JUAS 2019 – RF Exam

 $\mu = \mu_0 \mu_r$ $\mu_0 = 4\pi \cdot 10^{-7} \text{ Vs/(Am)}$ $\mathcal{E} = \mathcal{E}_0 \mathcal{E}_r$ $\varepsilon_0 = 8.854 \cdot 10^{-12} \text{ As/(Vm)}$ $c_0 = 3 \cdot 10^8 \,\mathrm{m/s}$

Name:

____ Points: _____ of 20 (25 with bonus points)

Utilities: JUAS RF Course 2019 lecture script, personal notes, pocket calculator, ruler, compass, and your brain!

(No cell- or smartphone, no iPad, laptop, or wireless devices, no text books or any other tools!!!) Please compute and write your formulas and results clear and readable, if appropriate on a separate sheet of paper. Any unreadable parts are considered as wrong.

1. Understanding the "Pillbox" Cavity

An unloaded, simple cylindrical "pillbox" cavity has a radius of a = 0.23 m, and is of height h. For the prototype tests the cavity is operated in air, the beam-pipe ports are neglected.

a) What is the fundamental mode of the cavity, used to accelerating particles? Determine the resonance frequency of the fundamental (accelerating) mode?

(½ point)

Fundamental mode: TM_{010} or E_{010}

$$a = 0.383\lambda = 0.383 \frac{c_0}{f_{TM010}} \Rightarrow f_{TM010} = \frac{0.383}{a} = 500 MHz$$

b) Indicate qualitatively (as graph below) the electric field strength as function of the radius $|\vec{E}| = f(r)$ of the fundamental mode. It is proportional to which function? $(\frac{1}{2} point)$

Bessel function of 0th order

c) Indicate qualitatively (as graph below) the magnetic field strength as function of the radius $|\vec{H}| = f(r)$ of the fundamental mode. It is proportional to which function? (½ point)

d) Which are the dominant electric and magnetic field components of the fundamental (accelerating) mode (in cylindrical coordinates r, φ, z)?
Hint: There is only one dominant component for each field type, one for the electric field and one for the magnetic field.

 E_z and H_{φ}

e) The cavity should be made out of stainless steel, which has a conductivity of $\sigma_{SS} = 1.32 \cdot 10^6 S/m$.

Which has to be the value of the cavity height h to achieve a Q-value of approximately $Q \approx 6000$? (1 point)

$$\delta_{SS} = \sqrt{\frac{2}{\omega_{TM010}\sigma_{SS}\,\mu}} = \sqrt{\frac{2}{2\,\pi\,f_{TM010}\,\sigma_{SS}\,\mu_0}} = 19.6\,\mu m$$
$$h = \frac{a}{\frac{a}{\delta Q} - 1} = 0.241\,m$$

f) What is the "R-over-Q" of this fundamental mode?Can we use the approximate equation to compute R-over-Q?

(½ point)

$$\frac{h}{a} = 1.05 > 0.5 \text{ the approximation cannot be used!}$$
$$\frac{R}{Q} = 128 \frac{\sin^2(1.2024 \ h/a)}{h/a} = 110.7$$

g) Determine the lumped elements R, L, and C of the equivalent parallel R-L-C circuit.

(1½ points)

$$R = \frac{R}{Q}Q = 664.2 \,k\Omega$$
$$L = \frac{R/Q}{2 \,\pi \, f_{TM010}} = 35.3 \,nH$$
$$C = \frac{1}{R/Q} \, 2 \,\pi \, f_{TM010} = 2.88 \,pF$$

h) Which is the frequency of the closest higher-order mode? (1 point)
Of which type is that mode?
Hint: Make use of the Mode chart for a Pillbox cavity – Version 1

$$\frac{h}{2a} = 0.524$$

from the mode chart follows:

$$\frac{\lambda_{TM010}}{2a} = 1.3 \text{ and } \frac{\lambda_{TE111}}{2a} \approx 0.89$$
$$\Rightarrow f_{TE111} = \frac{c_0}{2a \cdot 0.89} = 730 \text{ MHz}$$

The mode is of type TE_{111}

i) Bonus question:

What is the unloaded-Q value of the closest higher-order mode? $-\frac{3}{2}$

$$Q_{TE111} = 0.206 \frac{\lambda_{TE111}}{\delta_{SS}} \frac{\left[1 + 0.73 \left(\frac{2a}{h}\right)^2\right]^{7/2}}{1 + 0.22 \left(\frac{2a}{h}\right)^2 + 0.51 \left(\frac{2a}{h}\right)^3} = 5428$$

2. Multiple choice

(4 points)

(½ point)

Tick **one** correct answer like this: X.

- 1. An amplifier is a
 - passive 2-port
 - reciprocal 2-port
 - 🗙 non-reciprocal 2-port
- 2. A circulator is
 - \circ non-reciprocal and active
 - o reciprocal and active
 - \Join non-reciprocal and passive
- 3. The measurement of the 3-dB bandwidth of a resonant mode of a cavity in transmission gives
 - \circ the unloaded Q-value Q_0
 - \leftthreetimes the loaded Q-value Q_L
 - the external Q-value Q_{ext}
- 4. To reduce the physical length of a microstrip-line, by maintaining the electrical length, you can
 - 💢 increase the permittivity of the substrate material
 - o decrease the width of the microstrip-line
 - $\circ \quad$ reduce the conductivity of the microstrip-line metal
- 5. A RF signal of $1 V_{RMS}$ is divided by using an ideal, lossless 2-way power splitter (T-splitter). What is the signal level measured at each of the two ports which are terminated with loads:
 - \circ 1 V_{RMS}
 - \times 0.707 V_{RMS}
 - \circ 0.5 V_{RMS}
- 6. Which is the fundamental mode (lowest cut-off frequency) in a cylindrical waveguide of circular cross-section *without* inner conductor?
 - 🗙 TE
 - o TEM
 - o TM

- 7. Which is the fundamental mode (lowest cut-off frequency) in a cylindrical waveguide of circular cross-section *with* inner conductor (coaxial line)?
 - o TE
 - 🗙 tem
 - **TM**
- 8. Adding capacitive loading to a cavity
 - o increases the resonance frequency
 - ★ decreases the resonance frequency
 - o does not change the resonance frequency

3. Smith chart

(3+1½ points)

The locus of the impedance of a resonant mode is given in the complex impedance plane (Z-plane).

- a) Transform the impedance points at the frequencies f_1 , f_2 and f_3 into the Smith chart. For the impedance normalization, assume a reference impedance of $Z_0 = 50 \Omega$. (½ point)
- b) Indicate the locus of impedance in the Smith chart. (1/2 point)
- c) Indicate the resonance frequency in both, in the Z-plane and in the Smith chart. (½ point) (select between f_1 , f_2 and f_3)

 f_2

d) Indicate the 3-dB frequency points in both, in the Z-plane and in the Smith chart. (½ point) (select between f_1 , f_2 and f_3)

 f_{1}, f_{3}

e) Is the resonant mode critical, under-critical or over-critical coupled? (½ point) What is the reflection coefficient Γ at the resonance frequency? (*Hint: Make use of the rulers at the bottom of the Smith chart*)

The resonance mode is over-critical coupled.

$$\Gamma = \frac{Z - Z_0}{Z + Z_0} = \frac{Z(f_2) - Z_0}{Z(f_2) + Z_0} = \frac{(100 - 50) \,\Omega}{(100 + 50) \,\Omega} = 0.333$$

f) Assume: $f_1 = 399.95 MHz$, $f_2 = 400.00 MHz$ and $f_3 = 400.05 MHz$. (½ point) Compute the Q-value of the resonance.

$$Q = \frac{f_0}{\Delta f} = \frac{f_2}{f_3 - f_1} = 4000$$

g) Bonus question:

The resonator is coupled by a loop which has a transformation ratio k = 50. What are the values of a R-L-C equivalent parallel circuit? (1½ points)

$$R = R(f_2) k^2 = 100 \ \Omega \cdot 50^2 = 250 \ k\Omega$$
$$\frac{R}{Q} = 62.5$$
$$L = \frac{R/Q}{2\pi f_2} = 24.87 \ nH$$
$$C = \frac{1}{2\pi f_2 R/Q} = 6.37 \ pF$$

4. S-Parameters

(3+1 points)

Match the ideal S-parameters in matrix form to the corresponding components.

$$\boldsymbol{S}_{A} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \boldsymbol{S}_{B} = \begin{bmatrix} 0 & \frac{j}{2} & 0.866 & 0 \\ \frac{j}{2} & 0 & 0 & 0.866 \\ 0.866 & 0 & 0 & \frac{j}{2} \\ 0 & 0.866 & \frac{j}{2} & 0 \end{bmatrix} \quad \boldsymbol{S}_{C} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \boldsymbol{S}_{D} = \begin{bmatrix} 0 & -j \\ -j & 0 \end{bmatrix}$$

a) Assign the S-matrices $(S_A \dots S_D)$ to the components:

component	6 dB directional coupler	transmission line, electrical length = $\lambda/4$	resistive power divider	circulator
S-matrix	S _B	S _D	S _A	S _c

- b) Fill the missing dB (coupler) and λ (transmission-line) information (...). (1 point)
- c) Bonus question: (1 point)

What has to done to modify a circulator into an isolator?

One of the ports has to be terminated with a load of the reference impedance.

What is the S-matrix of an ideal isolator?

$S_{isolator} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

5. Coaxial cable

A transmission-line in form of a coaxial cable has to be investigated. The dielectric material is air, the characteristic impedance should be $Z_L = 60 \Omega$. For the inner conductor a metallic rod of diameter d = 2 mm is available.

a) What is the inner diameter *D* of the outer conductor?

$$Z_{l} = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}} \frac{\ln\left(\frac{D}{d}\right)}{2\pi\sqrt{\varepsilon_{r}}}} \approx 60 \ \Omega \frac{\ln\left(\frac{D}{d}\right)}{\sqrt{\varepsilon_{r}}} \Rightarrow D = e^{1}d = 5.44 \ mm$$

b) What is the phase velocity?

$$v_{ph} = \frac{c_0}{\sqrt{\varepsilon_r}} = 3 \cdot 10^8 \, m/s$$

c) Now the cable is filled with a dielectric material which has a relative permittivity of $\varepsilon_r = 2.25$. For this case, calculate the characteristic impedance and phase velocity.(2 points)

$$Z_{l} = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \frac{\ln\left(\frac{D}{d}\right)}{2\pi\sqrt{\varepsilon_{r}}} \approx 60 \ \Omega \frac{\ln\left(\frac{D}{d}\right)}{\sqrt{\varepsilon_{r}}} = 40 \ \Omega$$
$$v_{ph} = \frac{c_{0}}{\sqrt{\varepsilon_{r}}} = 2 \cdot 10^{8} \ m/s$$

d) Bonus question:

To which maximum frequency (approximately) this cable with dielectric can be utilized for a

(1 point)

(1 point)

(2 points)

(4+2 Points) lectric material

signal transmission free of higher-order modes?

With increasing frequency non-TEM modes can appear in the coaxial cable, the 1st mode is of TE_{11} nature, similar to that of a waveguide with circular cross-section: $\lambda_{WG_TE11} = \pi a$

The radius of the waveguide a has to be replace by the average radius of the coaxial conductor arrangement (D + d)/2:

$$\lambda_{coax_TE11} = \pi \left(\frac{D+d}{2}\right)$$

$$\Rightarrow f_{coax_TE11} = \frac{v_{ph}}{\lambda_{coax_TE11}} = \frac{c_0}{\sqrt{\varepsilon_r}} \frac{1}{\pi \left(\frac{D+d}{2}\right)} = 17.1 \ GHz$$