHAMBER LAYOUT

Ch6 (low profile 13v x 20h)

- e-beam welding
- 1.5mm 316LN sheets
- cup-welded bellow (space constraints)
- middle section curved

VACUUM CHAMBER LAYOUT

DETAIL 7 (1:1)

Summary

- We have seen a few examples of calculations of gas dynamics in molecular flow regime
- The transmission probability, speed distribution, and the pressure profiles have been calculated with the code Molflow+
- We have also seen that two modern 4th generation light sources have chosen completely different design philosophies, fully NEG-coated with a constant cross-section for Max-IV vs the uncoated with variable cross-section for ESRF-EBS
- Both designs working successfully: the choice among the two is based on cost analysis, design of magnetic lattice, and other choices concerning vacuum (like in-situ bakeability, for instance)

