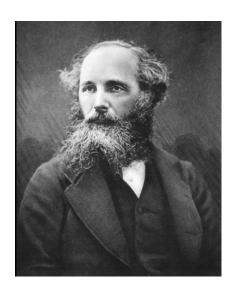


Introduction to RF

Andrea Mostacci University of Rome "La Sapienza" and INFN, Italy



Goal of the lecture

Schedule 2020	Monday Feb 17	Tuesday Feb 18	Wednesday Feb 19	Thursday Feb 20	Friday Feb 21	
09:00						
		Introduction to RF	Vacuum systems	Vacuum systems	RF Engineering	
		A. Mostacci	V. Baglin	V. Baglin	F. Caspers	
10:00 10:15		Coffee Break	Coffee Break	Coffee Break	RF Engineering	
		Introduction to RF	Vacuum systems	Vacuum systems	F. Caspers / M. Wendt / M. Bozzolan	
11:15		A. Mostacci	V. Baglin	V. Baglin	Coffee Break	
11:15		Introduction to RF	Vacuum systems	Vacuum systems		
12:15	12:00 OFFICIAL OPENING (welcome & building visit)	A. Mostacci	V. Baglin / R. Kersevan	V. Baglin / R. Kersevan	Bus leaves at 11:30 from JUAS	
44:00	13:00 WELCOME LUNCH	BREAK	BREAK	BREAK	(Lunch at CERN, R2, offered by ESI)	
14:00	14:00 Presentation of JUAS &	RF Engineering	Vacuum systems	RF Engineering	VISIT	
45.00	Introduction of students P. Lebrun	F. Caspers	V. Baglin	F. Caspers	AT	
15:00 15:15	Coffee Break	RF Engineering	RF Engineering	RF Engineering	CERN	
	Introduction to CERN	F. Caspers	F. Caspers / M. Wendt / M. Bozzolan	F. Caspers / M. Wendt / M. Bozzolan	AD / ELENA LINAC 4	
16:00 16:15	practical days	Coffee Break	Coffee Break	Coffee Break	Vacuum lab	
10.10	Magnet, Superconductivity, RF, Vacuum, CLEAR	RF Engineering	RF Engineering	RF Engineering		
17:15	Tudani, CEE	F. Caspers	F. Caspers	F. Caspers	Bus leaves at 18:00 from CERN	
17:15	CHECK-IN AT THE RESIDENCE	Particle accelerators,	Accelerator driven system Seminar			
18:15	& SHOPPING FOR GROCERIES	instruments of discovery in physics - Seminar (incl. ESIPAP students) - Ph. Lebrun	Seminar (incl. ESIPAP students) <i>M. Baylac</i>			
			AFTER WORK AT ESI			

Goal of the lecture

Show principles behind the practice discussed in the RF engineering module

Andrea.Mostacci@uniroma1.it

Goal of the lecture

Show principles behind the practice discussed in the RF engineering module

Maxwell equations

General review
The lumped element limit
RF fields and particle accelerators
The wave equation
Energy conservation issue
Maxwell equations for time harmonic fields
Fields in media and complex permittivity
Boundary conditions and materials
Plane waves

Boundary value problems for metallic waveguides

The concept of mode

Maxwell equations and vector potentials

Cylindrical waveguides: TM, TE and TEM modes

Solving Maxwell Equations in metallic waveguides

Rectangular waveguide (detailed example)

Reading a simulation of a RF accelerating structure

Outline

Maxwell equations

General review

The lumped element limit

RF fields and particle accelerators

The wave equation

Energy conservation issue

Maxwell equations for time harmonic fields

Fields in media and complex permittivity

Boundary conditions and materials

Plane waves

The concept of mode

Maxwell equations and vector potentials

Cylindrical waveguides: TM, TE and TEM modes

Solving Maxwell Equations in metallic waveguides

Rectangular waveguide (detailed example)

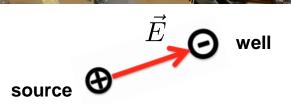
Reading a simulation of a RF accelerating structure

... The universe is written in the mathematical language and the letters are triangles, circles and other geometrical figures ...



Classical electromagnetic theory (Maxwell equations)

1. Charges are the sources of E-field.

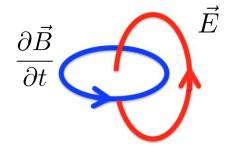


$$\nabla \cdot \vec{E} = \rho / \epsilon_0$$

2. B-field has no sources.

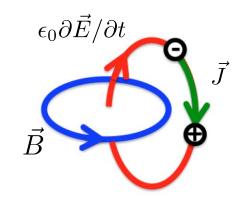
$$\nabla \cdot \vec{B} = 0$$

3.
Time varying E-field and B-field are chained.



$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

4. B-field is chained to current.



$$\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$$

Maxwell equations in vacuum

$$\nabla \cdot \vec{E} = \rho / \epsilon_0$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$$

$$\vec{E}$$

Electric Field

fields

$$(Wb/m^2)$$

Electric Current Density
$$(a/m^2)$$

 $\mu_0 = 4\pi \ 10^{-7} \ (H/m)$

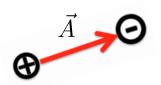
$$\epsilon_0 = 1/c^2 \mu_0 = 8.8542 \ 10^{-12} \ (F/m)$$
 $c = 1/\sqrt{\mu_0 \epsilon_0} = 299792458 \ (m/s)$

$$c = 1/\sqrt{\mu_0 \epsilon_0} = 299792458 \ (m/s)$$

Speed of light

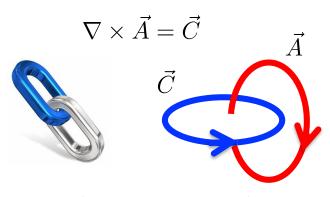
Divergence operator

$$\nabla \cdot \vec{A} = \dots$$



The source of \vec{A} is ...

Curl operator



 \vec{A} is chained to \vec{C}

Some consequences of the IV equation

$$\nabla \times \vec{B} = \mu_0 \left(\epsilon_0 \frac{\partial \vec{E}}{\partial t} + \vec{J} \right)$$

$$0 = \nabla \cdot \nabla \times \vec{B} = \mu_0 \nabla \cdot \left(\frac{\partial \vec{E}}{\partial t} + \vec{J} \right) = 0$$

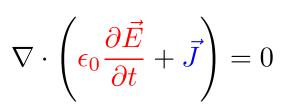
$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

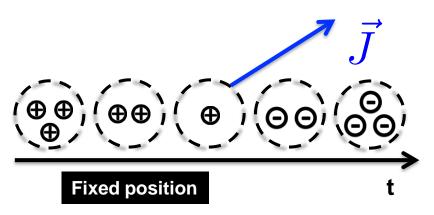
The current density has closed lines.

At a given position the source of J is the decrease of charge in time.

$$\epsilon_0 \frac{\partial \vec{E}}{\partial t}$$
 Displacement current

$$abla \cdot \vec{J} = -rac{\partial
ho}{\partial t}$$
 Continuity equation





Maxwell equations: the static limit

$$\frac{\partial}{\partial t} = 0$$

$$\frac{\partial}{\partial t} = 0 \qquad \nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} = 0$$
 Kirchhoff Laws Ohm Law

Lumped elements (electric networks)

$$\frac{\partial}{\partial t} \approx 0$$

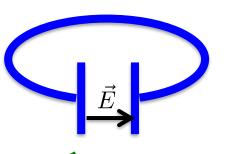
The lumped elements model for electric networks is used also when the field variation is negligible over the size of the network.

$$\frac{\partial}{\partial t} = 0$$

$$\nabla \times \vec{E} = 0$$

The E field is conservative.

The energy gain of a charge in closed circuit is zero.



No static, circular accelerators (RF instead!).

Electrostatics

$$\nabla \times \vec{E} = 0$$

$$\vec{E} = -\nabla V$$

$$abla imes \vec{E} = 0 \implies \vec{E} = -\nabla V \qquad \xrightarrow{\nabla \cdot \vec{E} = 0} \qquad \nabla^2 V = 0$$

$$\nabla^2 V = 0$$

Laplace equation

Charged particle interaction with time varying fields

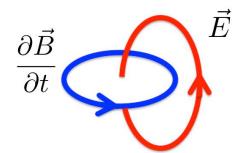
Beam manipulation

Particle acceleration, deflection ...

External sources acting on the beam through EM fields.

RF devices

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$



Parasitic effects

Wakefields and coupling impedance

Extraction of beam energy

Beam Instabilities

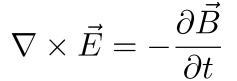
Diagnostics

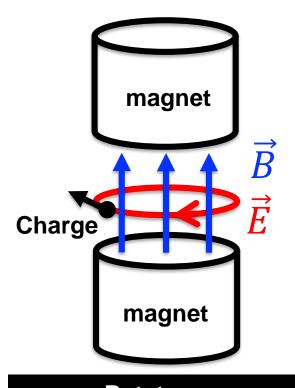
$$\nabla \cdot \vec{E} = \rho / \epsilon_0$$

$$\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$$

$$\vec{J} = \rho \vec{v} = \frac{Q}{2\pi r} \delta(r) \delta(z - vt) \vec{v}$$

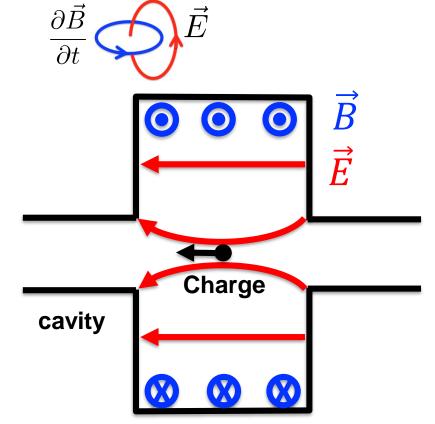
Particle acceleration by time varying fields/





Betatron or "unbunched" acceleration

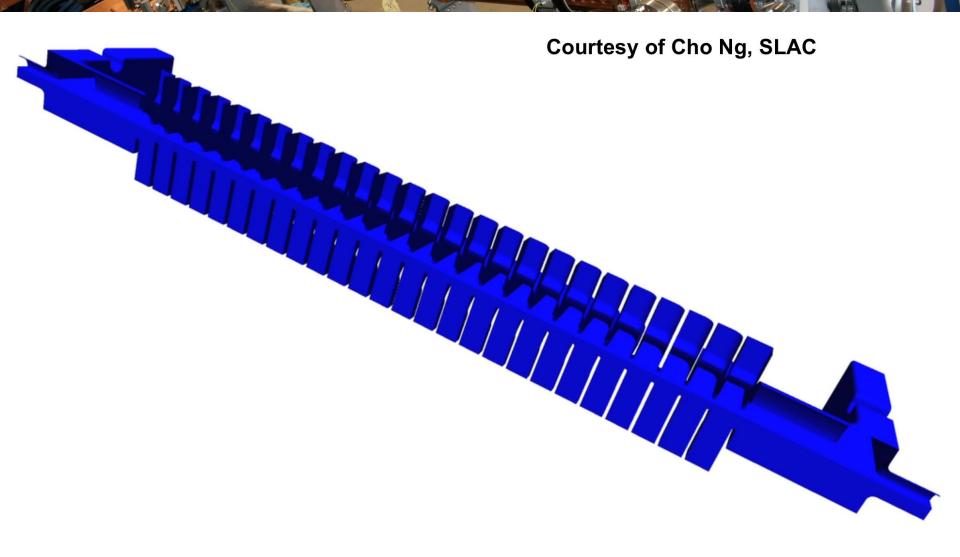
Courtesy of P. Bryant



Resonant or "bunched" acceleration

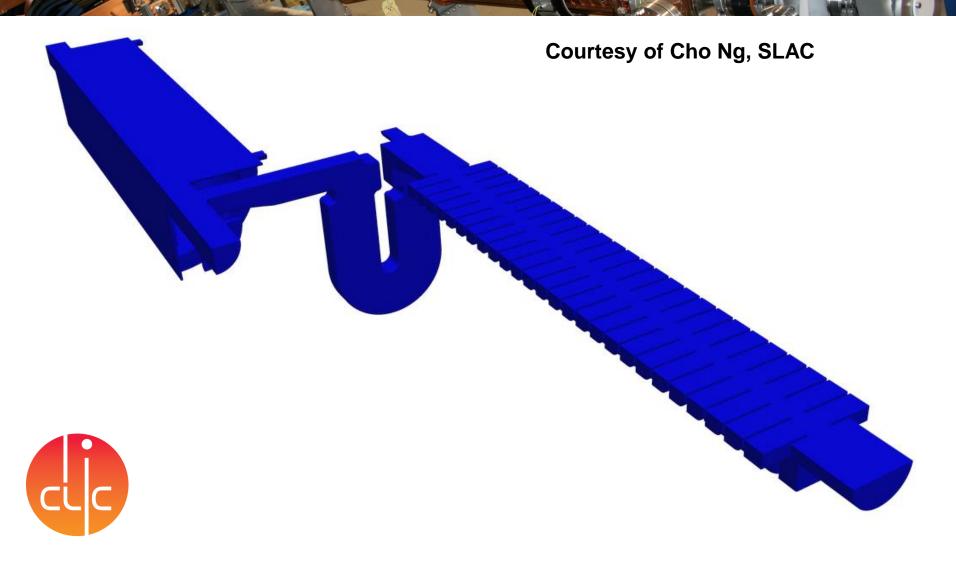
Linear accelerator (LINAC)
Synchrotron

Parasitic effects: the wakefield



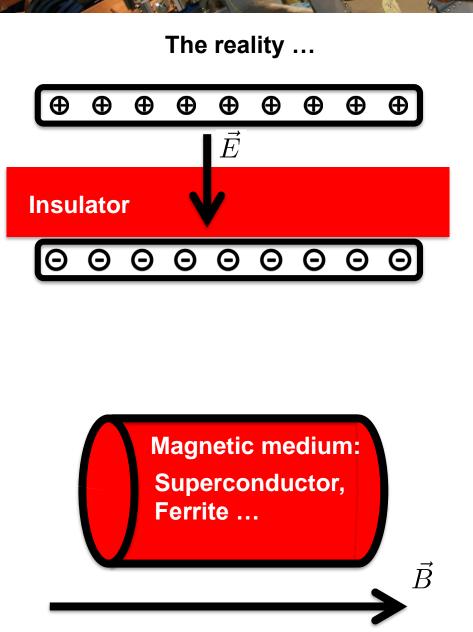
Particle in accelerators are charged, thus they are sources of EM fields ...

Wakefields extract beam energy to EM field

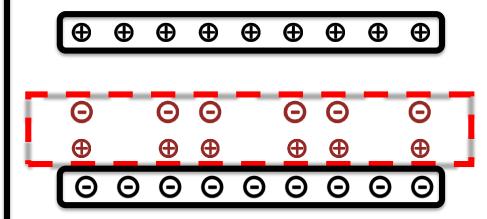


The principle is used in general purpose RF sources (e.g. klystrons) as well as in accelerators (e.g. particle wakefield accelerators)

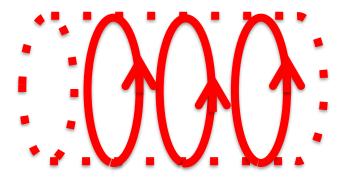
Maxwell equations in matter: the physical approach



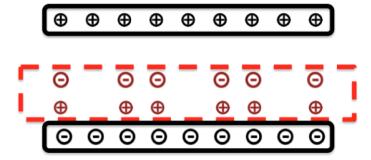
... the model

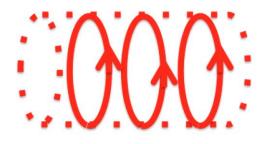


charges and currents IN VACUUM



Maxwell equations in matter: the mathematics





Magnetic materials (ferrite, superconductor)

Polarization charges

Magnetization currents

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

Constitutive relations

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$$

$$ec{D}$$
 Electric Flux Density (C/m)

 $ec{H}$ Magnetic Field (A/m)

$$ec{P}$$
 Electric Polarization (C/m^2)

$$\vec{M}$$
 Magnetization (A/m)

Equivalence Principles in Electromagnetics Theory

Maxwell equations: general expression and solution

$$\nabla \cdot \vec{D} = \rho$$

$$\nabla \cdot \vec{B} = 0$$

$$abla imes ec{H} = rac{\partial ec{D}}{\partial t} + ec{oldsymbol{J}}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Electric Field

 $ec{H}$ Magnetic Field

$$ec{B}$$
 Magnetic Flux Density

$$ec{D}$$
 Electric Flux Density

$$\vec{D}$$
 Electric Flux Density

$$ho$$
 Electric Charge Density \vec{J} Electric Current Density

$$(V/m) \qquad \vec{H} = \frac{\vec{B}}{\mu_0}$$

in vacuum

 (C/m^3)

 (A/m^2)

 (C/m^2)

 (Wb/m^2)

Maxwell Equations: free space, no sources

$$\nabla(\nabla \cdot \vec{E}) - \nabla^{2}\vec{E} = -\nabla^{2}\vec{E}$$

$$|| \nabla \times \nabla \times \vec{E}$$

$$|| -\mu_{0}\frac{\partial}{\partial t}(\nabla \times \vec{H}) = -\mu_{0}\epsilon_{0}\frac{\partial^{2}\vec{E}}{\partial t}$$

$$\nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$

$$\nabla^2 \vec{H} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{H}}{\partial t^2}$$

$$\frac{1}{v^2} = \mu_0 \epsilon_0 \Longrightarrow v = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c$$

$$\overline{\xi_0} = \mu_0 \epsilon_0 \Longrightarrow v = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c$$

Harmonic time dependence and phasors

Assuming sinusoidal electric field (Fourier)

Time dependence
$$\longrightarrow$$
 $e^{j\omega t}=e^{j2\pi f} \ ^t$ \longrightarrow $\frac{\partial}{\partial t}\cdots=j\omega\ldots$

$$ec{E}(ec{r},t)=Re\left\{ ec{E}(ec{r},\omega)e^{j\omega t}
ight\}$$
 Phasors are complex vectors

Power/Energy depend on time average of quadratic quantities

$$\begin{split} \left| \vec{E}(\vec{r},t) \right|^2_{average} \; = \; \frac{1}{T} \int_0^T \vec{E}(\vec{r},t) \cdot \vec{E}(\vec{r},t) dt \; = \; \cdots \; = \; \frac{1}{2} \vec{E}(\vec{r},\omega) \cdot \vec{E}^*(\vec{r},\omega) = \left| \vec{E}_{RMS}(\vec{r},\omega) \right|^2 \\ \left| \vec{E}_{RMS} \right| = \left| \vec{E} \right| / \sqrt{2} \; \text{ } \end{split}$$

In the following we will use the same symbol for

Real vectors

Complex vectors

$$ec{E}(ec{r},t),ec{H}(ec{r},t),\ldots \qquad \qquad ec{E}\left(ec{r},\omega
ight),ec{H}\left(ec{r},\omega
ight),\ldots$$

Note that, with phasors, a time animation is identical to phase rotation.

Energy conservation

bounding (closed) surface



Energy of the e.m. field in the volume τ

$$U = \int_{\tau} \frac{1}{2} \vec{E} \cdot \vec{D} \ d\tau + \int_{\tau} \frac{1}{2} \vec{H} \cdot \vec{B} \ d\tau$$

$$u_{E} \qquad u_{H}$$

$$\frac{\partial U}{\partial t} = \int_{\tau} \left(\vec{E} \cdot \frac{\partial \vec{D}}{\partial t} + \vec{H} \cdot \frac{\partial \vec{B}}{\partial t} \right) d\tau = \frac{\partial}{\partial t} \left(U_E + U_H \right)$$

Using Maxwell equations, vector identities and divergence theorem

Rate of decrease of e.m. energy in
$$\tau$$

$$-\frac{\partial U}{\partial t} = \int_{\tau} \vec{E} \cdot \vec{J} d\tau + \oint_{A} \vec{E} \times \vec{H} \cdot d\vec{A}$$

Energy per unit time transferred from electric field to moving charges in τ

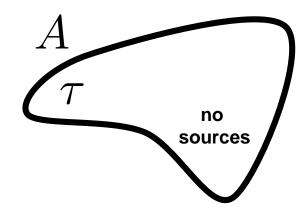
Dissipated power (Joule effect) in τ

E.M. energy flowing through surface A per unit time (exiting from τ)

Radiated power through A

Energy conservation and Poynting theorem

bounding (closed) surface



Poynting theorem (conservation of energy)

$$-\frac{\partial U}{\partial t} = \int_{\tau} \vec{E} \cdot \vec{J} d\tau + \oint_{A} \vec{S} \cdot d\vec{A}$$

$$\vec{S}(\vec{r},t) = \vec{E}(\vec{r},t) \times \vec{H}(\vec{r},t)$$

Poynting vector

$$(W/m^2)$$

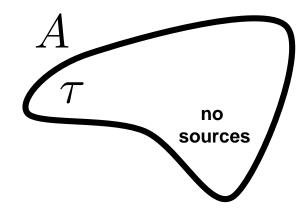
$$\vec{E}\left(\vec{r},t\right) = Re\left\{\vec{E}\left(\vec{r},\omega\right)e^{j\omega t}\right\} = \frac{\vec{E}\left(\vec{r},\omega\right)e^{j\omega t} + \left[\vec{E}\left(\vec{r},\omega\right)e^{j\omega t}\right]^{*}}{2}$$

$$\vec{H}\left(\vec{r},t\right) = Re\left\{\vec{H}\left(\vec{r},\omega\right)e^{j\omega t}\right\} = \frac{\vec{H}\left(\vec{r},\omega\right)e^{j\omega t} + \left[\vec{H}\left(\vec{r},\omega\right)e^{j\omega t}\right]^{*}}{2}$$

$$\vec{S}\left(\vec{r},t\right) = \vec{E}\left(\vec{r},t\right) \times \vec{H}\left(\vec{r},t\right) = Re\left\{\frac{\vec{E}\left(\vec{r},\omega\right) \times \vec{H}\left(\vec{r},\omega\right)^{*}}{2}\right\} + Re\left\{\frac{\vec{E}\left(\vec{r},\omega\right) \times \vec{H}\left(\vec{r},\omega\right) e^{j2\omega t}}{2}\right\}$$

Energy conservation and Poynting theorem

bounding (closed) surface



Poynting theorem (conservation of energy)

$$-\frac{\partial U}{\partial t} = \int_{\tau} \vec{E} \cdot \vec{J} d\tau + \oint_{A} \vec{S} \cdot d\vec{A}$$

$$ec{S}(ec{r},t) = ec{E}(ec{r},t) imes ec{H}(ec{r},t)$$

Poynting vector

 (W/m^2)

$$\vec{S}\left(\vec{r},t\right) = \vec{E}\left(\vec{r},t\right) \times \vec{H}\left(\vec{r},t\right) = Re\left\{\frac{\vec{E}\left(\vec{r},\omega\right) \times \vec{H}\left(\vec{r},\omega\right)^{*}}{2}\right\} + Re\left\{\frac{\vec{E}\left(\vec{r},\omega\right) \times \vec{H}\left(\vec{r},\omega\right) e^{j2\omega t}}{2}\right\}$$

$$\langle \vec{S}(\vec{r},t) \rangle_{\text{period}}$$

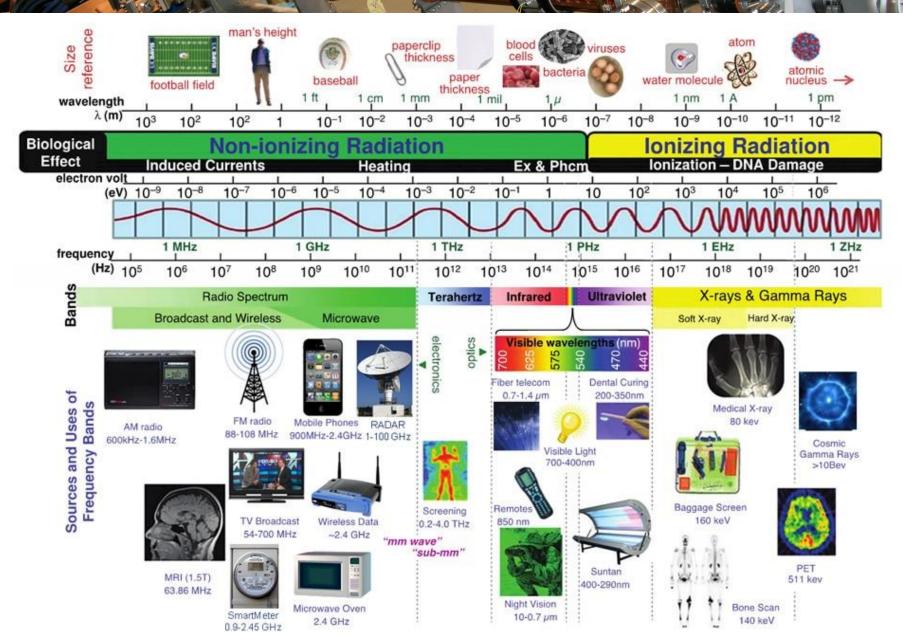
$$\vec{S}(\vec{r},\omega) = \vec{E}(\vec{r},\omega) \times \vec{H}(\vec{r},\omega)^*$$

Phasor of the Poynting vector

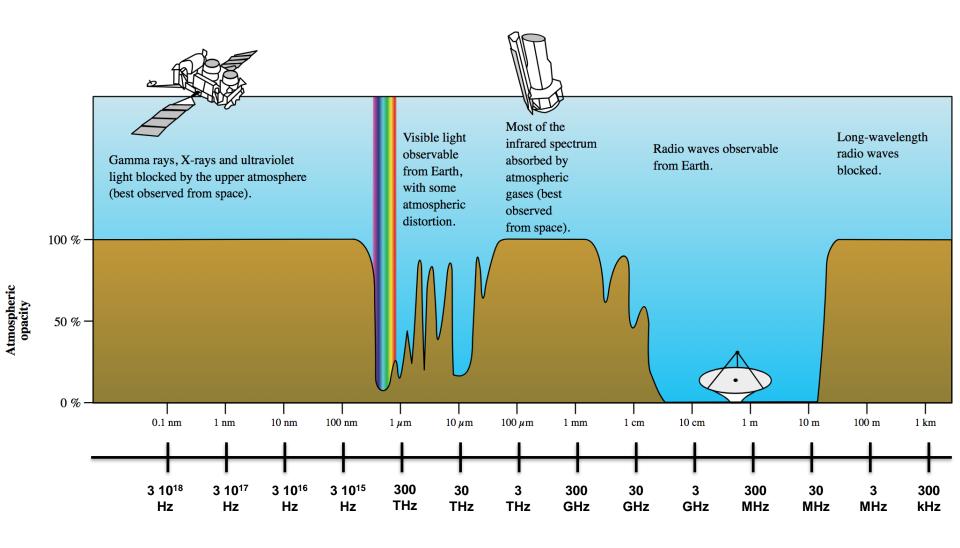
Active power

Reactive power

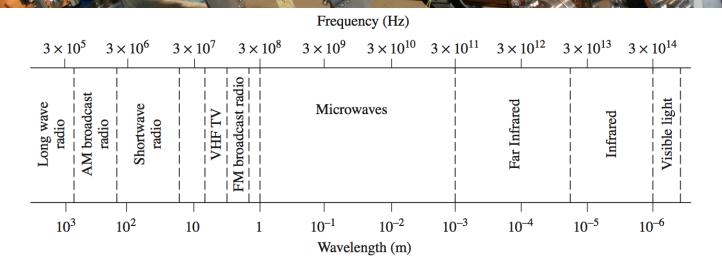
Electromagnetic radiation spectrum

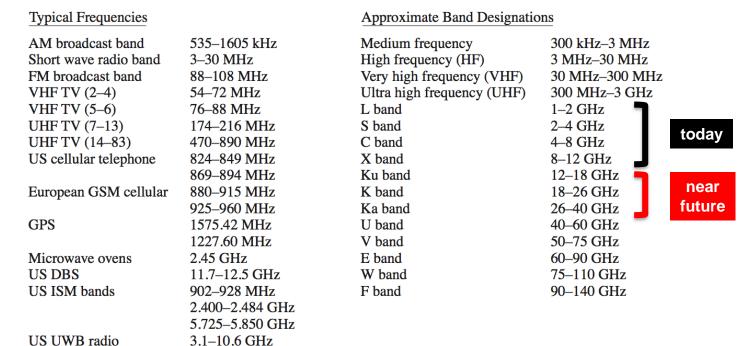


Electromagnetic radiation spectrum: users point of view

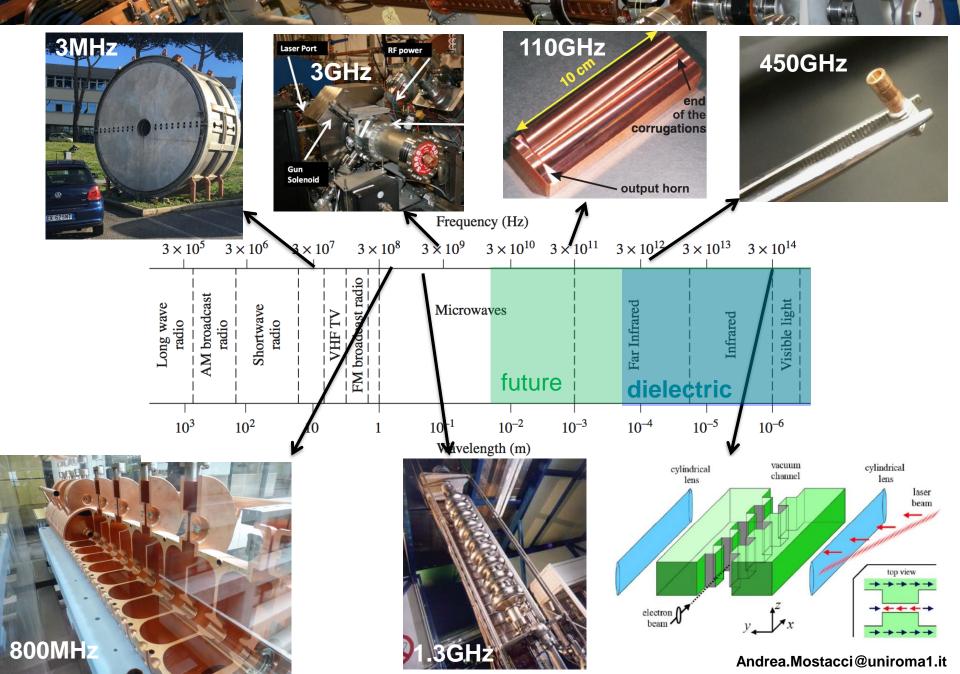


The electromagnetic spectrum for RF engineers

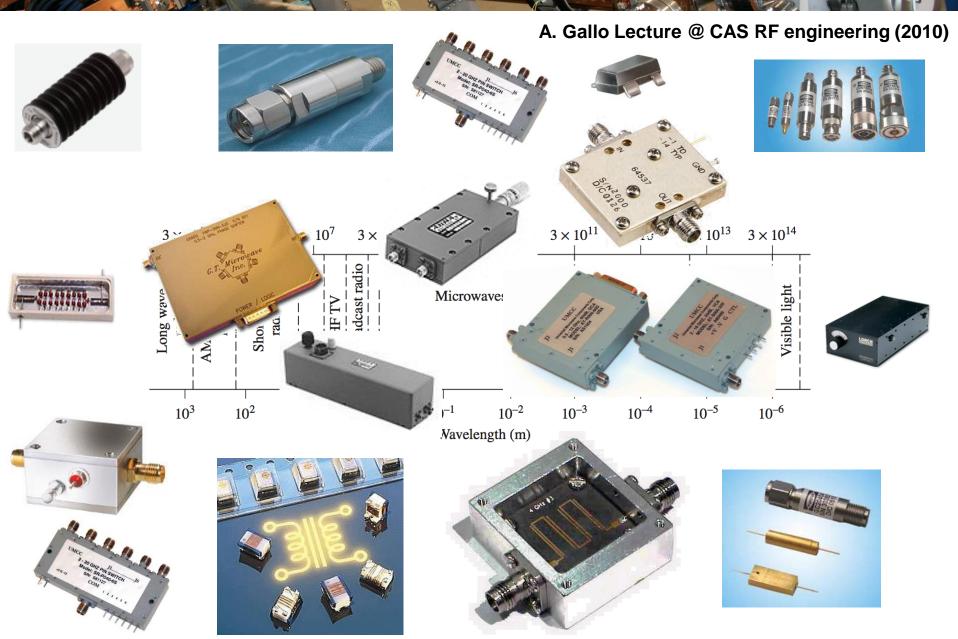




The RF spectrum and particle accelerator evices



The RF spectrum and particle accelerator electronics



Andrea.Mostacci@uniroma1.it

Harmonic fields in media: constitutive relations

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

$$\vec{D} = \epsilon_c \vec{E}$$

$$\epsilon_c = \epsilon' - j\epsilon''$$

 $ec{D}=\epsilon_0ec{E}+ec{P}$ $ec{D}=\epsilon_cec{E}$ $\epsilon_c=\epsilon'-j\epsilon''$ complex permittivity Losses (heat) due to damping of vibrating dipoles $ec{H}=rac{ec{B}}{\mu_0}-ec{M}$ $ec{B}=\muec{H}$ $\mu=\mu'-j\mu''$ complex permeability

$$ec{H}=rac{ec{B}}{\mu_0}-ec{M}$$

$$\vec{B}=\mu\vec{H}$$

$$\mu = \mu' - j\mu''$$

$$\vec{J_c} = \sigma \vec{E}$$

$$\sigma$$
 conductivity

Losses (heat) due to Ohm Law $ec{J_c} = \sigma ec{E}$ σ conductivity (S/m) moving charges colliding with lattice

Material	Conductivity S/m (20°C)	Material	Conductivity S/m (20°C)
Aluminum	3.816×10^7	Nichrome	1.0×10^{6}
Brass	2.564×10^{7}	Nickel	1.449×10^{7}
Bronze	1.00×10^{7}	Platinum	9.52×10^{6}
Chromium	3.846×10^{7}	Sea water	3–5
Copper	5.813×10^7	Silicon	4.4×10^{-4}
Distilled water	2×10^{-4}	Silver	6.173×10^7
Germanium	2.2×10^{6}	Steel (silicon)	2×10^{6}
Gold	4.098×10^7	Steel (stainless)	1.1×10^{6}
Graphite	7.0×10^4	Solder	7.0×10^{6}
Iron	1.03×10^{7}	Tungsten	1.825×10^{7}
Mercury	1.04×10^{6}	Zinc	1.67×10^{7}
Lead	4.56×10^{6}		

Harmonic fields in media: Maxwell Equations

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$
 $\vec{D} = \epsilon_c \vec{E}$ $\epsilon_c = \epsilon' - j\epsilon''$

$$\vec{D} = \epsilon_c \vec{E}$$

$$\epsilon_c = \epsilon' - j\epsilon''$$

complex permittivity

Losses (heat) due to damping of vibrating dipoles

$$ec{H}=rac{ec{B}}{\mu_0}-ec{M}$$
 $ec{B}=\muec{H}$ $\mu=\mu'-j\mu''$ complex permeability

$$\vec{B} = \mu \vec{H}$$

$$\mu = \mu' - j\mu''$$

$$\vec{J_c} = \sigma \vec{E}$$

Ohm Law
$$ec{J_c} = \sigma ec{E}$$
 σ conductivity (S/m)

Losses (heat) due to moving charges colliding with lattice

$$\nabla \cdot \vec{D} = \rho \qquad \qquad \nabla \cdot \vec{B} = 0$$

$$\nabla \cdot \vec{B} = 0$$

$$=j\dot{\omega}$$
 .

$$\nabla \times \vec{E} = -j\omega \mu \vec{H}$$

$$\nabla \times \vec{H} = j\omega \vec{D} + \vec{J_c} + \vec{J} = \dots = j\omega \epsilon \vec{E} + \vec{J}$$

$$\epsilon = \epsilon' - j\epsilon'' - j\frac{\sigma}{\omega}$$

$$\begin{array}{ll} \vdots & \nabla \cdot \vec{D} = \rho & \nabla \cdot \vec{B} = 0 \\ \vdots & & \nabla \times \vec{E} = -j\omega\mu\vec{H} \\ \vdots & & & \\ \nabla \times \vec{H} = j\omega\vec{D} + \vec{J_c} + \vec{J} = \cdots = j\omega\epsilon\vec{E} + \vec{J} & \epsilon = \epsilon' - j\epsilon'' - j\frac{\sigma}{\omega} \\ \tan \delta = \frac{\omega\epsilon'' + \sigma}{\omega\epsilon'} = \frac{\text{Losses}}{\text{Displacement current}} & \text{Loss tan} \\ & & \epsilon = \epsilon \cdot \epsilon_0 \left(1 - i \tan \delta\right) \end{array}$$

$$\epsilon' = \epsilon_r \epsilon_0$$

$$\epsilon = \epsilon_r \epsilon_0 \left(1 - j \tan \delta \right)$$

Loss tangent

Harmonic fields in media: Maxwell Equations

DIELECTRIC CONSTANTS AND LOSS TANGENTS FOR SOME MATERIALS

Material	Frequency	ϵ_r	$\tan \delta$ (25)
Alumina (99.5%)	10 GHz	9.5–10.	0.0003
Barium tetratitanate	6 GHz	$37 \pm 5\%$	0.0005
Beeswax	10 GHz	2.35	0.005
Beryllia	10 GHz	6.4	0.0003
Ceramic (A-35)	3 GHz	5.60	0.0041
Fused quartz	10 GHz	3.78	0.0001
Gallium arsenide	10 GHz	13.0	0.006
Glass (pyrex)	3 GHz	4.82	0.0054
Glazed ceramic	10 GHz	7.2	0.008
Lucite	10 GHz	2.56	0.005
Nylon (610)	3 GHz	2.84	0.012
Parafin	10 GHz	2.24	0.0002
Plexiglass	3 GHz	2.60	0.0057
Polyethylene	10 GHz	2.25	0.0004
Polystyrene	10 GHz	2.54	0.00033
Porcelain (dry process)	100 MHz	5.04	0.0078
Rexolite (1422)	3 GHz	2.54	0.00048
Silicon	10 GHz	11.9	0.004
Styrofoam (103.7)	3 GHz	1.03	0.0001
Teflon	10 GHz	2.08	0.0004
Titania (D-100)	6 GHz	$96 \pm 5\%$	0.001
Vaseline	10 GHz	2.16	0.001
Water (distilled)	3 GHz	76.7	0.157

1 Dispersive media

complex permittivity

" complex permeability

$$\vec{z} + \vec{J} \qquad \epsilon = \epsilon' - j\epsilon'' - j\frac{\sigma}{\omega}$$

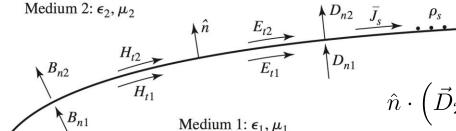
Loss tangent

$$\epsilon = \epsilon_r \epsilon_0 \left(1 - j \tan \delta \right)$$
Dielectric consta

Source: Pozar, Microwave Engineering 4ed, 2012

Andrea.Mostacci@uniroma1.it

Boundary Conditions



 ρ_s Surface Charge Density

 $ec{J}_{s}$ Surface Current Density

 (C/m^2) (A/m)

$$\hat{n} \cdot \left(\vec{D}_2 - \vec{D}_1 \right) = \rho_s$$

$$\hat{n} \times \left(\vec{E}_2 - \vec{E}_1\right) = 0$$

$$\hat{n} \cdot \left(\vec{B}_2 - \vec{B}_1 \right) = 0$$

$$\hat{n} \times \left(\vec{H}_2 - \vec{H}_1 \right) = \vec{J}_s$$

Fields at a lossless dielectric interface

$$\rho_s = 0$$

$$\hat{n} \cdot \vec{D}_1 = \hat{n} \cdot \vec{D}_2$$

$$\hat{n} \cdot \vec{B}_1 = \hat{n} \cdot \vec{B}_2$$

$$\vec{J}_s = 0$$

$$\hat{n} \times \vec{E}_1 = \hat{n} \times \vec{E}_2$$

$$\hat{n} \times \vec{H}_1 = \hat{n} \times \vec{H}_2$$

Perfect conductor (electric wall)

 $\hat{n} \cdot \vec{D} = \rho_s$

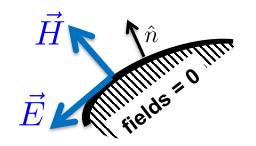
 $\hat{n} \cdot \vec{B} = 0$

$$\hat{n} \times \vec{E} = 0$$
 $\hat{n} \times \vec{H} = \vec{J}_s$

$$\hat{n} \times \vec{H} = \bar{J}$$

Magnetic Wall (dual of the E-wall)

approx.

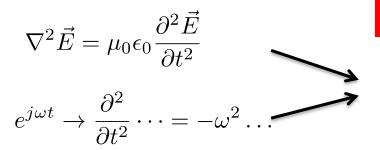


 $\hat{n} \cdot \vec{D} = 0$

 $\hat{n} \cdot \vec{B} \neq 0$

 $\hat{n} \times \vec{H} = 0$ $\hat{n} \times \vec{E} \neq 0$

Helmotz equation and its simplest solution



Helmotz equation

$$\nabla^2 \vec{E} + \omega^2 \mu \epsilon \vec{E} = 0$$

$$\nabla^2 \vec{H} + \omega^2 \mu \epsilon \vec{H} = 0$$

$$k = \omega \sqrt{\mu \epsilon} \qquad (1/m)$$

Propagation/phase constant Wave number

The simples solution: the wave with the plane wave-front

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial y} = 0$$

$$\frac{d^2E_x}{dz^2} + k^2E_x = 0$$

$$E_x(z) = E^+ e^{-jkz} + E^- e^{jkz}$$

$$E_x(z,t) = Re\left\{\frac{E(z,\omega)e^{j\omega t}}{e^{j\omega t}}\right\} = E^+\cos(\omega t - kz) + E^-\cos(\omega t + kz)$$

It is a wave, moving in the +z direction or -z direction

Phase velocity

Velocity at which a fixed phase point on the wave travels

$$\omega t \mp kz = \text{const}$$
 $v_p = \frac{dz}{dt} = \frac{d}{dt} \left(\frac{\omega t \mp \text{const}}{k} \right) = \frac{\omega}{k} = \frac{1}{\sqrt{\mu \epsilon}}$

Speed of light

Plane waves and Transverse Electro-Magnetic (TEM) waves

Wave length Distance between two consecutive maxima (or minima or ...)

$$(\omega t - kz) - [\omega t - k(z + \lambda)] = 2\pi$$

$$\lambda = \frac{2\pi}{k} = \frac{2\pi v_p}{\omega} = \frac{v_p}{f}$$

$$\nabla \times \vec{E} = -j\omega \mu \vec{H}$$

Compute H ...

$$E_x(z) = E^+ e^{-jkz} + E^- e^{jkz}$$

Plane waves and Transverse Electro-Magnetic (TEM) waves

Wave length

Distance between two consecutive maxima (or minima or ...)

$$(\omega t - kz) - [\omega t - k(z + \lambda)] = 2\pi$$

$$\lambda = \frac{2\pi}{k} = \frac{2\pi v_p}{\omega} = \frac{v_p}{f}$$

$$\nabla \times \vec{E} = -j\omega \mu \vec{H}$$

$$H_x = H_z = 0$$

$$E_x(z) = E^+ e^{-jkz} + E^- e^{jkz}$$

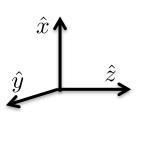
$$H_y = \frac{j}{\omega \mu} \frac{\partial E_x}{\partial z} = \frac{1}{n} \left(E^+ e^{-jkz} - E^- e^{jkz} \right)$$

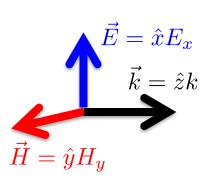
$$\eta = \frac{\omega \mu}{k} = \sqrt{\frac{\mu}{\epsilon}}$$

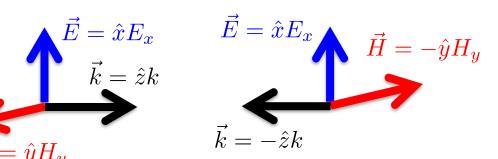
Intrinsic impedance of the medium (Ω) $\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377~\Omega$

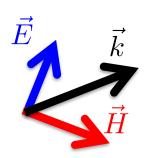
$$\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \ \Omega$$

The ratio of E and H component is an impedance called wave impedance







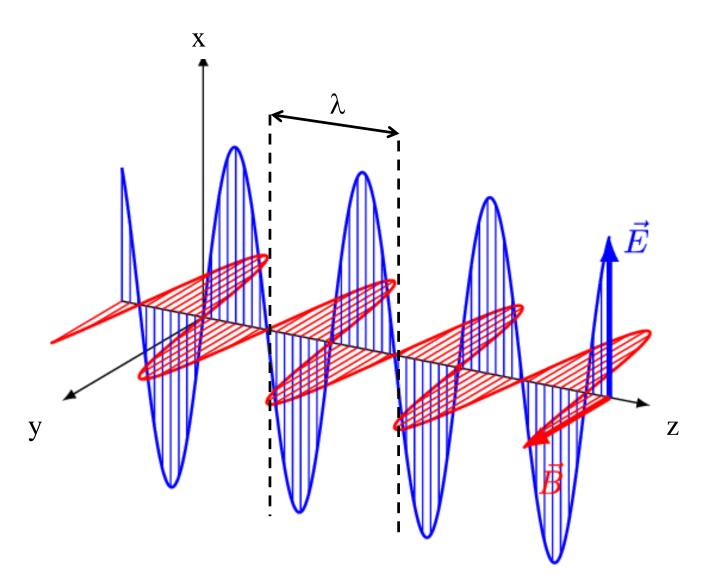


$$\vec{H} = \frac{1}{\eta}\hat{k} \times \vec{E}$$

E and H field are transverse to the direction of propagation.

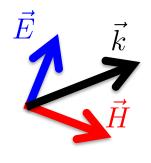
$$Z_{TEM} = \eta$$

Plane waves and Transverse Electro-Magnetic (TEM) waves



Note that E and B fields oscillate with the same phase.

Poynting vector for a plane wave



$$\vec{H} = \frac{1}{\eta}\hat{k} \times \vec{E}$$
 \longrightarrow $\frac{E}{H} = \eta = \sqrt{\frac{\mu}{\epsilon}} = \frac{1}{\epsilon v} = \mu v$

$$\vec{S}(\vec{r},t) = \vec{E}(\vec{r},t) \times \vec{H}(\vec{r},t)$$

$$\vec{S} = \frac{1}{\eta} \vec{E} \times (\hat{k} \times \vec{E}) = \frac{1}{\eta} \left[(\vec{E} \cdot \vec{E}) \hat{k} - (\vec{E} \times \vec{E}) \vec{E} \right] = 0$$

$$= \epsilon \left| \vec{E} \right|^2 \vec{v} = \frac{1}{2} \left(\epsilon \left| \vec{E} \right|^2 + \mu \left| \vec{H} \right|^2 \right) \vec{v} = (u_E + u_H) \vec{v} = \mathbf{u}\vec{v}$$

Current density, Poynting vector and transport phenomena

$$J=
ho_e \; ec{v} \qquad \left(rac{A}{m^2}
ight)$$

$$\nabla \cdot \vec{J} + \frac{\partial \rho_e}{\partial t} = 0$$

$$\vec{J} = \rho_e \ \vec{v}$$
 Current density
$$\left(\frac{A}{m^2}\right) \qquad \nabla \cdot \vec{J} + \frac{\partial \rho_e}{\partial t} = 0 \qquad \frac{dQ}{dt} = \int_A \vec{J} \cdot d\vec{A} = I$$
 Continuity equation

e.m. energy

$$S = u \ v$$

$$\nabla \cdot \vec{S} + \frac{\partial u}{\partial t} = 0$$

$$\vec{S} = u \ \vec{v}$$
 Poynting vector
$$\left(\frac{W}{m^2} \right) \qquad \nabla \cdot \vec{S} + \frac{\partial u}{\partial t} = 0 \qquad \frac{dU}{dt} = \int_A \vec{S} \cdot d\vec{A} = P_{\rm rad}$$

mass

$$\vec{J}_m = \rho_m \ \vec{v}$$
 Mass flux density
$$\left(\frac{kg/s}{m^2}\right) \quad \nabla \cdot \vec{J_m} + \frac{\partial \rho_m}{\partial t} = 0$$

$$\text{Continuity equation} \quad \frac{dm}{dt} = \int_A \vec{J}_m \cdot d\vec{A}$$

$$\nabla \cdot \vec{J_m} + \frac{\partial \rho_m}{\partial t} = 0$$

$$\frac{dm}{dt} = \int_{A} \vec{J}_m \cdot d\vec{A}$$

$$\vec{J} = Re \left\{ \psi^* \frac{\hbar}{i \ m} \nabla \psi \right\} =$$

$$\vec{J} = Re \left\{ \psi^* \frac{\hbar}{i \, m} \nabla \psi \right\} =$$

$$= Re \left\{ \psi^* \frac{\vec{p}}{m} \psi \right\} \qquad \left(\frac{1/s}{m^2} \right) \qquad \frac{\partial}{\partial t} \int_{\tau} P(\vec{r}, t) \, d\tau = - \int_{\partial \tau} \vec{J} \cdot d\vec{A}$$

Probability current density

Plane wave in lossy media

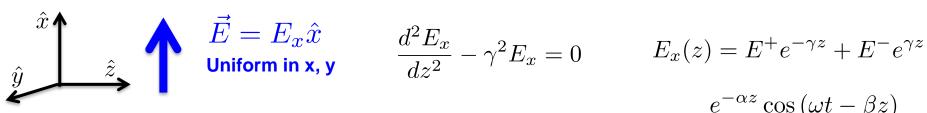
$$\nabla^2 \vec{E} + \omega^2 \mu \epsilon \vec{E} = 0$$

$$\epsilon = \epsilon_r \epsilon_0 \left(1 - j \tan \delta \right)$$

$$\tan \delta = \frac{\omega \epsilon'' + \sigma}{\omega \epsilon'}$$

Definition:
$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon} = j\omega\sqrt{\mu\epsilon_0\epsilon_r(1-j\tan\delta)}$$

Attenuation constant



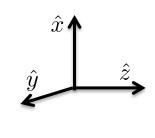
$$\frac{d^2 E_x}{dz^2} - \gamma^2 E_x = 0$$

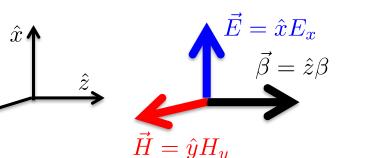
$$E_x(z) = E^+ e^{-\gamma z} + E^- e^{\gamma}$$

$$e^{-\gamma z} = e^{-\alpha z} e^{-j\beta z}$$

Positive z direction
$$e^{-\gamma z}=e^{-\alpha z}e^{-j\beta z}$$
 — time \Longrightarrow $v_p=\frac{\omega}{\beta}$ $\lambda=\frac{2\pi}{\beta}$

$$H_y = \frac{j}{\omega\mu} \frac{\partial E_x}{\partial z} = -\frac{j\gamma}{\omega\mu} \left(E^+ e^{-\gamma z} - E^- e^{\gamma z} \right) = \frac{1}{\eta} \left(E^+ e^{-\gamma z} - E^- e^{\gamma z} \right) \qquad \eta = \frac{j\omega\mu}{\gamma} \longrightarrow \sqrt{\frac{\mu}{\epsilon}}$$





 $Z_{TEM} = \eta$

$$ec{H} = rac{1}{\eta}\hat{eta} imesec{E}$$

Attenuating TEM "wave" ...

Andrea.Mostacci@uniroma1.it

37

Plane waves in good conductors

Good conductor

Conduction current >> displacement current

$$\sigma E$$
 \gg

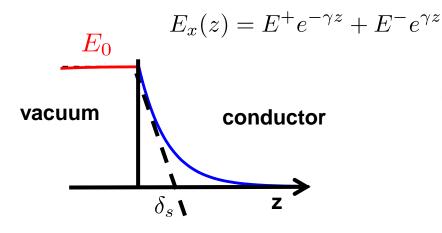
$$\omega \epsilon_c E$$

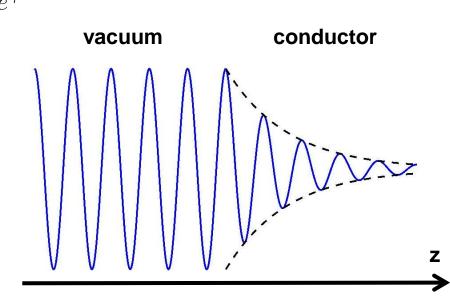
$$\tan \delta = \frac{\omega \epsilon'' + \sigma}{\omega \epsilon'} \approx \frac{\sigma}{\omega \epsilon_0 \epsilon_r}$$

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon} \simeq (1+j)\sqrt{\frac{\omega\mu\sigma}{2}}$$

Characteristic depth of penetration: skin depth

$$\delta_s = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}}$$





Plane waves in good conductors

Good conductor

Conduction current >> displacement current

$$\sigma E$$

$$\gg$$

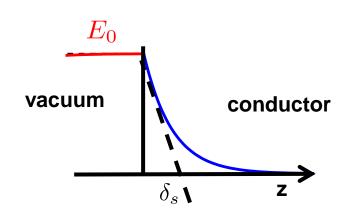
$$\omega \epsilon_c E$$

$$\tan \delta = \frac{\omega \epsilon'' + \sigma}{\omega \epsilon'} \approx \frac{\sigma}{\omega \epsilon_0 \epsilon_r}$$

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon} \simeq (1+j)\sqrt{\frac{\omega\mu\sigma}{2}}$$

Characteristic depth of penetration: skin depth

$$\delta_s = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}}$$



Al
$$\delta_s = 8.14 \ 10^{-7} \ m$$

Cu
$$\delta_s = 6.60 \ 10^{-7} \ m$$

Au
$$\delta_s = 7.86 \ 10^{-7} \ m$$

Ag
$$\delta_s = 6.40 \ 10^{-7} \ m$$

@ 10 GHz

impedance of the medium

$$\eta = \frac{j\omega\mu}{\gamma} \simeq (1+j)\sqrt{\frac{\omega\mu}{2\sigma}} = (1+j)\frac{1}{\sigma\delta_s}$$

? Copper @ 100 MHz

Surface Impedance

Incident No transmitted field

Reflected plane wave

Skin depth

valid if $\eta \ll \eta_0$

Goal: account for an imperfect conductor

The power that is transmitted into the conductor is dissipated as heat within a **very short distance** from the surface.

Being
$$ec{J}_S = \hat{n} imes ec{H} \Big|_S$$
 when $\sigma o \infty$

Approximation

Replace the exponentially decaying volume current volume with a uniform current extending a distance of one skin depth

$$\bar{J}_t = \begin{cases} \bar{J}_s/\delta_s & \text{for } 0 < z < \delta_s \\ 0 & \text{for } z > \delta_s, \end{cases}$$

Surface resistance Andrea.Mostacci@uniroma1.it

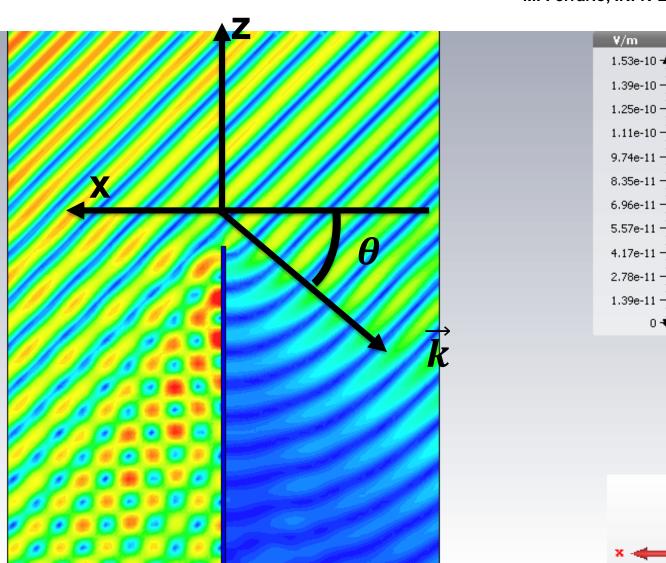
Power loss
$$\delta_s = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}} \qquad \text{computed as if the metal were a perfect conductor}$$

$$P_t = \frac{1}{2\sigma} \int_S \int_0^{\delta_S} \frac{|\vec{J}_S|^2}{\delta_S^2} dS dz = \frac{1}{2} \frac{1}{\sigma \delta_S} \int_S |\vec{J}_S|^2 dS = \frac{R_s}{2} \int_S |\hat{n} \times \vec{H}|^2 dS$$

Reflection of plane waves (a first boundary value problem)

Simulations by L. Ficcadenti, INFN

Courtesy of M. Ferrario, INFN-LNF



e-field (f=100) [pw]

Component: Abs
3D Maximum [V/m]: 0.3716e-09
Frequency: 100

0

Andrea.Mostacci@uniroma1.it

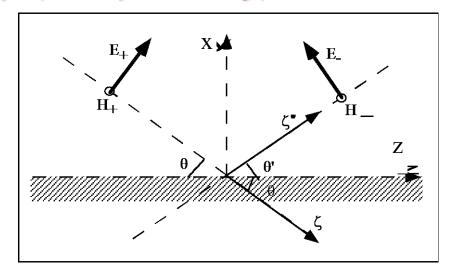
Phase:

Reflection of plane waves (a first boundary value problem)

Plane wave reflected by a perfectly conducting plane

Courtesy of M. Ferrario, INFN-LNF

$$S = X$$



In the plane xz the field is given by the superposition of the incident and reflected wave:

$$E(x,z,t) = E_{+}(x_o,z_o,t_o)e^{iWt-ikZ} + E_{-}(x_o,z_o,t_o)e^{iWt-ikZ'}$$

$$Z = z \cos Q - x \sin Q$$
 $Z' = z \cos Q' + x \sin Q'$

And it has to fulfill the boundary conditions (no tangential E-field)

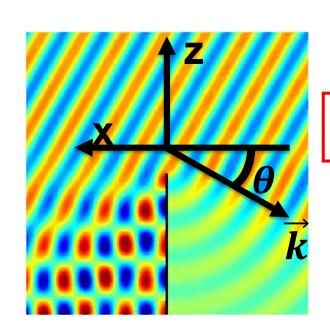
Reflection of plane waves (a first boundary value problem)

Taking into account the boundary conditions the longitudinal component of the field becomes:

Courtesy of M. Ferrario, INFN-LNF

$$E_z(x,z,t) = (E_+ \sin q)e^{iWt - ik(z\cos q - x\sin q)} - (E_+ \sin q)e^{iWt - ik(z\cos q + x\sin q)}$$

$$= 2iE_{+} \sin q \sin(kx \sin q) e^{iWt - ikz \cos q}$$



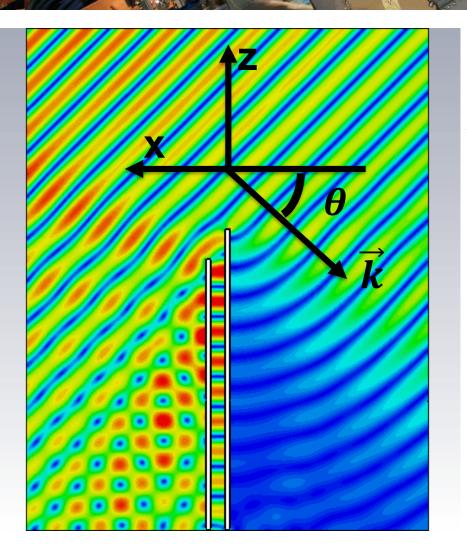
Standing Wave pattern (along x)

Guided wave pattern (along z)

The phase velocity is given by

$$v_{fz} = \frac{W}{k_z} = \frac{W}{k \cos q} = \frac{c}{\cos q} > c$$

From reflections to waveguides



Simulations by L. Ficcadenti, INFN

Courtesy of M. Ferrario, INFN-LNF

Put a metallic boundary parallel to the first wall (the E-field is normal).

Between the two walls there must be an integer number of half wavelengths (at least one).

For a given distance, there is a maximum wavelength, i.e. there is **cut-off frequency**.

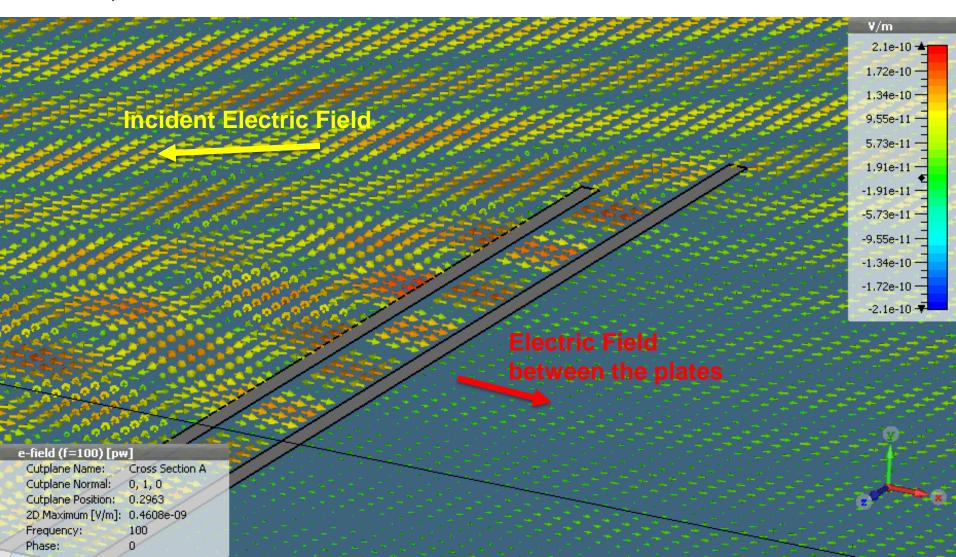
$$v_{fz} = \frac{W}{k_z} = \frac{W}{k \cos Q} = \frac{c}{\cos Q} > c$$

It can not be used as it is for particle acceleration/deflection

From reflections to waveguides

Simulations by L. Ficcadenti, INFN

Courtesy of M. Ferrario, INFN-LNF



Maxwell equations and boundary value problem

Maxwell equation with sources + boundary conditions = boundary value problem

Homogeneous medium

$$\nabla \cdot \vec{E} = \rho / \epsilon$$

$$\nabla \times \vec{E} = -j\omega \mu \vec{H}$$

$$\nabla \cdot \vec{H} = 0$$

$$\nabla \times \vec{H} = +i\omega \epsilon \vec{E} + \vec{J}$$

Do you see asymmetries?

Sources

$$\vec{J}$$
, ρ

Maxwell equations and boundary value problem

Maxwell equation with sources + boundary conditions = boundary value problem

Homogeneous medium

$$\nabla \cdot \vec{E} = \rho / \epsilon$$

$$\nabla \cdot \vec{H} = \rho_m / \mu$$

$$\nabla \times \vec{H} = +i\omega \epsilon \vec{E} + \vec{J}$$

Sources

$$\vec{J}, \
ho$$

Actual or equivalent

$$ec{J_m},\;
ho_m$$

equivalent

Vector Helmotz Equation

 $\nabla \times \vec{E} = -i\omega \mu \vec{H} - \vec{J}_m$

$$\nabla^{2}\vec{E} + k^{2}\vec{E} = \nabla \times \vec{J}_{m} + j\omega\mu\vec{J} + \frac{1}{\epsilon}\nabla\rho$$

$$\nabla^{2}\vec{H} + k^{2}\vec{H} = -\nabla \times \vec{J} + j\omega\epsilon\vec{J}_{m} + \frac{1}{\mu}\nabla\rho_{m}$$

$$k^2 = \omega^2 \mu \epsilon$$

Solution

Step 1

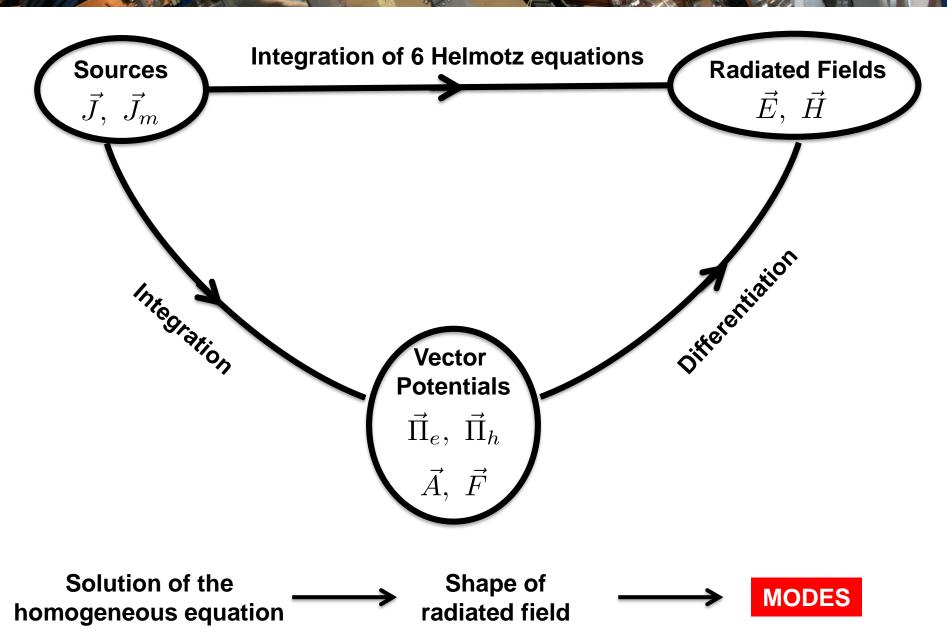
$$\vec{J} = \vec{J}_m = \rho_m = \rho = 0$$

Source free region $\vec{J} = \vec{J}_m = \rho_m = \rho = 0$ Homogeneous problem

tion
$$=\sum_{\vec{J}} C_k \left(\vec{J}, \vec{J}_m, \rho_m, \right)$$

Solution $=\sum C_k \left(\vec{J}, \vec{J}_m, \rho_m, \rho \right)$ Solution-Homogeneous-Problem_k

Method of solution of Helmotz equations



Solution of Helmotz equations using potentials

Sources

Integration of 6 Helmotz equations

Radiated Fields

$$\vec{E}, \ \vec{H}$$

$$ec{J}, ec{J}_m$$

if
$$\nabla \cdot \vec{H} = 0$$

 $\nabla^2 \vec{A} + k^2 \vec{A} = -\mu \vec{J}$

$$ec{H}_A = rac{1}{\mu}
abla imes ec{A}$$

$$\vec{E}_A = -j\omega\vec{A} - \frac{j}{\omega\mu\epsilon}\nabla\left(\nabla\cdot\vec{A}\right)$$

if
$$\nabla \cdot \vec{E} = 0$$

$$\nabla^2 \vec{F} + k^2 \vec{F} = -\mu \vec{J}_m$$

 $ec{E} = ec{E}_A + ec{E}_F \ ec{H} = ec{H}_A + ec{H}_F \$

$$k^2 = \omega^2 \mu \epsilon$$

$$ec{E}_F = -rac{1}{\epsilon}
abla imes ec{F}$$

Vector Potentials

$$\vec{A}, \vec{F}$$

$$\vec{E}_F = -\frac{1}{\epsilon} \nabla \times \vec{F}$$

$$\vec{H}_F = -j\omega \vec{F} - \frac{j}{\omega\mu\epsilon} \nabla \left(\nabla \cdot \vec{F}\right)$$

Why/when is it convenient?

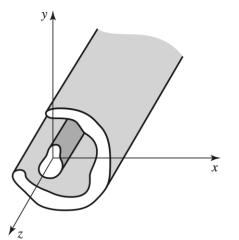
MODES

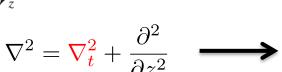
Solution of the homogeneous equations

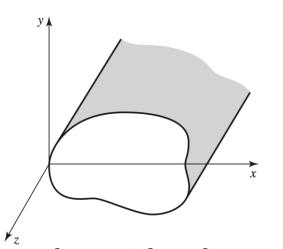
$$\nabla^2 \vec{A} + k^2 \vec{A} = 0$$

$$\nabla^2 \vec{F} + k^2 \vec{F} = 0$$

Modes of cylindrical waveguides: propagating field







$$\nabla_t^2 A_z + (k^2 - \beta^2) A_z = 0$$
$$\nabla_t^2 F_z + (k^2 - \beta^2) F_z = 0$$

$$\vec{H}_A = \frac{1}{\mu} \nabla \times (\hat{z}A) \qquad \longrightarrow \vec{H}_A = \vec{h}_t \ e^{-j\beta z}$$

$$\vec{E}_A = -j\omega A\hat{z} - \frac{\beta}{\omega\mu\epsilon}\nabla A \quad \longrightarrow \quad \vec{E}_A = [\vec{e}_t + \hat{z} \ \underline{e}_z] e^{-j\beta z}$$

Field propagating in the positive z direction

$$\vec{A} = \hat{z} \ A_z(x, y) \ e^{-j\beta z} = \hat{z} \ A$$

$$\vec{F} = \hat{z} \ F_z(x,y) \ e^{-j\beta z} = \hat{z} \ F$$

2 Helmotz equations (transverse coordinates)

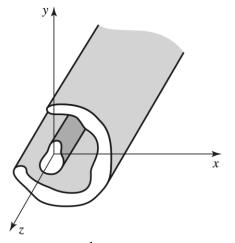
Only E field along z
E-mode
Transverse Magnetic (TM)

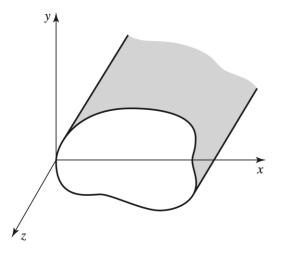
$$\vec{E}_F = -\frac{1}{\epsilon} \nabla \times (\hat{z}F) \qquad \longrightarrow \qquad \vec{E}_F = \vec{e}_t \ e^{-j\beta z}$$

$$\vec{H}_F = -j\omega F \hat{z} - \frac{\beta}{\omega \mu \epsilon} \nabla F \qquad \longrightarrow \qquad \vec{H}_F = \left[\vec{h}_t + \hat{z} \ \frac{\mathbf{h}_z}{\mathbf{h}_z}\right] e^{-j\beta z}$$

Only H field along z
H-mode
Transverse Electric (TE)

Modes of cylindrical waveguides: propagating field





Field propagating in the positive z direction

$$\vec{A} = \hat{z} \ A_z(x,y) \ e^{-j\beta z} = \hat{z} \ A$$

$$\vec{F} = \hat{z} F_z(x,y) e^{-j\beta z} = \hat{z} F$$

$$\vec{H}_A = \frac{1}{\mu} \nabla \times (\hat{z}A) \qquad \longrightarrow \vec{H}_A = \vec{h}_t \ e^{-j\beta z}$$

$$\longrightarrow$$
 $\vec{H}_A = \vec{h}_t \ e^{-j\beta}$

$$\vec{E}_A = -j\omega A\hat{z} - \frac{\beta}{\omega\mu\epsilon}\nabla A \quad \longrightarrow \quad \vec{E}_A = [\vec{e}_t + \hat{z} \ \underline{e}_z] e^{-j\beta z}$$

$$\vec{E}_A = [\vec{e}_t + \hat{z} \ \underline{e}_z] e^{-j\beta z}$$

Only E field along z E-mode **Transverse Magnetic (TM)**

$$\vec{E}_F = -\frac{1}{\epsilon} \nabla \times (\hat{z}F)$$
 \longrightarrow $\vec{E}_F = \vec{e}_t \ e^{-j\beta z}$

$$\vec{E}_F = \vec{e}_t \ e^{-j\beta z}$$

$$\vec{H}_F = -j\omega F \hat{z} - \frac{\beta}{\omega \mu \epsilon} \nabla F$$

$$\vec{H}_F = -j\omega F \hat{z} - \frac{\beta}{\omega \mu \epsilon} \nabla F$$
 \longrightarrow $\vec{H}_F = \left[\vec{h}_t + \hat{z} \; \frac{h_z}{L} \right] e^{-j\beta z}$ Transverse Electric (TE)

Only H field along z H-mode

$$ec{E} = ec{E}_A + ec{E}_F \qquad ec{H} = ec{H}_A + ec{H}_F \qquad igwedge$$

Andrea.Mostacci@uniroma1.it

Look for a Transverse Electric Magnetic mode $E_z = H_z = 0$

$$E_z = H_z = 0$$

 $ec{E}, \; ec{H}, \; v_p?$

Hint 1 Start from a TM mode (vector potential A) $H_z = 0$

$$\nabla = \nabla_t + \hat{z} \frac{\partial}{\partial z}$$
 $\vec{A} = \hat{z} A_z(x, y) e^{-j\beta z} = \hat{z} A$ $\nabla \cdot \vec{A} = \cdots$

Hint 2 $\vec{E}_A = \cdots$

Solution

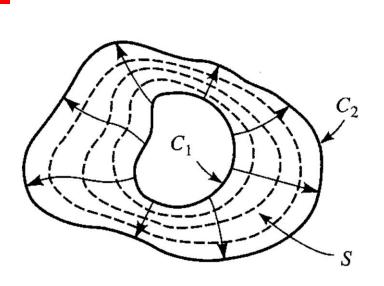
Transverse Electric Magnetic mode in waveguides

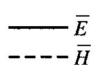
Example

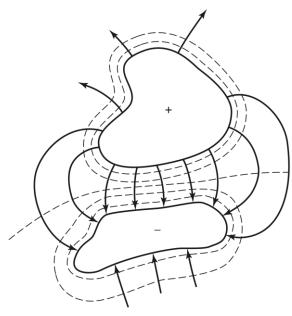
$$\vec{H} = \frac{1}{\mu} \nabla_t \times (\hat{z} A_z) e^{-j\omega\sqrt{\mu\epsilon}z}$$

Solution For a given
$$A_z$$
 $\vec{H} = \frac{1}{\mu} \nabla_t \times (\hat{z} A_z) \, e^{-j\omega\sqrt{\mu\epsilon}z}$ $\vec{E} = -\frac{1}{\sqrt{\mu\epsilon}} \, \nabla_t A_z \, e^{-j\omega\sqrt{\mu\epsilon}z}$

TEM waves are possible only if there are at least two conductors.







- The plane wave is a TEM wave of two infinitely large plates separated to infinity
- **Electrostatic problem** with boundary conditions

$$\vec{e_t}$$

$$\rightarrow$$

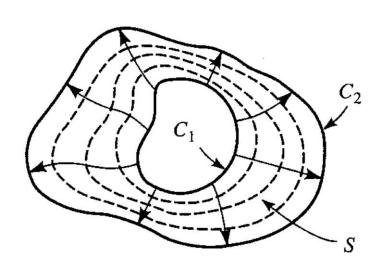
$$\rightarrow \vec{h}_t = \frac{1}{Z_{TEM}} \hat{z} \times \vec{e}_t \quad \rightarrow \quad \vec{E} = \vec{e}_t \ e^{-j\omega\sqrt{\mu\epsilon}z}$$

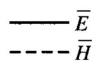
$$\vec{H} = \vec{h}_t \ e^{-j\omega\sqrt{\mu\epsilon}z}$$

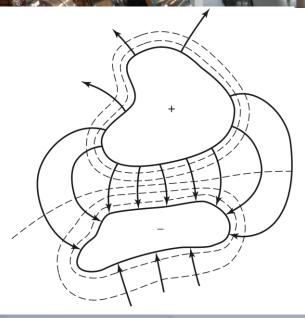
$$\rightarrow$$

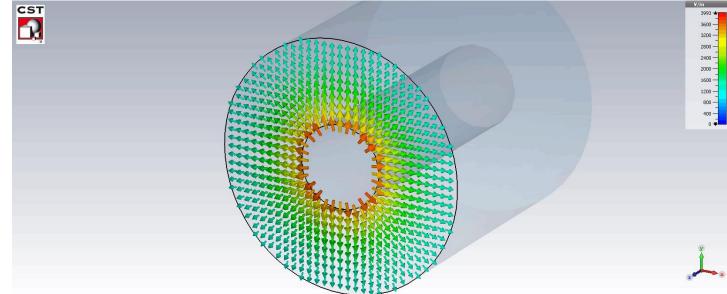
$$\vec{E} = \vec{e}_t \ e^{-j\omega\sqrt{\mu\epsilon}z}$$

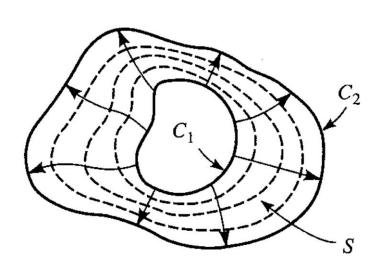
$$\vec{H} = \vec{h}_t \ e^{-j\omega\sqrt{\mu\epsilon}z}$$

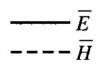


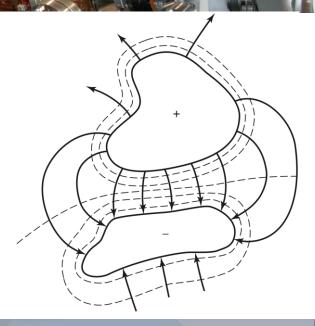


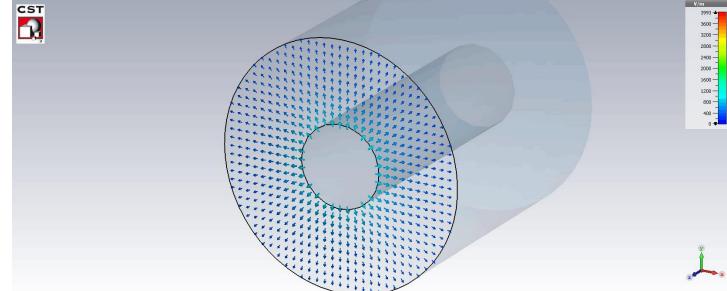




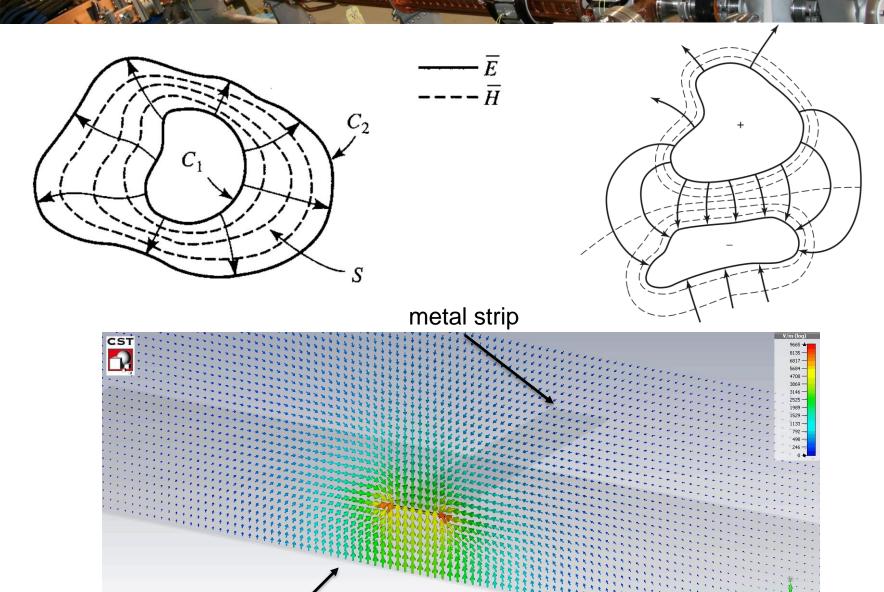




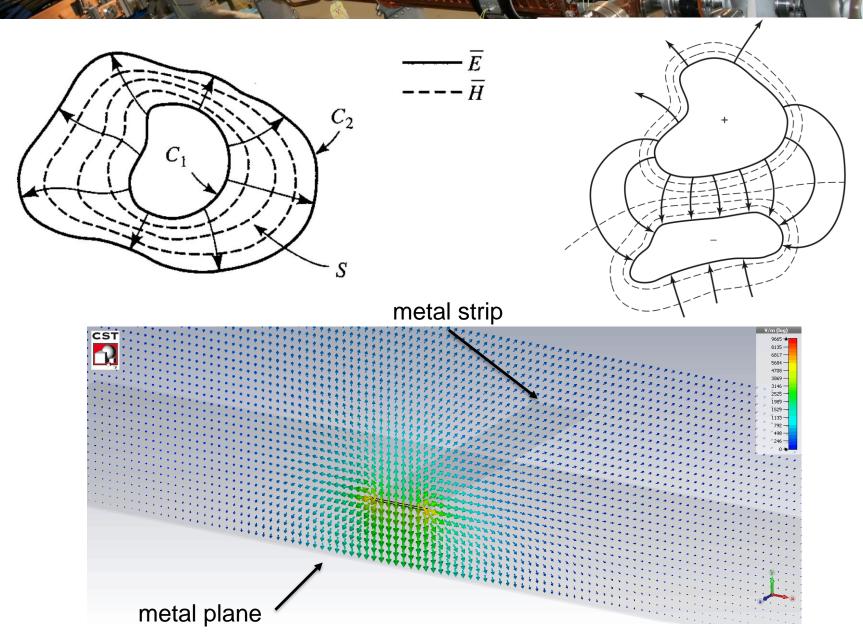




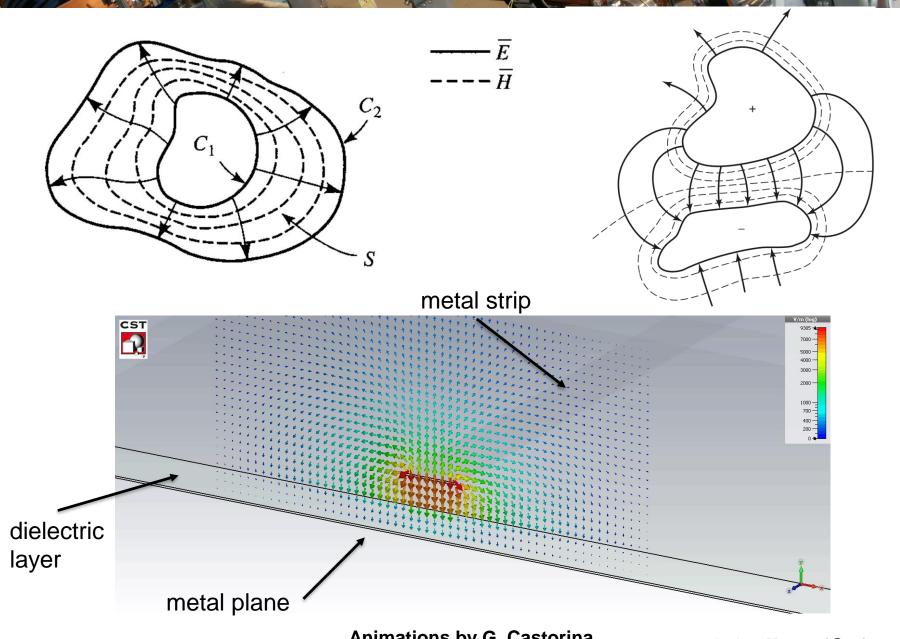
metal plane



Animations by G. Castorina



Common TEM waveguides: stripline with dielectrics

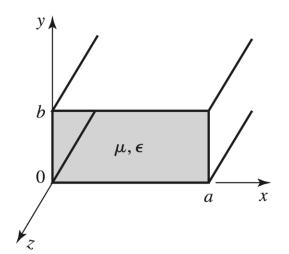


General solution for fields in cylindrical waveguide

1. Write the Helmotz equations for potentials

TM waves
$$\nabla_t^2 A_z + k_t^2 A_z = 0$$

TE waves
$$\nabla_t^2 F_z + k_t^2 F_z = 0$$

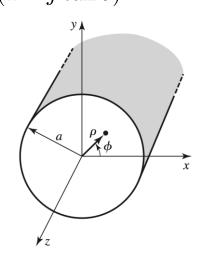


Cartesian coordinates

$$\nabla_t^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

$$A_z(x,y) = X(x)Y(y)$$

$$k_t^2 = k^2 - \beta^2 = \omega^2 \mu \epsilon - \beta^2$$
$$\epsilon = \epsilon_r \epsilon_0 (1 - j \tan \delta)$$



Cylindrical coordinates

$$\nabla_t^2 = \frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2}$$

$$A_z(\rho,\phi) = R(\rho)\Phi(\phi)$$

General solution for fields in cylindrical waveguide

3. Eigenvalue problem: Eigenvalues + Eigen-function

$$TM \quad \nabla_t^2 A_z + k_t^2 A_z = 0$$

$$k_t \qquad \qquad A_z, \ F_z$$

$$\mathbf{TE} \quad \nabla_t^2 F_z + k_t^2 F_z = 0$$

Compute the fields and apply the boundary conditions

$$\vec{e} = \vec{e}_t + \hat{z} \ e_z$$

$$\vec{h} = \vec{h}_t + \hat{z} \ h_z$$

$$\vec{e}_{m,n} \quad \vec{h}_{m,n}$$

$$\beta_{m,n} = \sqrt{\omega^2 \mu \epsilon - k_{t (m,n)}^2}$$

Mode (m,n)

$$\vec{E} = \sum_{m,n} a_{m,n} \vec{e}_{m,n} e^{-j\beta_n}$$

It can be complex

$$\vec{E} = \sum_{m,n} a_{m,n} \vec{e}_{m,n} e^{-j\beta_{m,n}z}$$

$$\vec{H} = \sum_{m,n} b_{m,n} \vec{h}_{m,n} e^{-j\beta_{m,n}z}$$

It depends on the sources

Rectangular waveguides

Andrea.Mostacci@uniroma1.it

$$F_z = X(x)Y(y)$$

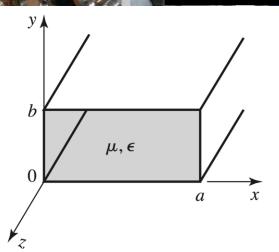
Write the Helmotz equation

$$X(x) =$$

$$Y(y) =$$

$$e_x = -\frac{1}{\epsilon} \frac{\partial F_z}{\partial y} = -\frac{1}{\epsilon} X Y'$$
:





Rectangular waveguides: TE mode

$$F_z = X(x)Y(y) \qquad \nabla_t^2 F_z + k_t^2 F_z = YX'' + XY'' + k_t^2 XY = 0$$

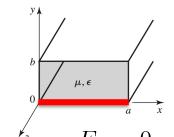
$$-k^2-k^2+k^2-0$$
 constraint

$$\frac{X''}{X} + \frac{Y''}{Y} + k_t^2 = 0$$
 $-k_x^2 - k_y^2 + k_t^2 = 0$ constraint condition

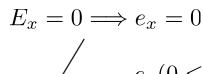
$$\frac{X''}{X} = -k_x^2 \longrightarrow X(x) = C_1 \cos(k_x x) + D_1 \sin(k_x x)$$

$$\frac{Y''}{Y} = -k_y^2 \longrightarrow Y(y) = C_2 \cos(k_y y) + D_2 \sin(k_y y)$$

$$e_x = -\frac{1}{\epsilon} \frac{\partial F_z}{\partial y} = -\frac{1}{\epsilon} XY' = -\frac{k_y}{\epsilon} \left[C_1 \cos(k_x x) + D_1 \sin(k_x x) \right] \left[-C_2 \sin(k_y y) + D_2 \cos(k_y y) \right]$$



$$e_x(0 \le x \le a, y = 0) = \dots [-C_2 \cdot 0 + D_2 \cdot 1] = 0 \iff D_2 = 0$$



$$e_x(0 \le x \le a, y = b) = \dots [-C_2 \sin(k_y b)] = 0 \iff \begin{cases} k_y b = n\pi \\ n = 0, 1, 2, \dots \end{cases}$$

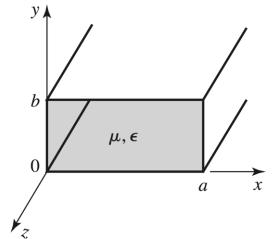
Eigenvalues and cut-off frequencies (TE mode, rect. WG)

$$k_t^2 = k_x^2 + k_y^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 = \omega^2 \mu \epsilon - \beta^2 \qquad \begin{array}{c} \text{constraint} \\ \text{condition} \end{array}$$

$$\vec{H} = \sum_{m,n} b_{m,n} \ \vec{h}_{m,n} \ e^{-j\beta_{m,n}z}$$

$$\beta_{m,n} = \sqrt{\omega^2 \mu \epsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

$$\vec{E} = \sum_{m,n} a_{m,n} \ \vec{e}_{m,n} \ e^{-j\beta_{m,n}z}$$



Cut-off frequencies f_c such that $\beta_{m,n}=0$

$$(f_c)_{\mathbf{m},\mathbf{n}} = \frac{1}{2\pi\sqrt{\mu\epsilon}}\sqrt{\left(\frac{\mathbf{m}\pi}{a}\right)^2 + \left(\frac{\mathbf{n}\pi}{b}\right)^2} \qquad m, \ n = 0, 1, 2, \dots$$

$$m = n \neq 0$$

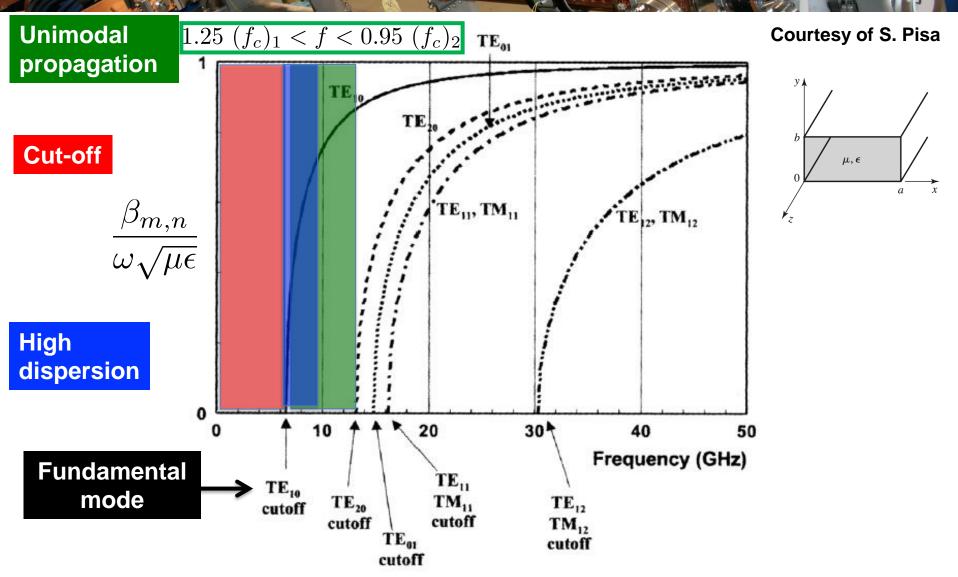
$$m, n = 0, 1, 2, \dots$$
$$m = n \neq 0$$

$$f < (f_c)_{m,n}$$
 mode m, n is attenuated exponentially (evanescent mode)

$$f > (f_c)_{m,n}$$
 mode m, n is propagating with no attenuation

m,n

Waveguide dispersion curve



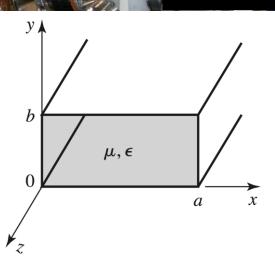
Same curve for TE and TM mode, but n=0 or m=0 is possible only for TE modes. In any metallic waveguide the fundamental mode is TE.

Single mode operation of a rectangular waveguide

Exercise

- Find the smallest ratio a/b allowing the largest bandwidth of single mode operation
- 2. State the largest bandwidth of single mode operation
- 3. Defining the single mode bandwidth (BW) as

$$1.25 (f_c)_1 < f < 0.95 (f_c)_2$$



Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

Hint:
$$(f_c)_{m,n} = \frac{1}{2\pi\sqrt{\mu\epsilon}}\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$
 $m, n = 0, 1, 2, \dots$ $m = n \neq 0$

Place the possible cut-off frequencies for different modes on the frequency axis

Frequency

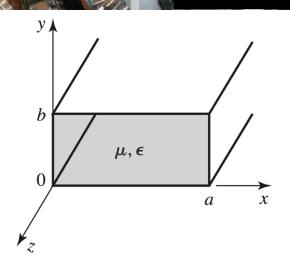
axis

Single mode operation of a rectangular waveguide

Exercise

- Find the smallest ratio a/b allowing the largest bandwidth of single mode operation
- 2. State the largest bandwidth of single mode operation
- 3. Defining the single mode bandwidth (BW) as

$$1.25 (f_c)_1 < f < 0.95 (f_c)_2$$



Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

Eigenfunctions and mode pattern (TE mode, rect. WG)

$$E_x^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \cos(k_x x) \sin(k_y y) e^{-j\beta z}$$

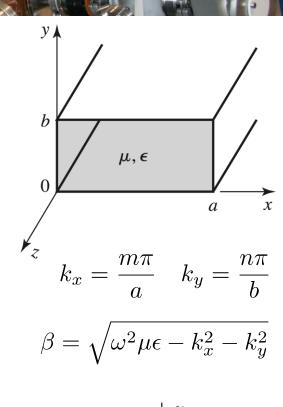
$$E_y^{+,(m,n)} = -a_{m,n} \frac{k_x}{\epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

$$E_z^{+,(m,n)} = 0$$

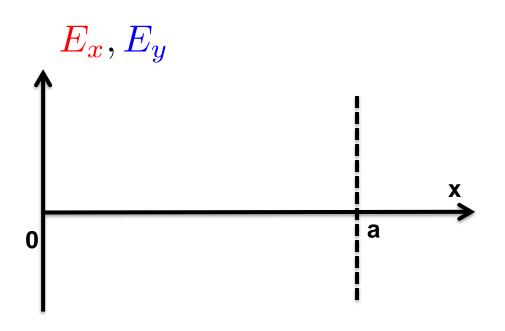
$$H_x^{+,(m,n)} = a_{m,n} \frac{k_x \beta}{\omega u \epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

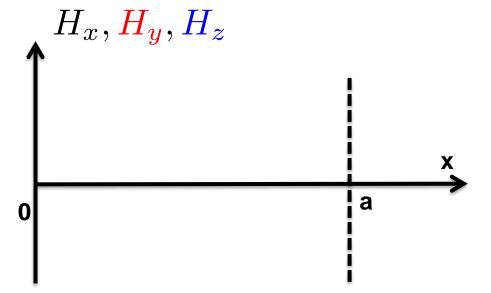
$$H_y^{+,(m,n)} = a_{m,n} \frac{k_y \beta}{\omega u \epsilon} \cos(k_x x) \sin(k_y y) e^{-j\beta z}$$

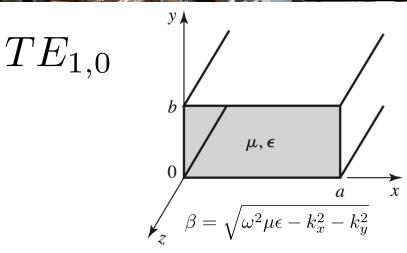
$$H_z^{+,(m,n)} = -ja_{m,n} \frac{k_t^2}{\omega u \epsilon} \cos(k_x x) \cos(k_y y) e^{-j\beta z}$$



$$TE_{m,n}^{+z}$$







$$k_x = \frac{m\pi}{a}$$
 $k_y = \frac{n\pi}{b}$ $TE_{m,n}^{+z}$

$$E_x^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \cos(k_x x) \sin(k_y y) e^{-j\beta z}$$

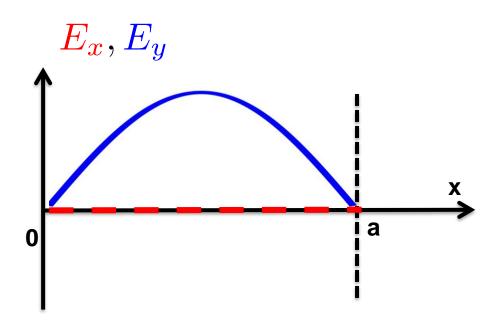
$$E_y^{+,(m,n)} = -a_{m,n} \frac{k_x}{\epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

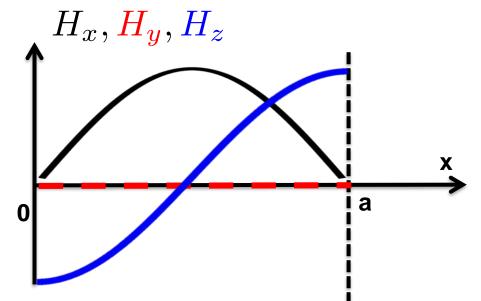
$$E_z^{+,(m,n)} = 0$$

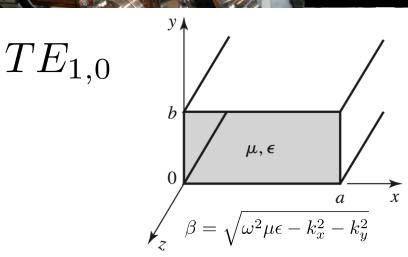
$$H_x^{+,(m,n)} = a_{m,n} \frac{k_x \beta}{m \mu \epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

$$H_y^{+,(m,n)} = a_{m,n} \frac{k_y \beta}{m_y \epsilon} \cos(k_x x) \sin(k_y y) e^{-j\beta z}$$

$$H_z^{+,(m,n)} = -ja_{m,n} \frac{k_t^2}{\omega\mu\epsilon} \cos(k_x x) \cos(k_y y) e^{-j\beta z}$$







$$k_x = \frac{m\pi}{a}$$
 $k_y = \frac{n\pi}{b}$ $TE_{m,n}^{+z}$

$$E_x^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \cos(k_x x) \sin(k_y y) e^{-j\beta z}$$

$$E_y^{+,(m,n)} = -a_{m,n} \frac{k_x}{\epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

$$E_z^{+,(m,n)} = 0$$

$$H_x^{+,(m,n)} = a_{m,n} \frac{k_x \beta}{m \mu \epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

$$H_y^{+,(m,n)} = a_{m,n} \frac{k_y \beta}{\omega u \epsilon} \cos(k_x x) \sin(k_y y) e^{-j\beta z}$$

$$H_z^{+,(m,n)} = -ja_{m,n} \frac{k_t^2}{\omega \mu \epsilon} \cos(k_x x) \cos(k_y y) e^{-j\beta z}$$

Andrea.Mostacci@uniroma1.it

Eigenfunctions and mode pattern (TE mode, rect. WG)

Exercise

$$E_x^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \cos(k_x x) \sin(k_y y) e^{-j\beta z}$$

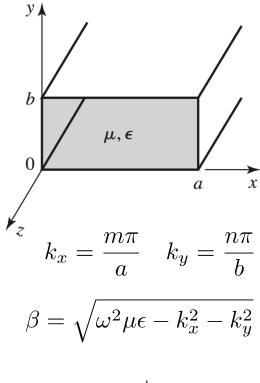
$$E_y^{+,(m,n)} = -a_{m,n} \frac{k_x}{\epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

$$E_z^{+,(m,n)} = 0$$

$$H_x^{+,(m,n)} = a_{m,n} \frac{k_x \beta}{\omega \mu \epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

$$H_y^{+,(m,n)} = a_{m,n} \frac{k_y \beta}{\omega \mu \epsilon} \cos(k_x x) \sin(k_y y) e^{-j\beta z}$$

$$H_z^{+,(m,n)} = -ja_{m,n} \frac{k_t^2}{\omega\mu\epsilon} \cos(k_x x) \cos(k_y y) e^{-j\beta z}$$

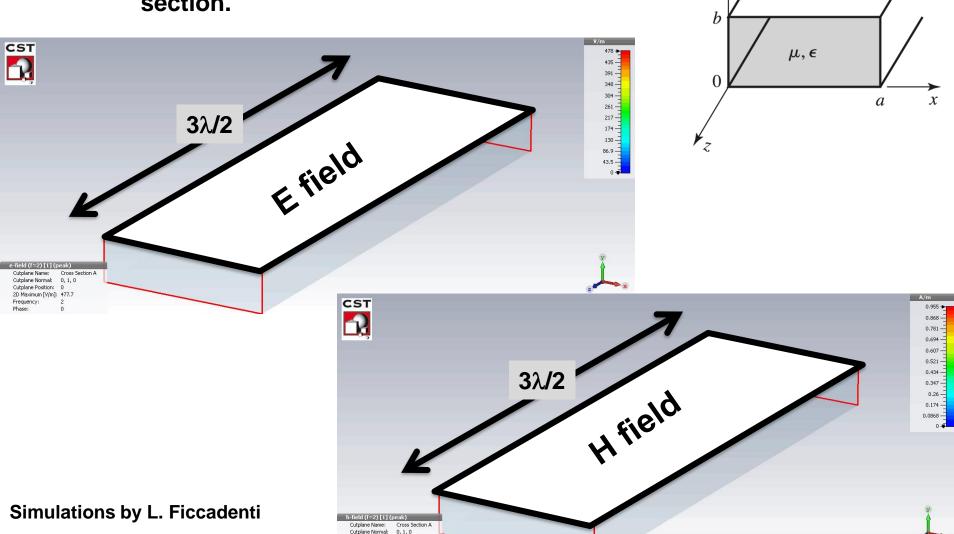


 $TE_{m,n}^{+z}$

Draw the field pattern in the xz plane for TE10

E field H field $TE_{m,n}^{+z}$

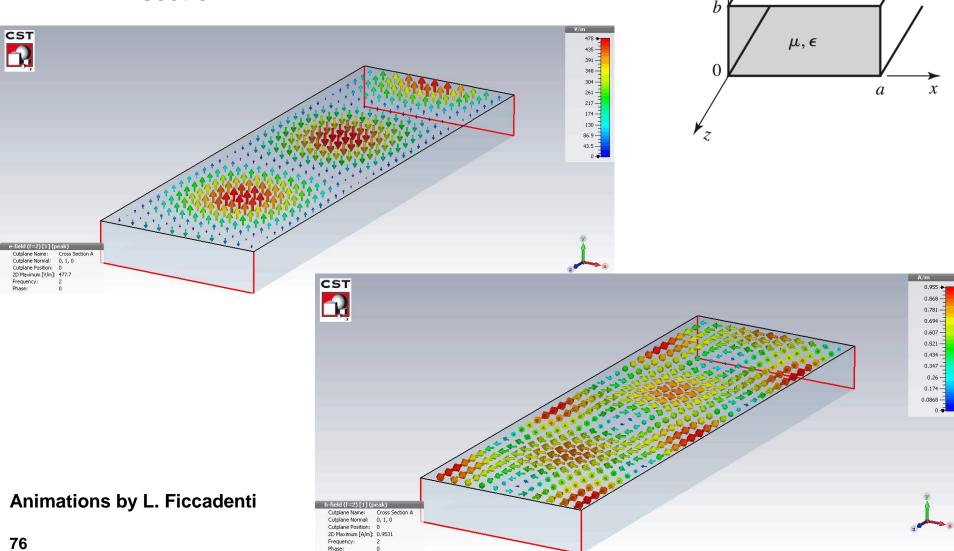
m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.



2D Maximum [A/m]: 0.9531

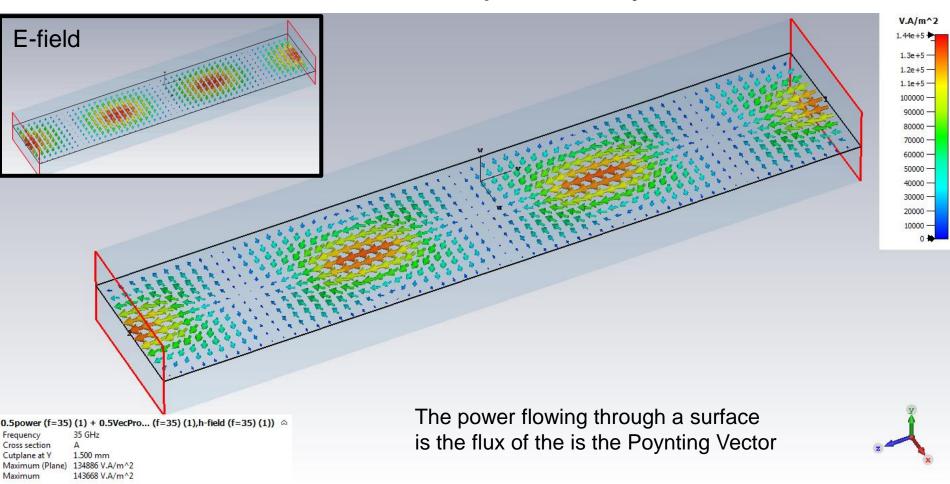
 $TE_{m,n}^{+z}$

m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.



Power Flow pattern (TE10 mode, rect. WG

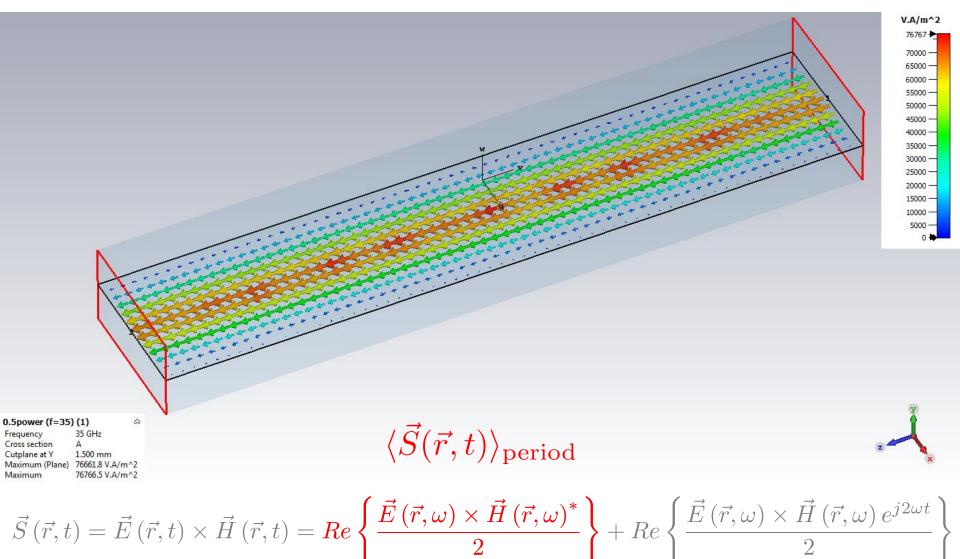
Instantaneous power density



$$\vec{S}\left(\vec{r},t\right) = \vec{E}\left(\vec{r},t\right) \times \vec{H}\left(\vec{r},t\right) = Re\left\{\frac{\vec{E}\left(\vec{r},\omega\right) \times \vec{H}\left(\vec{r},\omega\right)^{*}}{2}\right\} + Re\left\{\frac{\vec{E}\left(\vec{r},\omega\right) \times \vec{H}\left(\vec{r},\omega\right) e^{j2\omega t}}{2}\right\}$$

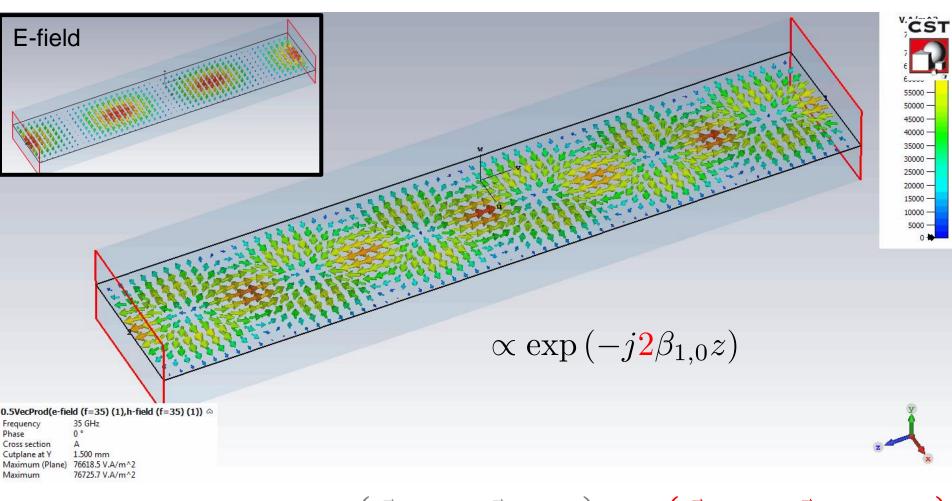
Power Flow pattern (TE10 mode, rect. WG)

Average of the power density over one period



Power Flow pattern (TE10 mode, rect. We

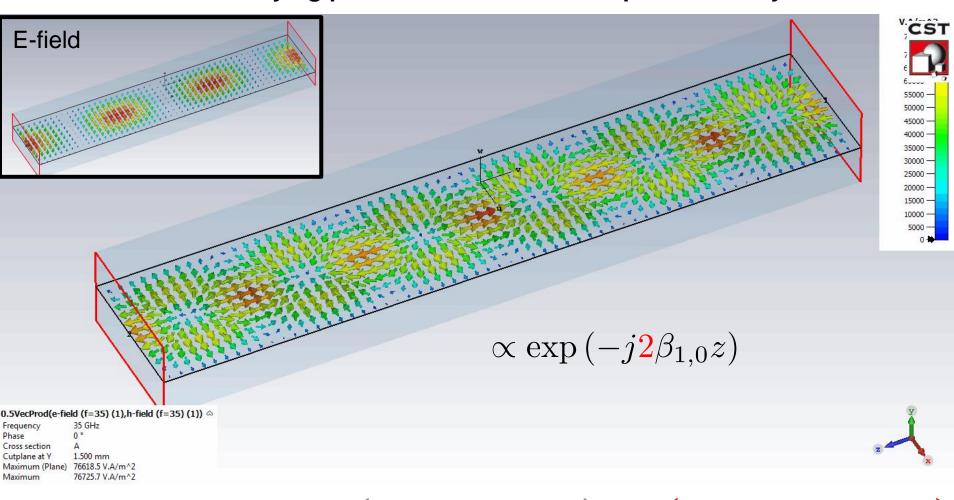
Time varying part of the instantaneous power density



$$ec{S}\left(ec{r},t
ight) = ec{E}\left(ec{r},t
ight) imes ec{H}\left(ec{r},t
ight) = Re\left\{rac{ec{E}\left(ec{r},\omega
ight) imes ec{H}\left(ec{r},\omega
ight)^{*}}{2}
ight\} + Re\left\{rac{ec{E}\left(ec{r},\omega
ight) imes ec{H}\left(ec{r},\omega
ight) e^{j2\omega t}}{2}
ight\}$$

Power Flow pattern (TE10 mode, rect. WG

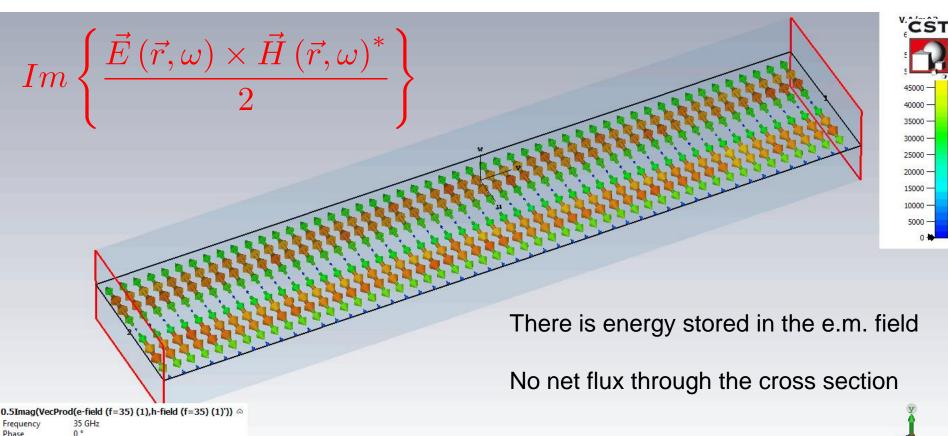
Time varying part of the instantaneous power density



$$ec{S}\left(ec{r},t
ight) = ec{E}\left(ec{r},t
ight) imes ec{H}\left(ec{r},t
ight) = Re\left\{rac{ec{E}\left(ec{r},\omega
ight) imes ec{H}\left(ec{r},\omega
ight)^{*}}{2}
ight\} + Re\left\{rac{ec{E}\left(ec{r},\omega
ight) imes ec{H}\left(ec{r},\omega
ight) e^{j2\omega t}}{2}
ight\}$$

Power Flow pattern (TE10 mode, rect. WG)

Reactive power density



$$\vec{S}\left(\vec{r},t\right) = \vec{E}\left(\vec{r},t\right) \times \vec{H}\left(\vec{r},t\right) = Re\left\{\frac{\vec{E}\left(\vec{r},\omega\right) \times \vec{H}\left(\vec{r},\omega\right)^{*}}{2}\right\} + Re\left\{\frac{\vec{E}\left(\vec{r},\omega\right) \times \vec{H}\left(\vec{r},\omega\right) e^{j2\omega t}}{2}\right\}$$

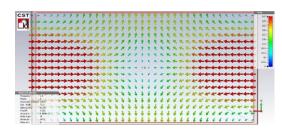
1.500 mm 57367.3 V.A/m^2 60946 V.A/m^2

Field pattern at the cross section

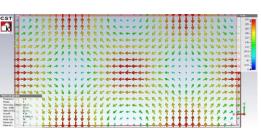
 $TE_{m,n}^{+z}$

m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.

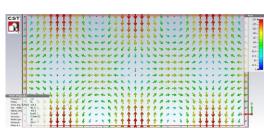
TE??



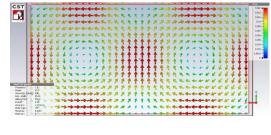
TE??

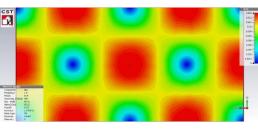


TE??

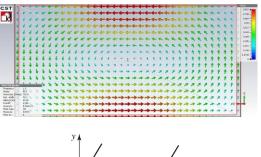


TM??



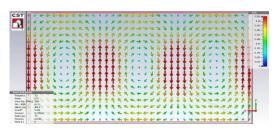


TM??





TM??



Simulations by L. Ficcadenti

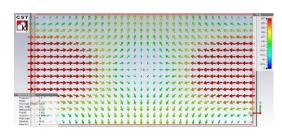
Andrea.Mostacci@uniroma1.it

Field pattern at the cross section

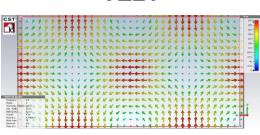
 $TE_{m,n}^{+z}$

m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.

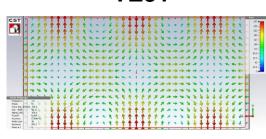
TE11



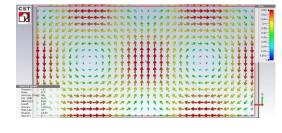
TE21

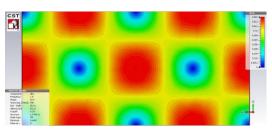


TE31

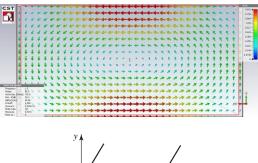


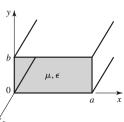
TM21



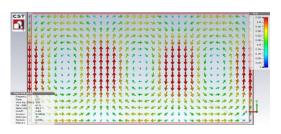


TM11





TM31



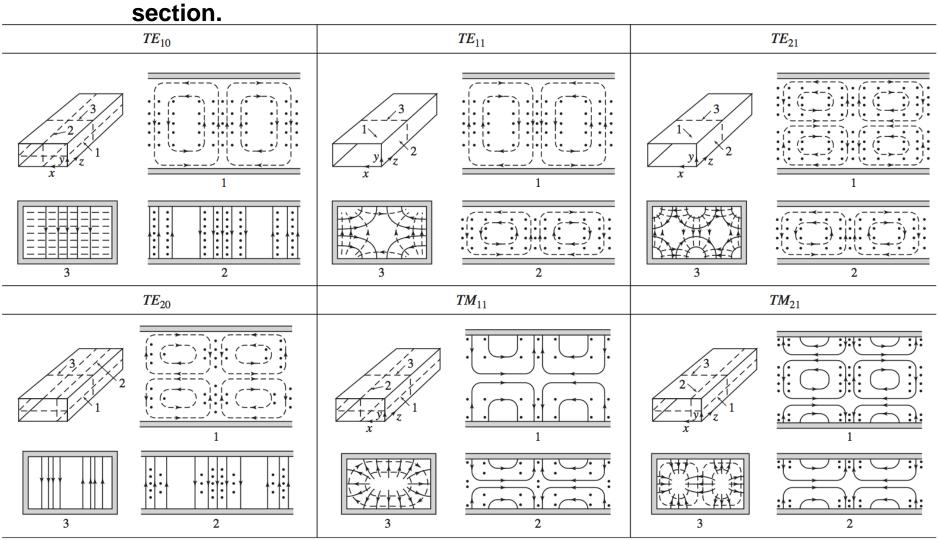
Simulations by L. Ficcadenti

Andrea.Mostacci@uniroma1.it

Field pattern (TE mode, rect. WG)

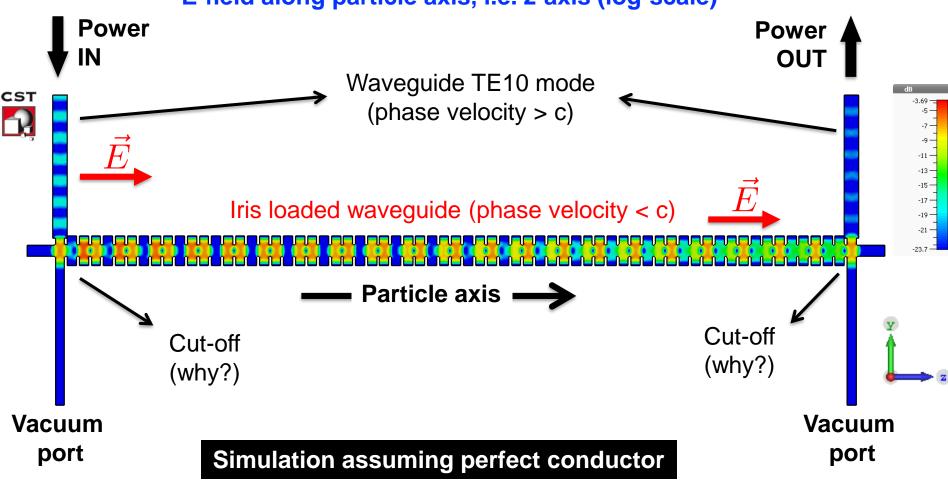
 $TE_{m,n}^{+z}$

m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.

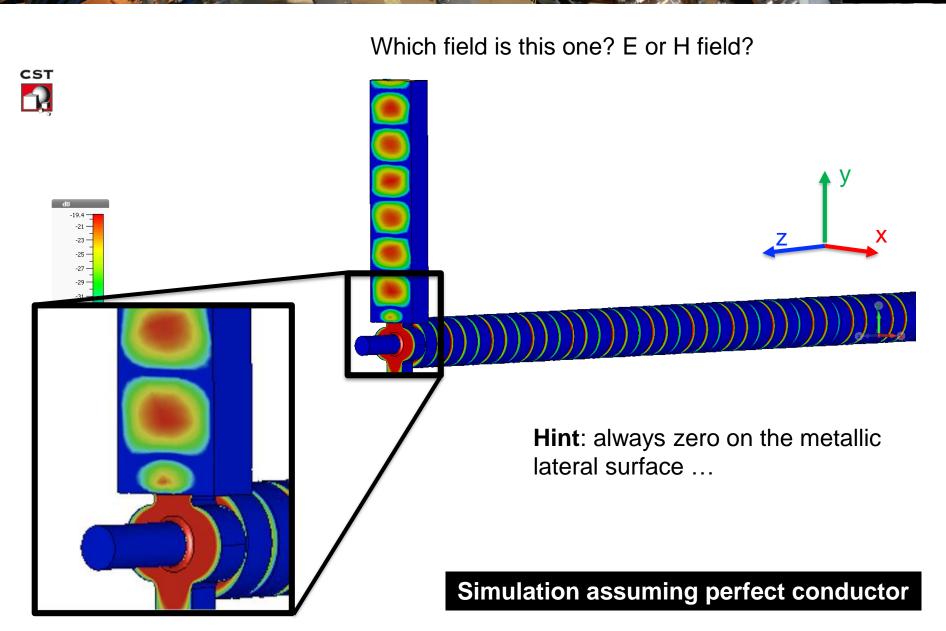


X-band (12GHz) accelerating structure for high brightness LINAC

E-field along particle axis, i.e. z-axis (log-scale)

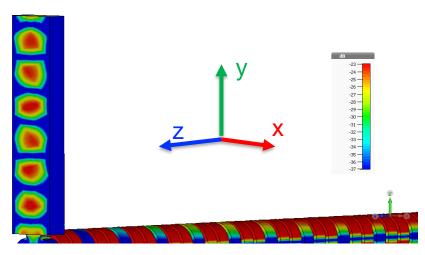


With phasors, a time animation is identical to phase rotation.

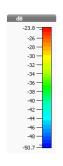


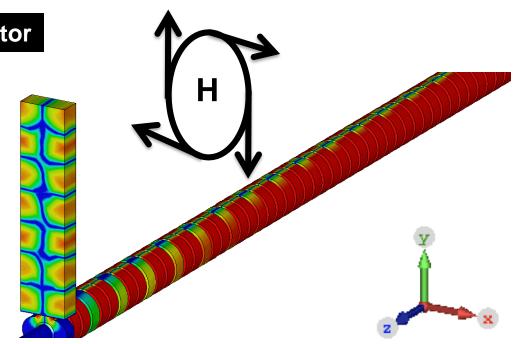
Which field? E or H?

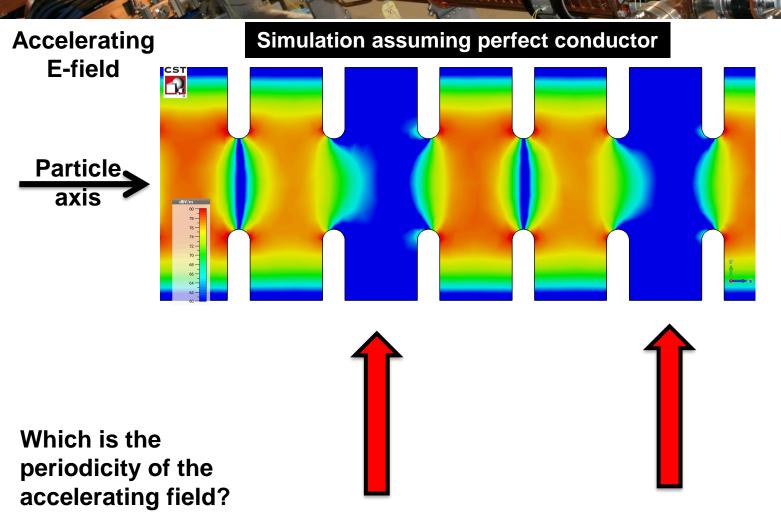
Which component? Along x, y or z?



Simulation assuming perfect conductor





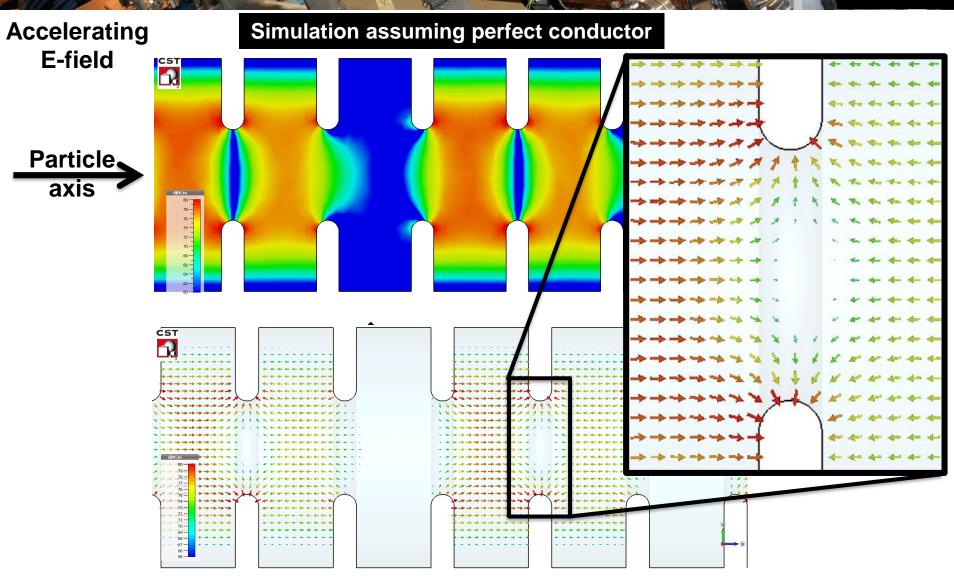


3 cell periodicity

 $2\pi/3$ phase advance

Full EM simulation of a RF accelerating structure

Exercise

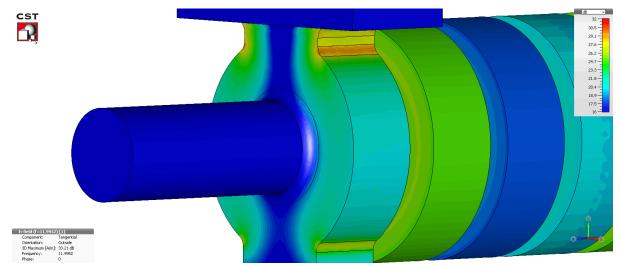


3 cell periodicity

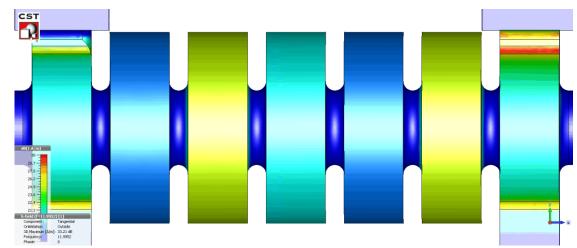
 $2\pi/3$ phase advance

Temperature breakdown: seek for maximum power loss

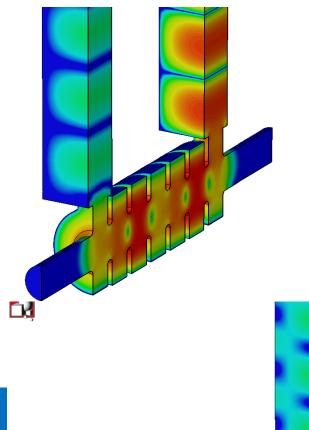
$$P_t = \frac{R_s}{2} \int_S |\hat{\mathbf{n}} \times \vec{\mathbf{H}}|^2 dS$$



Simulation with perfect conductor



Comparison between a tuned coupler and a detuned coupler



Input coupler detuned

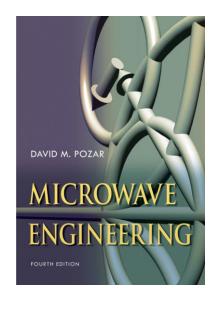
Input coupler tuned

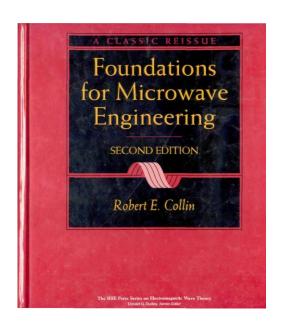
Simulation with perfect conductor

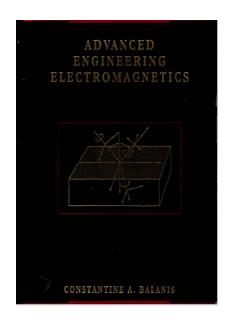
Comparison between a tuned coupler and a detuned coupler

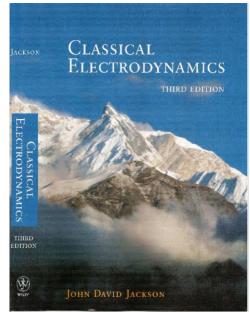


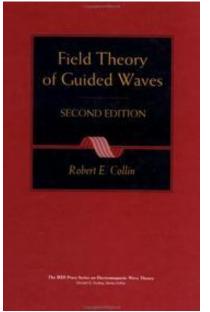
Famous books (personal cut ...)



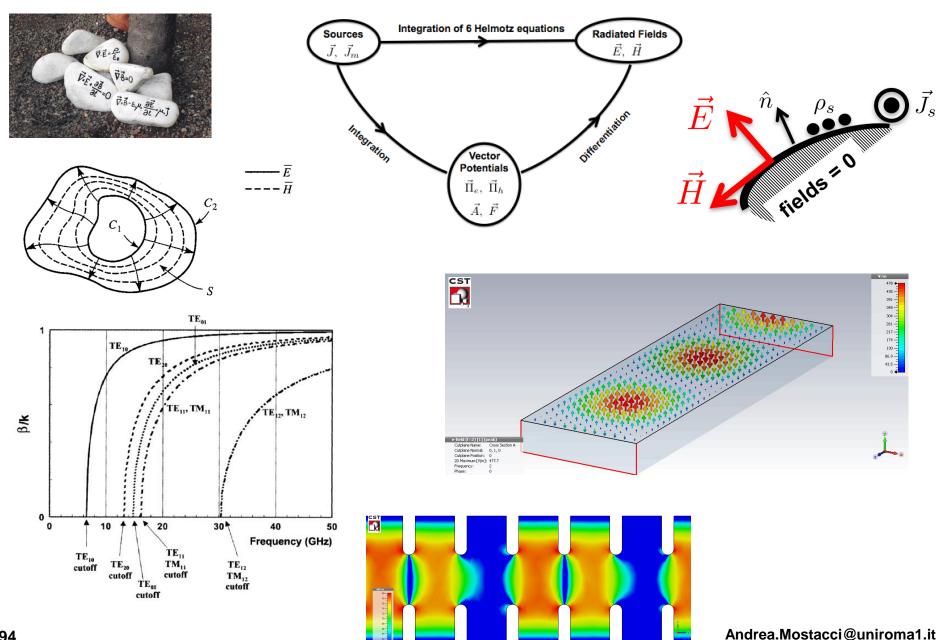








Conclusions



Conclusions Integration of 6 Helmotz equations Radiated Fields Sources William Co Vector **Potentials** 478 + 435 | 391 | 348 | 304 | 261 | 174 | 130 | 43.5 | 43.5 | β/κ e-field (f=2) [1] (peak) Cutplane Name: Cross Section A Cutplane Position: 0, 1, 0 Cutplane Position: 0 2D Maximum [V/m]: 477.7 Frequency: 2 Phase: 0 20 0 10 50 Frequency (GHz) TE TE₁₀ cutoff TM₁₁ cutoff TE₁₂ TM₁₂ cutoff TE cutoff

Andrea.Mostacci@uniroma1.it