JUAS 2019 – RF Exam

 $\mu = \mu_0 \mu_r$ $\mu_0 = 4\pi \cdot 10^{-7} Vs / Am$ $\varepsilon = \varepsilon_0 \varepsilon_r$ $\varepsilon_0 = 8.854 \cdot 10^{-12} As / Vm$ $c_0 = 2.998 \cdot 10^8 m / s$

 Name:
 Points:
 of 20 (25 with bonus points)

 Utilities: JUAS RF Course 2019 lecture script, personal notes,

pocket calculator, ruler, compass, and your brain!

(No cell- or smartphone, no iPad, laptop, or wireless devices, no text books or any other tools!!!) Please compute and write your formulas and results clear and readable, if appropriate on a separate sheet of paper. Any unreadable parts are considered as wrong.

 $(6+\frac{1}{2} \text{ points})$

1. Understanding the "Pillbox" Cavity

An unloaded, simple cylindrical "pillbox" cavity has a radius of a = 0.23 m, and is of height h. For the prototype tests the cavity is operated in air, the beam-pipe ports are neglected.

- a) What is the fundamental mode of the cavity, used to accelerating particles? Determine the resonance frequency of the fundamental (accelerating) mode? (½ point)
- b) Indicate qualitatively (as graph below) the electric field strength as function of the radius $|\vec{E}| = f(r)$ of the fundamental mode. It is proportional to which function? (½ point)

c) Indicate qualitatively (as graph below) the magnetic field strength as function of the radius $|\vec{H}| = f(r)$ of the fundamental mode. It is proportional to which function? (½ point)

d)	Which are the dominant electric and magnetic field components of the fundament (accelerating) mode (in cylindrical coordinates r, φ, z)? Hint: There is only one dominant component for each field type, one for the electric one for the magnetic field.	(½ point)
e)	The cavity should be made out of stainless steel, which has a conductivity of $\sigma_{SS} = 1.32 \cdot 10^6 \ S/m$. Which has to be the value of the cavity height h to achieve a Q-value of approximate $Q \approx 6000$?	tely (1 point)
f)	What is the "R-over-Q" of this fundamental mode? Can we use the approximate equation to compute R-over-Q?	(½ point)
g)	Determine the lumped elements R, L, and C of the equivalent RLC parallel circuit. (1	L½ points)
h)	Which is the frequency of the closest higher-order mode? Of which type is that mode? <i>Hint: Make use of the Mode chart for a Pillbox cavity – Version 1</i>	(1 point)
i)	Bonus question: What is the unloaded-Q value of the closest higher-order mode?	(½ point)

(4 points)

2. Multiple choice

Tick **one** correct answer like this: λ .

- 1. An amplifier is a
 - passive 2-port
 - reciprocal 2-port
 - o non-reciprocal 2-port

2. A circulator is

- o non-reciprocal and active
- o reciprocal and active
- non-reciprocal and passive
- 3. The measurement of the 3-dB bandwidth of a resonant mode of a cavity in transmission gives
 - \circ the unloaded Q-value Q_0
 - the loaded Q-value Q_L
 - \circ the external Q-value Q_{ext}
- 4. To reduce the physical length of a microstrip-line, by maintaining the electrical length, you can
 - o increase the permittivity of the substrate material
 - $\circ \quad \text{decrease the width of the microstrip-line}$
 - \circ reduce the conductivity of the microstrip-line metal
- 5. A RF signal of $1 V_{RMS}$ is divided by using an ideal, lossless 2-way power splitter (T-splitter). What is the signal level measured at each of the two ports which are terminated with loads:
 - \circ 1 V_{RMS}
 - 0.707 *V_{RMS}*
 - \circ 0.5 V_{RMS}

- 6. Which is the fundamental mode (lowest cut-off frequency) in a cylindrical waveguide of circular cross-section *without* inner conductor?
 - o TE
 - o TEM
 - **TM**
- 7. Which is the fundamental mode (lowest cut-off frequency) in a cylindrical waveguide of circular cross-section *with* inner conductor (coaxial line)?
 - o TE
 - o TEM
 - o TM
- 8. Adding capacitive loading to a cavity
 - o increases the resonance frequency
 - o decreases the resonance frequency
 - o does not change the resonance frequency

3. Smith chart

(3+1½ points)

The locus of the impedance of a resonant mode is given in the complex impedance plane (Z-plane).

a) Transform the impedance points at the frequencies f_1 , f_2 and f_3 into the Smith chart. For the impedance normalization, assume a reference impedance of $Z_0 = 50 \Omega$. (½ point)

b)	Indicate the locus of impedance in the Smith chart.	(½ point)
c)	Indicate the resonance frequency in both, in the Z-plane and in the Smith chart. (select between f_1 , f_2 and f_3)	(½ point)
d)	Indicate the 3-dB frequency points in both, in the Z-plane and in the Smith chart. (select between f_1 , f_2 and f_3)	(½ point)
e)	Is the resonant mode critical, under-critical or over-critical coupled? What is the reflection coefficient Γ at the resonance frequency? (<i>Hint: Make use of the rulers at the bottom of the Smith chart</i>)	(½ point)
f)	Assume: $f_1 = 399.95 MHz$, $f_2 = 400.00 MHz$ and $f_3 = 400.05 MHz$. Compute the Q-value of the resonance.	(½ point)

g) Bonus question:

The resonator is coupled by a loop which has a transformation ratio k = 50. What are the values of a R-L-C equivalent parallel circuit?

4. S-Parameters

Match the ideal S-parameters in matrix form to the corresponding components.

$$\boldsymbol{S}_{A} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \boldsymbol{S}_{B} = \begin{bmatrix} 0 & \frac{j}{2} & 0.866 & 0 \\ \frac{j}{2} & 0 & 0 & 0.866 \\ 0.866 & 0 & 0 & \frac{j}{2} \\ 0 & 0.866 & \frac{j}{2} & 0 \end{bmatrix} \quad \boldsymbol{S}_{C} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \boldsymbol{S}_{D} = \begin{bmatrix} 0 & -j \\ -j & 0 \end{bmatrix}$$

a) Assign the S-matrices $(S_A \dots S_D)$ to the components:

(2 point)

(1½ points)

(3+1 points)

component	directional coupler	transmission line, electrical length =	resistive power divider	circulator
S-matrix	S _B	S _D	S _A	S _c

b) Fill the missing dB (coupler) and λ (transmission-line) information (...). (1 point)

c) Bonus question:

What has to done to modify a circulator into an isolator? What is the S-matrix of an ideal isolator? (1 point)

5. Coaxial cable

A transmission-line in form of a coaxial cable has to be investigated. The dielectric material is air, the characteristic impedance should be $Z_L = 60 \ \Omega$. For the inner conductor a metallic rod of diameter $d = 2 \ mm$ is available.

a)	What is the inner diameter D of the outer conductor?	(1 point)
b)	What is the phase velocity?	(1 point)

c) Now the cable is filled with a dielectric material which has a relative permittivity of $\varepsilon_r = 2.25$. For this case, calculate the characteristic impedance and phase velocity.(2 points)

d) Bonus question:

(2 points)

To which maximum frequency (approximately) this cable with dielectric can be utilized for a signal transmission free of higher-order modes?

(4+2 Points)

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

