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Objectives of this course

Part I: Light optics

• Understand the basic laws of light propagation

• Being able to apply the principle of geometrical optics to trace rays 

of light across common optical elements (boundaries, thin and 

thick lenses, complex optical systems, …)

Part II: Particle optics

• Understand the basic laws of particle transport

• Being able to apply the principles of light optics to trace particles 

across common accelerators elements (dipoles, quadrupoles, …)

• Understand the effect of dispersion on spectrometry
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Strong analogy



Outline of part I

• Recall of Maxwell equations

• Integral form

• Local form

• Boundary conditions

• The plane wave

• Law of reflection & refraction

• Ray optics

• Eikonal equation 

• ABCD matrix for simple elements (mirror, drifts, planar and curved interfaces)

• Thick and thin lenses

• Image formation

• Complex systems: principal planes

• Light transport in periodic channels: stability condition

• Limit of the treatment: aberrations
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Recall of Maxwell’s equations
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Short recap, more details in H.Henke’s lectures!



Maxwell equations: integral form

Gauss’ law න
𝜕𝑆

ҧℰ ⋅ 𝑑𝑆 = න
𝑉

ρ

𝜀
𝑑𝑉

න
𝜕𝑆

ഥℋ ⋅ 𝑑𝑆 = 0

ර
𝜕S

ҧℰ ⋅ 𝑑𝑙 = −
𝑑

𝑑𝑡
න
𝜕𝑆

𝜇 ഥℋ ⋅ 𝑑𝑆

ර
𝜕S

ഥℋ ⋅ 𝑑𝑙 = න
𝑆

ҧ𝒥 ⋅ 𝑑𝑆 +
𝑑

𝑑𝑡
න
𝑆

𝜀 ҧℰ ⋅ 𝑑𝑆

Gauss’ law for magnetism

Faraday’s law

Ampère-Maxwell law

In a homogeneous, linear, isotropic medium:
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𝜀: medium permittivity

𝜇: medium permeability



Local form

Gauss’ law 𝛻 ⋅ ҧℰ =
ρ

𝜀

𝛻 × ҧℰ = −
𝑑

𝑑𝑡
𝜇 ഥℋ

𝛻 × ഥℋ = ҧ𝒥 +
𝑑

𝑑𝑡
𝜀 ҧℰ

Gauss’ law for magnetism

Faraday’s law

Ampère-Maxwell law

𝛻 ⋅ ഥℋ = 0

𝛻 ×ℋ > 0

+

𝛻 ⋅ തℰ > 0 𝛻 ⋅ തℰ < 0

𝛻 ×ℋ < 0

𝛻 ⋅ℋ = 0

-
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Local form in frequency domain
Suppose the field is stationary, we can apply the Fourier transform:

ത𝐸 𝜔 = න
−∞

+∞

ҧℰ 𝑡 𝑒𝑗𝜔𝑡𝑑𝑡

𝛻 × ഥ𝐻 = 𝑗𝜔𝜀 ത𝐸 + ҧ𝐽

Gauss’ law

Gauss’ law for magnetism

Faraday’s law

Ampère-Maxwell law

𝛻 ⋅ ത𝐸 = 𝜌/𝜀

𝛻 ⋅ ഥ𝐻 = 0

𝛻 × ത𝐸 = −𝑗𝜔𝜇 ഥ𝐻

With this, 
𝑑

𝑑𝑡
→ 𝑗𝜔 and dropping the time dependence we have:
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Boundary conditions
Let’s now recap the behavior of the fields at the boundaries:

Electric field

Magnetic field

ത𝑛 × ( ത𝐸1 − ത𝐸2) = 0

ത𝑛 ⋅ (𝜀1 ത𝐸1 − 𝜀2 ത𝐸2) = ത𝜎𝑠

ത𝑛 × (ഥ𝐻1 − ഥ𝐻2) = ഥ𝐾𝑠

ത𝑛 ⋅ (𝜇1 ഥ𝐻1 − 𝜇2 ഥ𝐻2) = 0
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ത𝑛ത𝐸1, ഥ𝐻1

ത𝐸2, ഥ𝐻2

𝜇1, 𝜀1

𝜇2, 𝜀2

ഥ𝐾𝑠, ത𝜎𝑠

where ഥ𝐾𝑠 and ത𝜎𝑠 are free surface electric current and charges.



Boundary conditions

For a dielectric → ത𝜎𝑠, ഥ𝐾𝑠 are null 
ത𝐸𝑡,1

ത𝐸𝑡,2

ഥ𝐻𝑡,1

ഥ𝐻𝑡,2

𝜀1 ത𝐸𝑛,1

𝜀2 ത𝐸𝑛,2

𝜇1 ഥ𝐻𝑛,1

𝜇2 ഥ𝐻𝑛,2

For a PEC→ ത𝐸2, ഥ𝐻2 are null but free 

current and charges can be present

on the surface 

ത𝑛

0

ഥ𝐻𝑡,1

ഥ𝐾𝑠 × ത𝑛 ത𝜎𝑠 0

ത𝑛

𝜀1 ത𝐸𝑛,1

Example for dielectrics and perfect electric conductor (PEC)

0 0
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Plane wave

𝛻 ×
1

−𝑗𝜔𝜇
𝛻 × ത𝐸 = 𝑗𝜔𝜀 ത𝐸 + ҧ𝐽

𝛻 × 𝛻 × ത𝐸 = 𝜔2𝜇𝜀 ത𝐸 − 𝑗𝜔𝜇 ҧ𝐽

𝛻 𝛻 ⋅ ത𝐸 − 𝛻2 ത𝐸 = 𝜔2𝜇𝜀 ത𝐸 − 𝑗𝜔𝜇 ҧ𝐽

𝛻
𝜌

𝜀
− 𝛻2 ത𝐸 = 𝜔2𝜇𝜀 ത𝐸 − 𝑗𝜔𝜇 ҧ𝐽

In vacuum (𝜌, ҧ𝐽 null):

𝛻2 ത𝐸 + 𝜔2𝜇𝜀 ത𝐸 = 0

For an homogeneous, isotropic medium (e.g. vacuum, dielectric, magnetic material):

𝛻 × 𝛻 × ത𝐸 = 𝛻 𝛻 ⋅ ത𝐸 − 𝛻2 ത𝐸

𝛻 ⋅ 𝜀 ത𝐸 = 𝜌

𝑘2 = 𝜔2𝜇𝜀 → 𝑘 =
𝜔

𝑐
𝒏 with 𝒏 = 𝜀𝑟 refraction index 

(real in dielectrics with negligible absorption) 

𝛻 × ഥ𝐻 = 𝑗𝜔𝜀 ത𝐸 + ҧ𝐽 𝛻 × ത𝐸 = −𝑗𝜔𝜇 ഥ𝐻
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Plane wave

Maxwell equations in free space condense into Helmoltz equation:

The solution is a plane wave in free space with 

propagation vector 𝑘 ⋅ ത𝑘0 = 𝑘𝑥 ҧ𝑥0 + 𝑘𝑦 ത𝑦0 + 𝑘𝑧 ҧ𝑧0.

𝛻2 ത𝐸 + 𝑘2 ത𝐸 = 0

𝑑𝑟

𝑑𝑡
ത𝑘0 ⋅ ҧ𝑟0 =

𝒄

𝒏
= 𝒗𝒑

ത𝑘0

Equiphase planes

ത𝐸 = ത𝐸0𝑒
−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧) = ത𝐸0𝑒

−𝑗(ത𝑘ഥ⋅𝑟)

ҧℰ = ത𝐸0 cos ത𝑘 ⋅ ҧ𝑟 − 𝜔𝑡 + 𝜙 = ത𝐸0 cos
𝜔

𝑐
𝑛 ⋅ ത𝑘0 ⋅ ҧ𝑟 − 𝜔𝑡 + 𝜙

and travel in the direction of ത𝑘0 with phase velocity

11

Back in time domain this is:

ത𝐸0with 𝑘 =
𝜔

𝑐
𝑛

where the equiphase planes are given by:
𝜔

𝑐
𝑛 ⋅ ത𝑘0 ⋅ ҧ𝑟 − 𝜔𝑡 = 𝑐𝑜𝑠𝑡



Laws of reflection & refraction
Consider two media with different index 𝑛0 and 𝑛1.  In order to satisfy the boundary 

conditions a reflected and a refracted wave are produced.

𝑛0sin(𝜃𝑖) = 𝑛1sin(𝜃𝑡)

E.g. going from a medium with lower 𝑛 to a larger one, the angle of

propagation of the refracted wave gets closer to the normal to the interfaces.

𝜃𝑡

𝜃𝑟

𝑛0

𝑛1

𝜃𝑖

• The angle of reflection is equal to the 

angle of incidence (law of reflection):

𝜃𝑖 = 𝜃𝑟

• The angle of refraction is given by (Snell law):
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P.S.: Have fun with this nice optics simulator at https://ricktu288.github.io/ray-optics/ 

https://ricktu288.github.io/ray-optics/


Ray optics

Now let’s consider 𝑛( ҧ𝑟), i.e. a refraction index varying in space. 

𝛻2 ത𝐸 +
𝜔2

𝑐2
𝑛( ҧ𝑟)2 ത𝐸 = 0 𝛻2 ത𝐸 + 𝑘0

2𝑛( ҧ𝑟)2 ത𝐸 = 0

We look for a solution as for a plane wave:

ത𝐸 = ത𝐸0𝑒
−𝑗(𝑘0𝑅( ҧ𝑟))

1

𝑘0
2 𝛻

2 ത𝐸0𝑒
−𝑗 𝑘0𝑅 ҧ𝑟 + 𝑛( ҧ𝑟)2 ത𝐸0𝑒

−𝑗 𝑘0𝑅 ҧ𝑟 = 0

The computation of 𝛻2 ത𝐸0𝑒
−𝑗 𝑘0𝑅 ҧ𝑟 is rather lengthy and it is 

left in appendix for curiosity.
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Ray optics

ቈ−
𝑗

𝑘0
𝛻2𝑅 ҧ𝑟 ത𝐸0 −

2𝑗

𝑘0
ෝ𝒙 𝛻𝐸0,𝑥 ⋅ 𝛻𝑅 ҧ𝑟 + ෝ𝒚 𝛻𝐸0,𝑦 ⋅ 𝛻𝑅 ҧ𝑟 + ො𝒛 𝛻𝐸0,𝑧 ⋅ 𝛻𝑅 ҧ𝑟

The result is this:
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Light optics

𝛻𝑅 ҧ𝑟 2 = 𝑛 ҧ𝑟 2

𝛻𝑅 ҧ𝑟 = 𝑛 ҧ𝑟 Ƹ𝑠(𝑟)

ቈ−
𝑗

𝑘0
𝛻2𝑅 ҧ𝑟 ത𝐸0 −

2𝑗

𝑘0
ෝ𝒙 𝛻𝐸0,𝑥 ⋅ 𝛻𝑅 ҧ𝑟 + ෝ𝒚 𝛻𝐸0,𝑦 ⋅ 𝛻𝑅 ҧ𝑟 + ො𝒛 𝛻𝐸0,𝑧 ⋅ 𝛻𝑅 ҧ𝑟

For very short wavelengths (light → 400 − 700 nm scale), 1/𝑘0 → 0 and the 

solution simplifies to: 

Or equivalently:

• The energy flows in the direction of 𝛻𝑅 ҧ𝑟 , i.e. the gradient of the wavefronts.

• For a homogeneous medium 𝑛 = 𝑐𝑜𝑛𝑠𝑡 and 𝑅 ҧ𝑟 = 𝑛/𝑘0(𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧)

represents the plane wavefronts (verify that 𝛻𝑅 ҧ𝑟 2 = 𝑛2).
• By this simplification we pay the price of not being able to describe phenomena 

as diffraction, reflection.
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Eikonal equation (εἰκών, image)



Daylife example

Consider a very hot day in summer, asphalt gets hot and the air close to it 

expands lowering the refraction index.

Source: https://www.scienceabc.com

𝑛 𝑦 = 𝑛0 1 +
𝑦2

ℎ2

Ƹ𝑠 𝑥, 𝑦 =
𝛻𝑅 𝑥,𝑦

𝛻𝑅 𝑥,𝑦
=

𝑦

ℎ
ො𝑦0+ ො𝑥0

1+
𝑦2

ℎ2

We can compute the ray direction:

𝒚

𝒙
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𝛻𝑅 ҧ𝑟 2 = 𝑛 ҧ𝑟 2

𝜕𝑅

𝜕𝑥

2

+
𝜕𝑅

𝜕𝑦

2

= 𝑛 ҧ𝑟 2 = 𝑛0
2 1 +

𝑦2

ℎ2

𝑅 𝑥, 𝑦 = (𝑛0𝑥)ො𝑥0 + 1 +
𝑦2

2ℎ2
ො𝑦0

The direction of light rays is then:

𝑛 𝑦



Daylife example

The ray covers a distance 𝑑𝑥 with direction given by Ƹ𝑠 𝑥, 𝑦 . The gained 

altitude 𝑑𝑦 can be then approximated by: 

Source: https://www.scienceabc.com

𝑦 = 𝑒± 𝑥−𝑥0 /ℎ

From this we have

With solution 

𝒚

𝒙

Light bends up (solution with +) emulating a reflection from a wet surface.
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ො𝒔

𝑑𝑦 =
𝑠𝑦

𝑠𝑥
𝑑𝑥

𝑑𝑦

𝑑𝑥
=
𝑠𝑦

𝑠𝑥
=
𝑦

ℎ



Matrix treatment

The interaction of a wave can be reduced to the study of the interaction of 

the ray direction at an object boundary. 

𝑥

𝑠

𝑥0

𝜃0 > 0

𝑥1
𝜃1

=
𝐴 𝐵
𝐶 𝐷

𝑥0
𝜃0

𝑥

𝑠

𝑥1

𝜃1 < 0

𝑀 ≡
𝑥1

𝑥0
= 𝐴 magnification

𝑀𝜃 ≡
𝜃1

𝜃0
= 𝐷 angular magnification

18

Element’s matrix:



Drift space

Given a point on a wavefront of a ray, if we are in a homogeneous medium, it 

will just drift in space:

𝑠

𝑥0, 𝜃0
𝑥1, 𝜃1

0

𝜃1 = 𝜃0
𝑥1 = 𝑥0 + 𝐿 sin 𝜃0

𝐿

𝑥1
𝜃1

= 𝑀
𝑥0
𝜃0

=
1 𝐿
0 1

𝑥0
𝜃0

Matrix form

𝑥

N.B.: det 𝑀 = 1
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(paraxial approximation sin 𝜃 ≃ 𝜃 )

𝜃0

= 𝑥0 + 𝐿𝜃0



Spherical mirror

Let us consider a spherical mirror (concave R>0, convex R<0).

𝜃0
𝜃𝑟
𝜃𝑟

𝑥1 = 𝑥0

𝑥1 = 𝑥0
𝜃1 = −(𝜃0 + 2𝜃𝑟)

𝜃𝑟 + 𝜃0 =
𝑥1

𝑅

𝑥1
𝜃1

=
1 0

−2/𝑅 1

𝑥0
𝜃0

𝜃1 = −
2𝑥1
𝑅

+ 𝜃0

N.B.: det 𝑀 = 1
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Curved interface

Let us consider a curved interface (convex R>0, concave R<0)

𝑥1 = 𝑥0
𝑛0𝜃𝑖 = 𝑛1𝜃𝑡 (Snell’s law) 

𝜃𝑖 = 𝜑 + 𝜃0
𝜃𝑡 = 𝜑 + 𝜃1
𝜑 = 𝑥1/𝑅

𝑥1
𝜃1

=

1 0
𝑛0
𝑛1

− 1 /𝑅 𝑛0/𝑛1

𝑥0
𝜃0

𝑥1 = 𝑥0

𝑅 > 0
𝜑

𝜃0

𝜑𝜃0

𝜑 𝜃1𝜃𝑖 𝜃𝑡

𝑛0 𝑛1

N.B.: det 𝑀 = 1 if 𝑛0 = 𝑛1: 

this is a result applicable to any

optical system with same

start/end refraction index.
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𝑛0(𝑥1/𝑅 + 𝜃0) = 𝑛1(𝑥1/𝑅 + 𝜃1)
𝑛0
𝑛1

𝑥1
𝑅
+ 𝜃0 − 𝑥1/𝑅 = 𝜃1



Curved interface: planar interface

For a planar interface we simply take the limit of large radius.

𝑥1
𝜃1

=
1 0
0 𝑛0/𝑛1

𝑥0
𝜃0

𝑥1 = 𝑥0

𝜃0

𝜃1

𝑛0 𝑛1

𝑥1
𝜃1

=

1 0
𝑛0
𝑛1

− 1 /𝑅 𝑛0/𝑛1

𝑥0
𝜃0

R → ∞
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Exercise 1: Thick lens

We have derived the basic elements that allow us to derive the matrices for

more complex optical systems by simple matrix multiplication:

1) propagation through a region of uniform index,

2) reflection from a curved mirror

3) transmission through a curved interface of regions with different indices.

Classwork: Derive the ABCD matrix for a thick lens made of material 𝑛1 =
𝑛 surrounded by air (𝑛0 = 1). Let the lens have curvatures 𝑅0 and 𝑅1 and

thickness 𝑑.

What happens for 𝑅0, 𝑅1 → ∞? Make a sketch.
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𝑅0 𝑅1

𝑑



We have derived the basic elements that allow us to derive the matrices for

more complex optical systems by simple matrix multiplication:

1) propagation through a region of uniform index,

2) reflection from a curved mirror

3) transmission through a curved interface of regions with different indices.

Classwork: Derive the ABCD matrix for a thick lens made of material 𝑛1 =
𝑛 surrounded by air (𝑛0 = 1). Let the lens have curvatures 𝑅0 and 𝑅1 and

thickness 𝑑.

What happens for 𝑅0, 𝑅1 → ∞? Make a sketch.
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𝑥1
𝜃1

=

1 −
𝑑

𝑅0
1 −

1

𝑛

𝑑

𝑛

− 𝑛 − 1
1

𝑅0
−

1

𝑅1
+

𝑑

𝑅0𝑅1
2 − 𝑛 −

1

𝑛
1 +

𝑑

𝑅1
1 −

1

𝑛

𝑥0
𝜃0

Exercise 1: Thick lens



Thin lens

𝑥1
𝜃1

=

1 0

− 𝑛 − 1
1

𝑅0
−

1

𝑅1
1

𝑥0
𝜃0

Considering a vanishing length 𝑑 between the two lens surfaces we have:

Which can be written as

𝑥1
𝜃1

=
1 0

−1/𝑓 1

𝑥0
𝜃0

Where 𝑓 is the focal length given by:

1/𝑓 = 𝑛 − 1
1

𝑅0
−

1

𝑅1
Lens maker’s equation

When the radii are the same (in modulo):    
1

𝑓
= (𝑛 − 1)

2

𝑅
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Image formation

Given a transfer matrix, we would like to know if, placing an object in front 

of the optical system (𝑑𝑜), an image is formed, and where (𝑑𝑖).

𝑥𝑖
𝜃𝑖

=
𝐴 𝐵
𝐶 𝐷

𝑥𝑜
𝜃𝑜

To have an image, all the rays should go to the same point regardless 

of the angle they start. A point 𝑥𝑜 is mapped into a point 𝑥𝑖 regardless 

of the angles 𝜃𝑜 the rays have which means:

𝑩 = 𝟎 (condition of image formation).
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𝑥𝑜

𝑥𝑖𝑑𝑜

𝑑𝑖
𝑓



Image formation

If the object is at distance 𝑑𝑜, for a thin lens we have:

𝑥𝑖
𝜃𝑖

=
1 𝒅𝒊
0 1

1 0
−1/𝑓 1

1 𝒅𝒐
0 1

𝑥𝑜
𝜃𝑜

𝑥𝑖
𝜃𝑖

=

1 −
𝑑𝑖
𝑓

𝑑𝑜 + 𝑑𝑖 −
1

𝑓
𝑑𝑜 + 1

−
1

𝑓
−
1

𝑓
𝑑𝑜+ 1

𝑥𝑜
𝜃𝑜

1

𝑓
=

1

𝑑𝑜
+

1

𝑑𝑖

𝑀 = 𝐴 = −
𝑑𝑖

𝑑𝑜

𝑀𝜃 = 𝐷 = −
𝑑𝑜

𝑑𝑖

𝑥𝑖
𝜃𝑖

=

−
𝑑𝑖
𝑑𝑜

0

−
1

𝑓
−
𝑑𝑜
𝑑𝑖

𝑥𝑜
𝜃𝑜
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𝑥𝑜

𝑥𝑖𝑑𝑜

𝑑𝑖
𝑓

𝑩 = 𝟎 →



Practical drawing

𝑓
→ an image from far away is produced in the focal position (𝑑𝑖 = 𝑓)

1) A ray coming parallel to the lens is cross

the axis at the focal point after the lens

2) A ray passing through the lens center

is un-deflected

3) A ray passing through the focal point

before the lens exits parallel. 𝑓
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Principal planes

For a general arrangement of optical elements starting and ending to the 

same refraction index there exist two planes such that the system allows 

image formation. 

𝑥𝑖
𝜃𝑖

=
1 𝑝𝑖
0 1

𝐴 𝐵
𝐶 𝐷

1 𝑝𝑜
0 1

𝑥𝑜
𝜃𝑜

𝑀 =
𝐴 + 𝑝𝑖𝐶 𝐴𝑝𝑜 + 𝐵 + 𝑝𝑖𝑝𝑜𝐶 + 𝑝𝑖𝐷

𝐶 𝐶𝑝𝑜 + 𝐷

𝐴 + 𝑝𝑖𝐶 = 1 → 𝑝𝑖 =
1 − 𝐴

𝐶

𝐷 + 𝑝𝑜𝐶 = 1 → 𝑝𝑜 =
1 − 𝐷

𝐶
→ 𝐴𝑝𝑜 + 𝐵 + 𝑝𝑖𝑝𝑜𝐶 + 𝑝𝑖𝐷 = 1 − det 𝑀 = 0

𝐶 ≡ −
1

𝑓𝑒𝑓𝑓

𝑝𝑜

𝑝𝑖
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Principal planes

𝑝𝑜

𝑝𝑖

𝑀 =

1 0

−
1

𝑓𝑒𝑓𝑓
1

The planes passing by 𝑝𝑜 and 𝑝𝑖 are

called principal planes: from there any

system will look like a thin lens system.

𝑥𝑖
𝜃𝑖

=
1 𝑝𝑖
0 1

𝐴 𝐵
𝐶 𝐷

1 𝑝𝑜
0 1

𝑥𝑜
𝜃𝑜

𝑀 =
𝐴 + 𝑝𝑖𝐶 𝐴𝑝𝑜 + 𝐵 + 𝑝𝑖𝑝𝑜𝐶 + 𝑝𝑖𝐷

𝐶 𝐶𝑝𝑜 + 𝐷

30

For a general arrangement of optical elements starting and ending to the 

same refraction index there exist two planes such that the system allows 

image formation. 



Principal planes

For a generic system with equal start/end refractive index, we can rewrite 

the condition for image formation: 

𝑝𝑜

𝑝𝑖

These are the same result as of the thin lens case, with exception that now the

length is taken with respect to the principal planes.

𝑑𝑜

𝑑𝑖
𝑓1

𝑑𝑜
+
1

𝑑𝑖
=
1

𝑓

𝑀 = −
𝑑𝑖
𝑑𝑜

𝑀𝜃 = −
𝑑𝑜
𝑑𝑖

magnification

angular magnification

image condition
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Practical experiment

Find the focal length of the given lens. 

You can help yourself with a light 

The refraction index of glass is 𝑛~1.5: what is the curvature radius of the lens 

in the thin lens assumption?
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Exercise 2
Find the image position and magnification of an object placed 30 cm apart from a 

thick lens of 𝑑 = 1 cm thickness, in/out radii of 20 cm, made of glass.

Reminder: a thick lens is a complex system, distances need to be computed from the 

principal planes.

𝑑𝑜

𝑑𝑖

𝑑

𝑀𝑡ℎ𝑖𝑐𝑘 =

1 −
𝑑

𝑅0
1 −

1

𝑛

𝑑

𝑛

− 𝑛 − 1
1

𝑅0
−

1

𝑅1
+

𝑑

𝑅0𝑅1
2 − 𝑛 −

1

𝑛
1 +

𝑑

𝑅1
1 −

1

𝑛

𝑝𝑜 𝑝𝑖
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Light transport
Suppose we want to focus light at a large distance.

A single lens would not do a great job..

But a sequence of focusing-defocusing (F-D) elements could do it!

Target 

distance

Target 

distanceF

F D F
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Light transport
Sequence of F-D lenses spaced by 𝐿/2 drift:

𝐹𝑂𝐷𝑂 =
1 0

−1/𝑓 1
1 𝐿/2
0 1

1 0
1/𝑓 1

1 𝐿/2
0 1

𝐹𝑂𝐷𝑂 =

1 +
𝐿

2𝑓
𝐿 +

𝐿2

4𝑓

−
𝐿

2𝑓2
1 −

𝐿

2𝑓
−

𝐿2

4𝑓2

𝐿

F

O

D

O
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Light transport
Repeating the FODO cell we can focus light from one point to another.

× 𝑛

Starting and ending to the same refraction index, det(𝑀) = 1. 

𝐹𝑂𝐷𝑂𝒏 =
1

sin 𝜃

𝐴 sin𝑁 𝜃 − sin 𝑁 − 1 𝜃 𝐵 𝑠𝑖𝑛 𝑁 𝜃
𝐶 𝑠𝑖𝑛 𝑁 𝜃 𝐷 sin𝑁 𝜃 − sin 𝑁 − 1 𝜃

with cos 𝜃 =
1

2
𝐴 + 𝐷

1

2
𝐴 + 𝐷 ≤ 1

36

𝑀 = 𝐹𝑂𝐷𝑂𝒏 =
𝐴 𝐵
𝐶 𝐷

𝒏

For 𝑛 cells:

We can apply Sylvester’s theorem which states:

𝜃 is real ↔ stability



Light transport
In a FODO cell:

𝐴 = 1 +
𝐿

2𝑓

1 −
𝐿2

8𝑓2
≤ 1

𝐷 = 1 −
𝐿

2𝑓
−

𝐿2

4𝑓2

𝑳 ≤ 𝟒𝒇

37

𝐹𝑂𝐷𝑂 =

1 +
𝐿

2𝑓
𝐿 +

𝐿2

4𝑓

−
𝐿

2𝑓2
1 −

𝐿

2𝑓
−

𝐿2

4𝑓2

The terms 𝐴 and 𝐷 are:

1

2
𝐴 + 𝐷 ≤ 1 Stability for a  

FODO transport

The stability of the FODO transport system is ensured if:



Light transport
In a FODO cell:

𝐴 = 1 +
𝐿

2𝑓

1 −
𝐿2

8𝑓2
≤ 1

𝐷 = 1 −
𝐿

2𝑓
−

𝐿2

4𝑓2

𝑳 ≤ 𝟒𝒇

38

𝐹𝑂𝐷𝑂 =

1 +
𝐿

2𝑓
𝐿 +

𝐿2

4𝑓

−
𝐿

2𝑓2
1 −

𝐿

2𝑓
−

𝐿2

4𝑓2

The terms 𝐴 and 𝐷 are:

1

2
𝐴 + 𝐷 ≤ 1 Stability for a  

FODO transport

The stability of the FODO transport system is ensured if:

You will see the same stability condition 

for transverse particle optics in 

A.Latina’s lecture next week!



𝐿 < 4𝑓

𝐿 = 4𝑓

𝐿 > 4𝑓

Example of light transport between focusing/defocusing lenses with 𝑓 = 100.

𝐿

39



The not so ideal world…
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Spherical aberrations

• In circular mirrors different focal length for large angles smears the focus in a 

so-called caustic line.

• We can use parabolic mirror or additional lens corrections to prevent this.
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Chromatic aberrations I

Refractive index depends on wavelength → nicely decomposed in rainbows 

(primary and secondary depending on number of reflection in rain drops).

Primary rainbow

Secondary rainbow
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Chromatic aberrations II
Also a thin lens exhibit different focusing depending on wavelength 

(“chromaticity” of the lens).

43

Keep “chromaticity” word in mind → key parameter in accelerator design and 

control.



Appendix
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Recall of some vector relations

𝛻 ⋅ 𝜙𝑆 = 𝜙𝛻 ⋅ 𝑆 + ST𝛻𝜙

If 𝑆 is a vector field and 𝜙 a scalar function we have:

𝛻 =
d

dx
ො𝑥 +

d

dy
ො𝑦 +

d

dz
Ƹ𝑧

Nabla operator in cartesian coordinates:

The gradient of a vector field is a dyadic:

𝛻𝑆 = 𝛻𝑆𝑥 𝛻𝑆𝑦 𝛻𝑆𝑧

𝛻 ⋅ 𝛻𝑓 =
d

dx
ො𝑥 +

d

dy
ො𝑦 +

d

dz
Ƹ𝑧 ⋅ 𝛻𝑆𝑥 𝛻𝑆𝑦 𝛻𝑆𝑧 =

𝛻 ⋅ 𝛻𝑆𝑥
𝑠𝑎𝑚𝑒 𝑤𝑖𝑡ℎ 𝛻𝑆𝑦
𝑠𝑎𝑚𝑒 𝑤𝑖𝑡ℎ 𝛻𝑆𝑧

Taking the divergence we get back a vector:

45



1

𝑘0
2 𝛻

2 ത𝐸0𝑒
−𝑗 𝑘0𝑅 ҧ𝑟 + 𝑛( ҧ𝑟)2 ത𝐸0𝑒

−𝑗 𝑘0𝑅 ҧ𝑟 = 0

We need to compute 𝛻2 ҧ𝑓 = 𝛻 ⋅ (𝛻 ҧ𝑓) with ҧ𝑓 = ത𝐸0𝑒
−𝑗 𝑘0𝑅 ҧ𝑟

𝛻 ത𝐸0𝑒
−𝑗 𝑘0𝑅 ҧ𝑟 = −𝑗𝑘0𝛻𝑅 ҧ𝑟 ത𝐸0 + 𝛻 ത𝐸0 𝑒 −𝑗 𝑘0𝑅 ҧ𝑟

Eikonal equation derivation

The 𝛻 ҧ𝑓 is a dyadic:

=

−𝑗𝑘0𝛻𝑅 ⋅ 𝐸0,𝑥 + 𝛻𝐸0,𝑥
𝑠𝑎𝑚𝑒 𝑤𝑖𝑡ℎ 𝛻𝐸0,𝑦
𝑠𝑎𝑚𝑒 𝑤𝑖𝑡ℎ 𝛻𝐸0,𝑧

𝑒 −𝑗 𝑘0𝑅 ҧ𝑟

𝛻 ⋅ (𝛻 ҧ𝑓) is then given by

𝛻 ⋅ −𝑗𝑘0𝛻𝑅 ⋅ 𝐸0,𝑥 + 𝛻𝐸0,𝑥 𝑒 −𝑗 𝑘0𝑅 ҧ𝑟

𝑠𝑎𝑚𝑒 𝑤𝑖𝑡ℎ 𝛻𝐸0,𝑦
𝑠𝑎𝑚𝑒 𝑤𝑖𝑡ℎ 𝛻𝐸0,𝑧
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𝛻 ⋅ −𝑗𝑘0𝛻𝑅 ҧ𝑟 𝐸0,𝑥𝑒
−𝑗 𝑘0𝑅 ҧ𝑟 + 𝛻𝐸0,𝑥𝑒

−𝑗 𝑘0𝑅 ҧ𝑟 = 𝑒 −𝑗 𝑘0𝑅 ҧ𝑟 ⋅

⋅ −𝑗𝑘0 𝛻
2𝑅 ҧ𝑟 𝐸0,𝑥 − 𝑗𝑘0𝛻𝐸0,𝑥 ⋅ 𝛻𝑅 ҧ𝑟 − 𝑘0

2𝛻𝑅 ҧ𝑟 𝐸0,𝑥𝛻𝑅 ҧ𝑟 + 𝛻2𝐸0,𝑥 − 𝑗𝑘0𝛻𝐸0,𝑥 ⋅ 𝛻𝑅 ҧ𝑟

−𝑗𝑘0 𝛻
2𝑅 ҧ𝑟 𝐸0,𝑥 − 2𝑗𝑘0𝛻𝐸0,𝑥 ⋅ 𝛻𝑅 ҧ𝑟 + 𝛻2𝐸0,𝑥 − 𝑘0

2𝐸0,𝑥𝛻𝑅 ҧ𝑟 ⋅ 𝛻𝑅 ҧ𝑟 𝑒 −𝑗 𝑘0𝑅 ҧ𝑟 ෝ𝒙

−𝑗𝑘0 𝛻
2𝑅 ҧ𝑟 𝐸0,𝑦 − 2𝑗𝑘0𝛻𝐸0,𝑦 ⋅ 𝛻𝑅 ҧ𝑟 + 𝛻2𝐸0,𝑦 − 𝑘0

2𝐸0,𝑦𝛻𝑅 ҧ𝑟 ⋅ 𝛻𝑅 ҧ𝑟 𝑒 −𝑗 𝑘0𝑅 ҧ𝑟 ෝ𝒚

−𝑗𝑘0 𝛻
2𝑅 ҧ𝑟 𝐸0,𝑧 − 2𝑗𝑘0𝛻𝐸0,𝑧 ⋅ 𝛻𝑅 ҧ𝑟 + 𝛻2𝐸0,𝑧 − 𝑘0

2𝐸0,𝑧𝛻𝑅 ҧ𝑟 ⋅ 𝛻𝑅 ҧ𝑟 𝑒 −𝑗 𝑘0𝑅 ҧ𝑟 ො𝒛

Eikonal equation derivation

And for all three components:

For the 𝑥 component we have:
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