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ODbjectives of this course

Part I: Light optics
Understand the basic laws of light propagation

Being able to apply the principle of geometrical optics to trace rays
of light across common optical elements (boundaries, thin and
thick lenses, complex optical systems, ...)

Strong analogy

Part Il: Particle optics
Understand the basic laws of particle transport

Being able to apply the principles of light optics to trace particles
across common accelerators elements (dipoles, quadrupoles, ...)

Understand the effect of dispersion on spectrometry




Outline of part |

- Recall of Maxwell equations
. Integral form
. Local form
. Boundary conditions
. The plane wave
. Law of reflection & refraction

- Ray optics
. Eikonal equation
. ABCD matrix for simple elements (mirror, drifts, planar and curved interfaces)
. Thick and thin lenses
. Image formation
. Complex systems: principal planes
. Light transport in periodic channels: stability condition
. Limit of the treatment: aberrations




Recall of Maxwell's equations

Short recap, more details in H.Henke’s lectures!

-

uas

— &

JUAS - TIMETABLE 2020 - WEEK 1

Relativity Electro-magnetism Intro. to Accelerator Design Intro. to the Mini-Workshop
H. Henke H. Henke Ph. Bryant Ph. Bryant
Coffee Break Coffee Break Coffee Break Coffee Break
Relativity Electro-magnetism Intro. to Accelerator Design Intro. to the Mini-Workshop
H. Henke H. Henke Ph. Bryant Ph. Bryant
Relativity Electro-magnetism Intro. to Accelerator Design
Bus leaves at 11:15 from JUAS
12:00 OFFICIAL OPENING H. Henke H. Henke Ph. Bryant (Lunch at CERN, R3,
offered by ESI)
13:00 WELCOME LUNCH S BREAK S
13:30 Visit of LHC Magnets Test
Hall
14:00 Presentation of JUAS & Relativity Electro-magnetism Intro. to Accelerator Design M. Bajko
Introduction of students -
H. Henke H. Henke / Ph. Bryant 08
to CERN &
History of particle accelerators Particle optics Particle optics Intro. to Accelerator Design M
Seminar
N. Biancacci N. Biancacel Ph. Bryant 16:30
Coffee Break Coffee Break Coffee Break Visit of CERN Control Center
CHECK-IN AT THE RESIDENCE Particle optics Particle optics Intro. to Accelerator Design R. Alemany
&
SHOPPING FOR GROCERIES N. Biancacei N. Biancacci Ph. Bryant Bus leaves at 17:30 from CERN
Particle optics
N. Biancacci

AFTER WORK AT ESI




Maxwell equations: integral form

In a homogeneous, linear, isotropic medium:

Gauss’ law f é-d5=f EdV
9s v €

Gauss’ law for magnetism H-dS =0

9s

_ d _

Faraday’s law f E-dl= T uH - dS

as tJas
Ampere-Maxwell law H-dl = J J-ds +ij € - dS

9s s dt Jg

g: medium permittivity
u: medium permeability

&)

N/



Local form

V-E>0 V-£<0
Gauss’ law V.€= g @ -
v-H=0
Gauss’ law for magnetism V-5 =0
VxE= d H PXH >0 PxFH <0
Faraday’s law Xe=—7H i
. 3 d B o 69
Ampere-Maxwell law VXH =7+ aee
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Local form in frequency domain

Suppose the field is stationary, we can apply the Fourier transform:

E(w) = fmé(t)ef“’tdt

With this, % — jw and dropping the time dependence we have:

Gauss’ law V-E=p/e
Gauss’ law for magnetism V-H=0
Faraday’s law VXE=—jowuH
Ampere-Maxwell law VxH=jweE+]

=
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Boundary conditions

Let’s now recap the behavior of the fields at the boundaries:

Electric field nx(E,—E))=0

n- (€1E1 - SZEZ) = Oy

Magnetic field nx (H, — Hy) = K

n- (#1H1 — #zﬁz) =0

where K, and &, are free surface electric current and charges.
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Boundary conditions

Example for dielectrics and perfect electric conductor (PEC)

Eiq Ht,l €1En,1 H1Hn,1 'I‘n

For a dielectric — a, K, are null
H;, T &2En 2 T Uy Hy o

For a PEC- E,, H, are null but free
current and charges can be present
on the surface




Plane wave

For an homogeneous, isotropic medium (e.g. vacuum, dielectric, magnetic material):

VXH=jweE+] VXE=—jwuH

1 _ _
\7><< : \7><E>=ja)£E+]
—jwu
VXV XE)=w?ueE — jouJ Vx(VXE)=V(V-E)—-V?E
V(V-E)—V?E = w?usE — jouJ

v (g) — V?E = w?ueE — jouf V-¢E=p

In vacuum (p, J null):

V2E + w?ueE = 0 k? = w?ue > k = %n with n = /&, refraction index
(real in dielectrics with negligible absorption)
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Plane wave

Maxwell equations in free space condense into Helmoltz equation:

25 25 — ' . E
V2E + k?’E =0 with k -n o/,_
o . . ko
The solution is a plane wave in free space with N
. 7 — — — d
propagation vector k - kg = kyxo + ky,yo + k;Z,. PR

E = Bye ~J(kaXthyy+ks?) — F o —i(KT)

Back in time domain this is: Equiphase planes

— — — — w —
8=E0cos(k-f—a)t+qb)=Eocos(?n-k0-f—wt+¢)

: . w —
where the equiphase planes are given by: —n -k, -7 — wt = cost
C

dr— ¢
ko'r():_:vp

and travel in the direction of k, with phase velocity e -
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Laws of reflection & refraction

Consider two media with different index ny and n,. In order to satisfy the boundary
conditions a reflected and a refracted wave are produced.

« The angle of reflection is equal to the
angle of incidence (law of reflection):

L0 =6
» The angle of refraction is given by (Snell law):

[nosin(ei) = n,sin(6;) ]

E.g. going from a medium with lower n to a larger one, the angle of
propagation of the refracted wave gets closer to the normal to the interfaces.

P.S.: Have fun with this nice optics simulator at https://ricktu288.github.io/ray-optics/ ©
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https://ricktu288.github.io/ray-optics/

Ray optics

Now let's consider n(7), i.e. a refraction index varying in space.
(1)2
c

—n(P)?E=0 —> VPE+kin(®)’E=0

VZE +
We look for a solution as for a plane wave:

E = E,e ~J(koR(P)

% 72(Ege ~J(oRM)) 4 n(7)2E e ~I(koRM) =
0

The computation of 72(Eye ~/(KoR™)) is rather lengthy and it is
left in appendix for curiosity.
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Ray optics
The result is this:

2 VE,, - VR (f))




Light optics

. Yy
[—ki P2K(7)E, — é/(j//% \VR(?) +3 VEo, - VR(F) + 2 VE, - VR(7) )

For very short wavelengths (light - 400 — 700 nm scale), 1/k, = 0 and the
solution simplifies to:

IVR(P)|? = n(7)? Eikonal equation (gikwv, image)
Or equivalently:

VR(r) = n(r)S(r)

« The energy flows in the direction of VR(7), i.e. the gradient of the wavefronts.
 For a homogeneous medium n = const and R(7) = n/kq(kyx + kyy + k,z)
represents the plane wavefronts (verify that |VR(7)|? = n?).

* By this simplification we pay the price of not being able to describe phenomena
as diffraction, reflection.




Daylife example

Consider a very hot day in summer, asphalt gets hot and the air close to it
expands lowering the refraction index.

y2
n(y) =ngy |1 +ﬁ

We can compute the ray direction:

IVR(®)|* = n(7)*

2 2 5 P 2
a_R + a_R — n(f)z — le 1+ y_ Source: https://www.scienceabc.com
0x dy 0

2
o) y N\
R(x,y) = (nox)Xy + (1 + _2h2> Yo

VR(x,y) (%370 +fo)

IVR(x, )| 2
1+ﬁ

The direction of light rays is then: $(x,y) =

&)
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Daylife example

The ray covers a distance dx with direction given by $(x,y). The gained
altitude dy can be then approximated by:

S
dy ==>d
y =3, 4

From this we have

dx s, h
. . Source: https://www.scienceabc.com
With solution

y = eT(x—=x0)/h

Light bends up (solution with +) emulating a reflection from a wet surface.
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Matrix treatment

The interaction of a wave can be reduced to the study of the interaction of
the ray direction at an object boundary.

x‘k
__________ 00> 0
X0
S
Element’'s matrix: (xl) —
. 0,

M = % = A maghnification
0

MQ Eg

9—1 = D angular magnification
0

&)
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Drift space

Given a point on a wavefront of a ray, if we are in a homogeneous medium, it
will just drift in space:

X
1L —
x0760 / X1, 61
6o
/
0 L S

6, =6, Matrix form X1\ _ Xo\ _[1 L7 (%o
X1 = Xp + L sin 00 = Xp + LHO (01) =M (00) N lo 1 (90)

(paraxial approximation sin 6 = 6 ) N.B.: det(M) =1




Spherical mirror

Let us consider a spherical mirror (concave R>0, convex R<0).

X1 = Xo
01 — _(90 + ZQT)
0 + 0o ==

()961) - [—21/R 2 (?2)
N.B.: det(M) =1

9)
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Curved Interface

Let us consider a curved interface (convex R>0, concave R<0)

f
X1 = Xp
noei = n19t (Sne”’S IaW)
'< Hi =@ + 00 01'
Ht =@ + 81
= x1/R
L 2 1/

|

no(ﬁl/ﬁ + 6y) =ny(x1/R + 6;)
0 (X1 B
n_l(_‘l‘ 90) _xl/R —_ 01

R

1 0 N.B.: det(M) =1 if ny = ny:
X1\ _ | /n X0 this is a result applicable to any
(91) = <—O — 1> /R ng/ny (90) optical system with same

start/end refraction index.




Curved interface: planar interface

For a planar interface we simply take the limit of large radius.




\

Exercise 1: Thick lens

We have derived the basic elements that allow us to derive the matrices for
more complex optical systems by simple matrix multiplication:

1) propagation through a region of uniform index,

2) reflection from a curved mirror

3) transmission through a curved interface of regions with different indices.

Classwork: Derive the ABCD matrix for a thick lens made of material n, =
n surrounded by air (ny = 1). Let the lens have curvatures R, and R; and
thickness d.

What happens for Ry, R; = ? Make a sketch.

=
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Exercise 1: Thick lens

We have derived the basic elements that allow us to derive the matrices for
more complex optical systems by simple matrix multiplication:

1) propagation through a region of uniform index,

2) reflection from a curved mirror

3) transmission through a curved interface of regions with different indices.

Classwork: Derive the ABCD matrix for a thick lens made of material n; =
n surrounded by air (n, = 1). Let the lens have curvatures R, and R, and
thickness d.

What happens for Ry, R; = ? Make a sketch.

) Rl

d
n
1 1 d 1 d 1
_(n_1)<R_O_R_1>+ROR1<2_n_E> 1+R_1<1_E>_




Thin lens

Considering a vanishing length d between the two lens surfaces we have:

1 0

(gi): —(n—-1) <i—i> 1 (;g)

Ry Ry

Which can be written as

o) = [~y 1))

Where f is the focal length given by:

1 1
1/f=n—-1) (— - —) Lens maker’s equation
Ry Ry
When the radii are the same (in modulo): % = (n — 1)%
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Image formation

Given a transfer matrix, we would like to know if, placing an object in front
of the optical system (d,), an image is formed, and where (d;).

=
-1 1) < |
2 NP

To have an image, all the rays should go to the same point regardless
of the angle they start. A point x, is mapped into a point x; regardless
of the angles 6, the rays have which means:

L 4

B = 0 (condition of image formation).




Image formation

If the object is at distance d,, for a thin lens we have:

A I NS

P d0+di<—ld0+1>_ - ! Y *
-/

f




Practical drawing

1) A ray coming parallel to the lens is cross
the axis at the focal point after the lens

— an image from far away is produced in the focal position (d; = f) ! f \

2) A ray passing through the lens center
Is un-deflected

J
N

3) A ray passing through the focal point \
f

before the lens exits parallel.




Principal planes

For a general arrangement of optical elements starting and ending to the
same refraction index there exist two planes such that the system allows
image formation.

GY=I8 21 Bk »1G)

0; | 1P
T L
1 Po ! : I
M_[A+piC ApO+B+pipOC+pl-D] A S B ) : '&s
B C Cp, + D
1-A
A+pC=1->p=——
D+p,C=1 5 Pp=—— - Ap, + B + pip,C +p;D =1 det(l\/\{)z 0
1 (86/7)
= — e”afsf
ferr &

6/70,)




Principal planes

For a general arrangement of optical elements starting and ending to the
same refraction index there exist two planes such that the system allows
image formation.

GY=I8 21 Bk »1G)

i

— -
1 Po | : I
M—[Aﬂ?iC Apo+B+pipoC+piD] SN | | -§
B C Cp, + D
\ J
Y
11 0 The planes passing by p, and p; are
M=|_ 1 called principal planes: from there any
fers system will look like a thin lens system.




Principal planes

For a generic system with equal start/end refractive index, we can rewrite
the condition for image formation:

f

1 1 1 _ . .
d. + 47 image condition - — T—oi \
d-: d, 'Po | | ‘
< M= —d—‘ magnification LT B N
d, o
Mg = —— angular magnification
s d;

These are the same result as of the thin lens case, with exception that now the
length is taken with respect to the principal planes.

&)
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Practical experiment

Find the focal length of the given lens.

You can help yourself with a light ©

The refraction index of glass is n~1.5: what is the curvature radius of the lens
in the thin lens assumption?




Exercise 2

Find the image position and magnification of an object placed 30 cm apart from a
thick lens of d = 1 cm thickness, in/out radii of 20 cm, made of glass.

Reminder: a thick lens is a complex system, distances need to be computed from the
principal planes.




Light transport

Suppose we want to focus light at a large distance.
A single lens would not do a great job..




Light transport

Sequence of F-D lenses spaced by L/2 drift:

FODO = ll/f 1] o ] ll/f 1] o ]

| |
1 1
| |
1

|

| |

‘ O I ) :
- : ‘

L

FODO =
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Light transport

Repeating the FODO cell we can focus light from one point to another.

A B1"
. — n _
For n cells: M = FODO c D

Starting and ending to the same refraction index, det(M) = 1.
We can apply Sylvester’s theorem which states:

AsinNO —sin(N — 1)6 BsinN 6
n _
FODO™ = sin 6 CsinN &6 DsinN@ —sin(N — 1)6
: 1 0 is real & stabilit 1
with cos 6 = 2 (4 + D) 2 stabilty_q ‘E(A+D)‘S1

=
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Light transport

In a FODO cell:
_1 -+ L L+ o
ropo=| 4f 2
L . L L
L 2f? 2f 47
The terms 4 and D are:
A=1 L
ToF
D=1 L_ L
T 2f 4f

The stability of the FODO transport system is ensured if:

1 L
(37

1
— —
‘2 (4+ D)| =1 FODO transport

<1 — [ L< 4'f } Stability for a

&)
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Light transpart

In a FODO cell:
[ L

LZ

for transverse particle optics in
A.Latina’s lecture next week!

You will see the same stability condition

14—
2f
L

L+—
FODO = Uas.

L el
1 ——
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Example of light transport between focusing/defocusing lenses with f = 100.




The not so ideal world...




Spherical aberrations

* In circular mirrors different focal length for large angles smears the focus in a
so-called caustic line.
« We can use parabolic mirror or additional lens corrections to prevent this.

9)

NS



Chromatic aberrations |

Refractive index depends on wavelength — nicely decomposed in rainbows
(primary and secondary depending on number of reflection in rain drops).

9)
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Chromatic aberrations ||

Also a thin lens exhibit different focusing depending on wavelength
(“chromaticity” of the lens).

<

Keep “chromaticity” word in mind — key parameter in accelerator design and
control.




Appendix




Recall of some vector relations

Nabla operator in cartesian coordinates:

V= dA+dA+dA
B dxx dyy dzZ

If S is a vector field and ¢ a scalar function we have:
V-(¢pS)=¢V-S+ STvgp

The gradient of a vector field is a dyadic:
Vs =[VSy VS, V5]

Taking the divergence we get back a vector:

d V-VS,
V-(Vf) = [_Xf +—9 + —2] [VSxy VS, VS,]= same with VS,

same with VS,




Eikonal equation derivation

1 _ . _ _ . _
2 V2(Eye _J(koR(T))) + n(F)2E,e ~J(koR(M) =
0

We need to compute V2f = 7 - (Vf) with f = Ege ~J(koR(®)
The V£ is a dyadic:
V(Ege ~J(oRM)) = (—jkoVR(F)E, + VEy)e ~I(koR(M)
—JjkoVR - Egy + VEg
= same with VE,,, e ~J(koR(7)

same with VE, ,
v - (Vf) is then given by

7 - ((—jkoVR - Eox + VEq)e ~1(koR™))

same with VE ,,

same with VE, ,




Eikonal equation derivation

For the x component we have:

V- (_jkOVR(F)EOxe —j(koR(T)) + VE, e —j(koR(f))) —e —j(koR(D)) .

- (—jiko V2R(F)Eox — jkoVEq - VR(F) — k3VR(F)Eq xVR(F) + V2Eqx — jkoVEq - VR(7))

And for all three components:

—jko V2R(F)Eo, — 2jkoVEoy - VR(F) + V?Eq, — k3EqVR(F) - VR()]e ~/(koR(M)
:—jko VZR(f)EO,y — 2jkoVEyy - VR(¥) + Von,y _ kgEo,yVR(f) . VR(f)]e —j(koR(M)
—jko V2R(F)Eq , — 2jkoVE, , - VR(F) + V2E, , — k3E, ,VR(F) - VR(7)]e ~/(koR(D)

L) ®
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