$$
\begin{aligned}
& \mu=\mu_{0} \mu_{r} \\
& \mu_{0}=4 \pi \cdot 10^{-7} \mathrm{Vs} /(\mathrm{Am}) \\
& \varepsilon=\varepsilon_{0} \varepsilon_{r} \\
& \varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{As} /(\mathrm{Vm}) \\
& c_{0}=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Name: \qquad Points: \qquad of 20 (25 with bonus points)
Utilities: JUAS RF Course 2019 lecture script, personal notes, pocket calculator, ruler, compass, and your brain! (No cell- or smartphone, no iPad, laptop, or wireless devices, no text books or any other tools!!!) Please compute and write your formulas and results clear and readable, if appropriate on a separate sheet of paper. Any unreadable parts are considered as wrong.

($6+1 / 2$ points)

1. Understanding the "Pillbox" Cavity

An unloaded, simple cylindrical "pillbox" cavity has a radius of $a=0.23 m$, and is of height h. For the prototype tests the cavity is operated in air, the beam-pipe ports are neglected.
a) What is the fundamental mode of the cavity, used to accelerating particles? Determine the resonance frequency of the fundamental (accelerating) mode?

Fundamental mode: $T M_{010}$ or E_{010}
$a=0.383 \lambda=0.383 \frac{c_{0}}{f_{T M 010}} \Rightarrow f_{T M 010}=\frac{0.383}{a}=500 \mathrm{MHz}$
b) Indicate qualitatively (as graph below) the electric field strength as function of the radius $|\vec{E}|=f(r)$ of the fundamental mode. It is proportional to which function?

Bessel function of $0^{\text {th }}$ order

c) Indicate qualitatively (as graph below) the magnetic field strength as function of the radius $|\vec{H}|=f(r)$ of the fundamental mode. It is proportional to which function? (1⁄2 point)

d) Which are the dominant electric and magnetic field components of the fundamental (accelerating) mode (in cylindrical coordinates r, φ, z)? Hint: There is only one dominant component for each field type, one for the electric field and one for the magnetic field.
E_{z} and H_{φ}
e) The cavity should be made out of stainless steel, which has a conductivity of $\sigma_{S S}=1.32 \cdot 10^{6} \mathrm{~S} / \mathrm{m}$.
Which has to be the value of the cavity height h to achieve a Q -value of approximately

$$
Q \approx 6000 ?
$$

$\delta_{S S}=\sqrt{\frac{2}{\omega_{T M 010} \sigma_{S S} \mu}}=\sqrt{\frac{2}{2 \pi f_{T M 010} \sigma_{S S} \mu_{0}}}=19.6 \mu \mathrm{~m}$
$h=\frac{a}{\frac{a}{\delta Q}-1}=0.241 \mathrm{~m}$
f) What is the "R-over-Q" of this fundamental mode?

Can we use the approximate equation to compute R -over- Q ?
$\frac{h}{a}=1.05>0.5$ the approximation cannot be used!
$\frac{R}{Q}=128 \frac{\sin ^{2}(1.2024 h / a)}{h / a}=110.7$
g) Determine the lumped elements R, L, and C of the equivalent parallel $R-L-C$ circuit.
(11/2 points)
$R=\frac{R}{Q} Q=664.2 k \Omega$
$L=\frac{R / Q}{2 \pi f_{T M 010}}=35.3 \mathrm{nH}$
$C=\frac{1}{R / Q 2 \pi f_{T M 010}}=2.88 p F$
h) Which is the frequency of the closest higher-order mode?

Of which type is that mode?
Hint: Make use of the Mode chart for a Pillbox cavity - Version 1
$\frac{h}{2 a}=0.524$
from the mode chart follows:
$\frac{\lambda_{\text {TM010 }}}{2 a}=1.3$ and $\frac{\lambda_{\text {TE111 }}}{2 a} \approx 0.89$
$\Rightarrow f_{\text {TE111 }}=\frac{c_{0}}{2 a \cdot 0.89}=730 \mathrm{MHz}$
The mode is of type $T E_{111}$

i) Bonus question:

What is the unloaded-Q value of the closest higher-order mode?
$Q_{\text {TE111 }}=0.206 \frac{\lambda_{\text {TE111 }}}{\delta_{S S}} \frac{\left[1+0.73\left(\frac{2 a}{h}\right)^{2}\right]^{3 / 2}}{1+0.22\left(\frac{2 a}{h}\right)^{2}+0.51\left(\frac{2 a}{h}\right)^{3}}=5428$

2. Multiple choice

(4 points)
Tick one correct answer like this:

1. An amplifier is a

- passive 2-port
- reciprocal 2-port

W non-reciprocal 2-port
2. A circulator is

- non-reciprocal and active
- reciprocal and active

W non-reciprocal and passive
3. The measurement of the 3-dB bandwidth of a resonant mode of a cavity in transmission gives

- the unloaded Q-value Q_{0}

W the loaded Q-value Q_{L}

- the external Q-value $Q_{\text {ext }}$

4. To reduce the physical length of a microstrip-line, by maintaining the electrical length, you can

X increase the permittivity of the substrate material

- decrease the width of the microstrip-line
- reduce the conductivity of the microstrip-line metal

5. A RF signal of $1 V_{R M S}$ is divided by using an ideal, lossless 2-way power splitter (T-splitter). What is the signal level measured at each of the two ports which are terminated with loads:

$$
\begin{array}{cl}
\circ & 1 V_{R M S} \\
\text { \& } & 0.707 V_{R M S} \\
\circ & 0.5 V_{R M S}
\end{array}
$$

6. Which is the fundamental mode (lowest cut-off frequency) in a cylindrical waveguide of circular cross-section without inner conductor?

$\not 又$	TE
\circ	TEM
\circ	TM

7. Which is the fundamental mode (lowest cut-off frequency) in a cylindrical waveguide of circular cross-section with inner conductor (coaxial line)?

\circ	TE
$\not \subset$	TEM
\circ	TM

8. Adding capacitive loading to a cavity

- increases the resonance frequency

W decreases the resonance frequency

- does not change the resonance frequency

3. Smith chart

The locus of the impedance of a resonant mode is given in the complex impedance plane (Z-plane).

a) Transform the impedance points at the frequencies f_{1}, f_{2} and f_{3} into the Smith chart. For the impedance normalization, assume a reference impedance of $Z_{0}=50 \Omega$.
b) Indicate the locus of impedance in the Smith chart.
c) Indicate the resonance frequency in both, in the Z-plane and in the Smith chart. (1⁄2 point) (select between f_{1}, f_{2} and f_{3})

f_{2}

d) Indicate the 3-dB frequency points in both, in the Z-plane and in the Smith chart. (select between f_{1}, f_{2} and f_{3})
f_{1}, f_{3}
e) Is the resonant mode critical, under-critical or over-critical coupled?

What is the reflection coefficient Γ at the resonance frequency?
(Hint: Make use of the rulers at the bottom of the Smith chart)

The resonance mode is over-critical coupled.

$$
\Gamma=\frac{Z-Z_{0}}{Z+Z_{0}}=\frac{Z\left(f_{2}\right)-Z_{0}}{Z\left(f_{2}\right)+Z_{0}}=\frac{(100-50) \Omega}{(100+50) \Omega}=0.333
$$

f) Assume: $f_{1}=399.95 \mathrm{MHz}, f_{2}=400.00 \mathrm{MHz}$ and $f_{3}=400.05 \mathrm{MHz}$. Compute the Q -value of the resonance.

$$
Q=\frac{f_{0}}{\Delta f}=\frac{f_{2}}{f_{3}-f_{1}}=4000
$$

g) Bonus question:

The resonator is coupled by a loop which has a transformation ratio $k=50$. What are the values of a R-L-C equivalent parallel circuit?

$$
\begin{aligned}
& R=R\left(f_{2}\right) k^{2}=100 \Omega \cdot 50^{2}=250 \mathrm{k} \Omega \\
& \frac{R}{Q}=62.5 \\
& L=\frac{R / Q}{2 \pi f_{2}}=24.87 \mathrm{nH} \\
& C=\frac{1}{2 \pi f_{2} R / Q}=6.37 \mathrm{pF}
\end{aligned}
$$

4. S-Parameters

Match the ideal S-parameters in matrix form to the corresponding components.

$$
\boldsymbol{S}_{A}=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \quad \boldsymbol{S}_{\boldsymbol{B}}=\left[\begin{array}{cccc}
0 & \frac{j}{2} & 0.866 & 0 \\
\frac{j}{2} & 0 & 0 & 0.866 \\
0.866 & 0 & 0 & \frac{j}{2} \\
0 & 0.866 & \frac{j}{2} & 0
\end{array}\right] \quad \boldsymbol{S}_{C}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \boldsymbol{S}_{D}=\left[\begin{array}{cc}
0 & -j \\
-j & 0
\end{array}\right]
$$

a) Assign the S-matrices $\left(\boldsymbol{S}_{\boldsymbol{A}} \ldots \boldsymbol{S}_{\boldsymbol{D}}\right)$ to the components:

component	6 dB directional coupler	transmission line, electrical length $=\lambda / 4$	resistive power divider	circulator
S-matrix	$\boldsymbol{S}_{\boldsymbol{B}}$	$\boldsymbol{S}_{\boldsymbol{D}}$	$\boldsymbol{S}_{\boldsymbol{A}}$	$\boldsymbol{S}_{\boldsymbol{C}}$

b) Fill the missing dB (coupler) and λ (transmission-line) information (...).
c) Bonus question:

What has to done to modify a circulator into an isolator?

One of the ports has to be terminated with a load of the reference impedance.

What is the S-matrix of an ideal isolator?
$S_{\text {isolator }}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$

5. Coaxial cable

A transmission-line in form of a coaxial cable has to be investigated. The dielectric material is air, the characteristic impedance should be $Z_{L}=60 \Omega$. For the inner conductor a metallic rod of diameter $d=2 \mathrm{~mm}$ is available.
a) What is the inner diameter D of the outer conductor?

$$
Z_{l}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \frac{\ln \left(\frac{D}{d}\right)}{2 \pi \sqrt{\varepsilon_{r}}} \approx 60 \Omega \frac{\ln \left(\frac{D}{d}\right)}{\sqrt{\varepsilon_{r}}} \Rightarrow D=e^{1} d=5.44 \mathrm{~mm}
$$

b) What is the phase velocity?
$v_{p h}=\frac{c_{0}}{\sqrt{\varepsilon_{r}}}=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
c) Now the cable is filled with a dielectric material which has a relative permittivity of $\varepsilon_{r}=2.25$. For this case, calculate the characteristic impedance and phase velocity.(2 points)

$v_{p h}=\frac{c_{0}}{\sqrt{\varepsilon_{r}}}=2 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
d) Bonus question:

signal transmission free of higher-order modes?

With increasing frequency non-TEM modes can appear in the coaxial cable, the $1^{\text {st }}$ mode is of $T E_{11}$ nature, similar to that of a waveguide with circular cross-section:
$\lambda_{W G_{-} T E 11}=\pi a$
The radius of the waveguide a has to be replace by the average radius of the coaxial conductor arrangement $(D+d) / 2$:
$\lambda_{\text {coax_TE11 }}=\pi\left(\frac{D+d}{2}\right)$
$\Rightarrow f_{\text {coax_TE11 }}=\frac{v_{p h}}{\lambda_{\text {coax_TE11 }}}=\frac{c_{0}}{\sqrt{\varepsilon_{r}}} \frac{1}{\pi\left(\frac{D+d}{2}\right)}=17.1 \mathrm{GHz}$

