

Rasmus Ischebeck

Synchrotron Radiation Joint Universities Accelerator School

asmus Ischebeck > JUAS 2020 > Synchrotron Radiation

Ρ.

Rasmus Ischebeck > JUAS 2020 > Synchrotron Radiation

Possibilities to Generate Electromagnetic Radiation

Monday	Tuesday	Wednesday	Thursday
Linear Imperfections	Synchrotron Radiation	Synchrotron Radiation	Synchrotron Radiation
Coffee Break	Coffee Break	Coffee Break	Coffee Break
Linear Imperfections	Machine Physics	Synchrotron Radiation	Synchrotron Radiation
Lunch	Lunch	Lunch	Lunch
Synchrotron Radiation	Linear Imperfections	Linear Imperfections	Linear Imperfections
Coffee Break	Coffee Break	Coffee Break	Coffee Break
Synchrotron Radiation	Linear Imperfections	Linear Imperfections	Linear Imperfections
	Free Electron Lasers		

Standing on the Shoulder of Giants

- Phil Willmott
- PSI / EPFL
- Online course on synchrotron radiation, available at

- Andreas Streun
- PSI
- SLS 2.0 (private communication)

https://actu.epfl.ch/news/mooc-synchrotrons-and-x-ray-free-electron-lasers/

9

Standing on the Shoulder of Giants

- Bill Barletta

- Riccardo Bartolini
- JUAS course on synchrotron radiation (2018): https://indico.cern.ch/event/683638/timetable/

 Adjunct Professor of Physics at MIT, UCLA, and Old Dominion University • US Particle Accelerator School course on synchrotron radiation: http://uspas.fnal.gov/materials/09UNM/Unit_11_Lecture_18_Synchrotron_radiation.pdf

Standing on the Shoulder of Giants

- Phil Bucksbaum
- Stanford
- <u>uxss2018/2018.UXSS.Bucksbaum.AMO.tutorial.pdf</u>

- Federica Marone
- PSI
- X-ray tomography (private communication)

• Ultrafast X-Ray Summer School course on atomic and molecular physics: https://app.certain.com/accounts/register123/stanford/pulseinstitute/events/

Quiz: Electromagnetic Radiation is Emitted by...

Rasmus Ischebeck > JUAS 2020 > Synchrotron Radiation

12

Emission of Electromagnetic Radiation by an Accelerated Charge

Rasmus Ischebeck > JUAS 2020 > Synchrotron Radiation

Q

Tsumoro Shintake 13

Radiation Emitted by Charge on a Circular Orbit

Fig. 4 Synchrotron radiation at v = 0.9c. Snapshot from the Radiation 2D.

Rasmus Ischebeck > JUAS 2020 > Synchrotron Radiation

Tsumoro Shintake 14

Emission by Relativistic Particles

Rasmus Ischebeck > JUAS 2020 > Synchrotron Radiation

D. H. Tomboulian and P. L. Hartman, Phys. Rev. 102 (1956) 15

Properties of Synchrotron Radiation

- High flux
- F = N/(s BW)
- High brilliance (spectral brightness)
- B = N/(s mm2 mrad2 BW)
- Polarization
- Pulsed time structure
- Stability
- Power can be computed from first principles

Brilliance

• Key figure of merit comparing different photon sources

$$\mathcal{B} = \frac{\dot{N}_{\gamma}}{4\pi^2 \sigma_x \sigma_y \sigma_{x'} \sigma_{y'} (0.1\% \text{BW})}$$

- Average brilliance for photon-hungry experiments
- For some experiments, the peak brilliance is very important
 - More in the lecture about the interaction of X-rays with matter

• Free electron lasers have a peak brilliance that is 1'000'000'000 times larger than that of synchrotrons

X-Ray Sources

W. Eberhardt / Journal of Electron Spectroscopy and Related Phenomena 200 (2015) 31–39 18

Rasmus Ischebeck > CERN Accelerator School > Synchrotron Light Machines and FELs II

Undulator Radiation

Fig. 5 Undulator radiation, v = 0.9c, K = 1. Snapshot from the Radiation 2D.

Tsumoro Shintake 20

Undulator Radiation

Rasmus Ischebeck > JUAS 2020 > Synchrotron Radiation

Grow with the Number of Magnet Poles?

Rasmus Ischebeck > JUAS 2020 > Synchrotron Radiation

How Does the Brilliance of Radiation Emitted by an Undulator

Tunability of undulator radiation

	gap(mm)	Eo(keV)
-	20	6.56
_	19	6.13
-	18	5.72
-	17	5.29
_	16	4.83
	15	4.40
_	14	3.97
-	13	3.53
	12	3.15
-	11	2.77

Layout of a Synchrotron Radiation Source

- Bends serve also as extraction point
- Straight sections for
 - injection
 - insertion devices

undulator beam

Layout of the Swiss Light Source

- 3rd generation light source
- Start of user operation in 2001
- Circumference: 288 m
- Particle energy: 2.4 GeV
- 12 triple bend achromats
- 12 straight sections
 - Dispersion-free
 - 1 for injection
 - 2 for acceleration
 - 1 for harmonic RF
 - 8 for undulators
- Injection at full energy
 - Top-up mode possible

Top-Up Operation

Rasmus Ischebeck > JUAS 2020 > Synchrotron Radiation

Andreas Lüdeke 26

History of Synchrotron Radiation

Evolution of Synchrotrons

Wigglers and Undulators

Rasmus Ischebeck > JUAS 2020 > Synchrotron Radiation

Evolution of synchrotron radiation sources (I)

• First observation:

1947, General Electric, 70 MeV synchrotron

• First user experiments:

1956, Cornell, 320 MeV synchrotron

• 1st generation light sources: machine built for High Energy Physics or other purposes used parasitically for synchrotron radiation

 2nd generation light sources: purpose built synchrotron light sources, SRS at Daresbury was the first dedicated machine (1981 - 2008)

• 3rd generation light sources: optimised for high brilliance with low emittance and Insertion Devices; ESRF, Diamond,

. . .

Riccardo Bartolini 30

Evolution of synchrotron radiation sources (II)

 4th generation light sources: photoinjectors LINAC based Free Electron Laser sources;

FLASH (DESY) 2007 LCLS (SLAC) 2009 SACLA (Japan) 2011 Elettra (Italy) 2012

and in the near(?) future

 4th generation light sources storage ring based: diffraction limited storage rings

• ...and even a 5th generation with more compact and advanced accelerator technologies e.g. based on laser plasma wakefield accelerators

Riccardo Bartolini 31

Synchrotrons around the World

Rasmus Ischebeck > JUAS 2020 > Synchrotron Radiation

Questions?

