

 Low-energy electron machines

 1. Basic principles of X-ray production

 → bremsstrahlung

 → synchrotron radiation

 2. Physical, chemical and biological aspects of the application of electrons and bremsstrahlung photons

 3. Electron accelerators in medicine
 Gy - range

 4. Electron accelerators in industry
 kGy - range

 5. Electron storage rings for medicine and industry

BEAM

- · well defined
- · variable in size
- moveable in three dimensions
- · variable energy
- · variable intensity
- X-ray ⇔ electron mode
- · pure and well-confined

TREATMENT UNIT

- · reliable and reproducible
- easy maneuvrable
- · simple and fail-safe
- very compact

WM/JUAS

3

Machine requirements							
energy range	4 - 25 MeV						
 intensity range 	0.5 - 50 μA						
• dose rates	1 - 4 Gy / min						
 number of electron energies 	5						
 number of X-ray energies 	2						
 homogeneity of X-ray fields 	5 % over 40 x 40 cm ²						
 homogeneity of electron fields 	5 % over 25 x 25 cm ²						
 leakage doses 	below 10 ⁻³ at 1 m						
 gantry rotation 	360°						
 isocentre definition 	1 mm						
 degrees of freedom 	15 (rotation and translation)						
 good definition at target 	energy, position, direction						
volume	5 x 3 x 3 m ³						

ion neid requirements

DOSE RATE

- high
- irradiation time ~ 1/2 minute
- · accurately monitored
- fail-safe feedback to accelerator

DOSE DISTRIBUTION

- uniform or
- · non-uniform in predefined way
- controllable
- · reproducible
- stable

WM

 Accelerating structures

 Energy:
 4 - 25 MeV

 Length:
 ~ 1 m

 HF power:
 2 - 5 MWp magnetron

 5 - 20 MWp klystron

Disc-loaded waveguides

 Bending magnet systems
 TRANSPORT calculations

 WEAK FOCUSSING BENDING MAGNET
 Field index 0 < n < 1</td>

 Length L
 Bending angle α Bending radius ρ
 $M_{\rm H} = \begin{pmatrix} \cos\sqrt{1-n\alpha} & \frac{\rho\sin\sqrt{1-n\alpha}}{\sqrt{1-n\alpha}} & \frac{\rho(1-\cos\sqrt{1-n\alpha})}{1-n} \\ -\frac{\sqrt{1-n\sin\sqrt{1-n\alpha}}}{\rho} & \cos\sqrt{1-n\alpha} & \frac{\sin\sqrt{1-n\alpha}}{\sqrt{1-n}} \\ 0 & 0 & 1 \end{pmatrix}$
 $M_{\rm V} = \begin{pmatrix} \cos\sqrt{n\alpha} & \frac{\rho\sin\sqrt{n\alpha}}{\sqrt{n}} \\ -\frac{\sqrt{n\sin\sqrt{n\alpha}}}{\rho} & \cos\sqrt{n\alpha} \end{pmatrix}$

<figure>

Medical radioisotope	Medical Isotope	Life- time T _{1/2}	Use	Nuclear Reaction	Target Abun- dance (%)	Energy Range (MeV)	Production Yield (mCi @ sat)	Typical Dose (mCi)
•	11.0			11-22				
	"C	20.4m	PET	''B(p,n)	80.3	8 - 20	40/µA	-
	"C	20.4m	PET	^{1*} N(p,α)	99.6	12	100/µA	
	+*C	20.4m	PET	¹⁰ B(d,n)	19.7	7	10/µA	
Discussofic imaging	¹³ N	9.96m	PET	¹³ C(p,n)	1.1	5 - 10	115/µA	
Diagnostic imaging	¹³ N	9.96m	PET	¹⁴ C(d,n)	98.9	2-6	50/µA	
SDECT	¹³ N	9.96m	PET	¹⁶ O(p,α)	99.8	8 - 18	65/µA	
- OFLOT	100	2m	PET	¹⁵ N(p,n)	0.36	10-15	47/µA	
- PFT	150	2m	PET	¹ °O(p,pn)	99.8	>26	25/µA	
. = .	150	2m	PET	¹⁴ N(d,n)	99.6	8-6	27/µA	
	¹⁸ F	109.8m	PET	¹⁸ O(p,n)	0.20	8 - 17	180/µA	5 - 20
De all'a fle a van v	¹⁸ F	109.8m	PET	²⁰ Ne(d, α)	90.5	2	82/µA	
Radiotherapy	⁶⁴ Cu	12.7h	SPECT	⁶⁴ Ni(p,n)	0.93	5 - 20	5/µA	
ß- emittere	⁶⁷ Cu	61.9h	SPECT	⁶⁸ Zn(p,2p)	19.0	>40	0.02/µA	
- p ennuers	⁶⁷ Ga	78.3h	SPECT	⁶⁸ Zn(p,2n)	19.0	20-40	4.5/µA	10
- α emitters	⁸² Sr/ ^{82m} Rb	25d/5m	PET	⁸⁵ Rb(p,4n) ⁸² Sr Produces Rb	72.2	50 -70	0.18 /µAh	
	^{99m} Tc	6h	SPECT	¹⁰⁰ Mo(p,2n)	9.7	19	14/µAh	20
	101 Pd	17.54	Therapy	Thi(p,n)	100	10-15	0.52/µAh	
	¹¹¹ In	67.2h	SPECT	¹¹² Cd(p,2n)	24.1	18 - 30	6/µAh	3
	123 I	13.2h	SPECT	¹²⁴ Xe(p,2n) ¹²³ Cs → ¹²³ Xe→ ¹²³ I	0.10	25 - 35	27/µAh	
	¹²³ I	13.2h	SPECT	¹²³ Te(d,2n) ¹²³ I	0.89	10-15	20/µAh	
	124I	4.1d	PET	¹²⁴ Te(p,n)	4.7	10 - 18	0.1/µAh	
	124I	4.1d	PET	¹²⁴ Te(d,2n)	4.7	>20	0.15/µAh	
	¹⁸⁶ Re	90.6h	Therapy /SPECT	¹⁸⁶ W(p,n)	28.4	18		
	²⁰¹ T1	73.5h	SPECT	²⁰³ Tl(p,3n) ²⁰¹ Pb → ²⁰¹ Tl	29.5	27 - 35	0.7/µAh	4
	²¹¹ At	7.2h	Therapy	²⁰⁹ Bi(α,n)	100	28	l/μAh	0.05- .01

