

Synchrotron Radiation — **Exercises 2**

Rasmus Ischebeck

January 2019

1 Applications

Why are synchrotrons important for science?

2 Orbit Correction

Which devices are used to measure and correct the orbit inside a synchrotron?

3 Instrumentation

How would you measure the bunch length in a synchrotron?

4 Detection

What possibilities exist to detect X-Rays?

5 Monochromators

What dispersive element is used to monochromatize X-Rays? What differences exist to monochromators for visible light?

6 Refractive Index

The passage of electromagnetic radiation can be described classically by an index of refraction. What are the properties of the index of refraction of most materials at X-ray wavelengths?

7 DLSRs

How do longitudinal gradient bends contribute towards the goal of achieving a lower horizontal emittance in a diffraction limited storage ring?

8 Diffraction

Why is diffraction often used in place of imaging when using X-rays? What is the $phase\ problem$ in X-ray diffraction?

9 Crystals

Which of the following are crystalline? More than one answer is possible.
The glass on the screen of my mobile phone
The sapphire glass on an expensive watch
O Asbestos
O Icing sugar

10 Absorption and Diffraction

A scientist wants to record a diffraction pattern of a silicon crystal at a photon energy of 8 keV. What is the optimum thickness of the crystal, that maximizes the intensity of the diffracted spot?

Hint: you can find the mass absorption coefficient of silicon on page 1-41 (page 49 in the PDF) of the X-Ray Data Booklet, and the density on page 5-5 (page 153).