

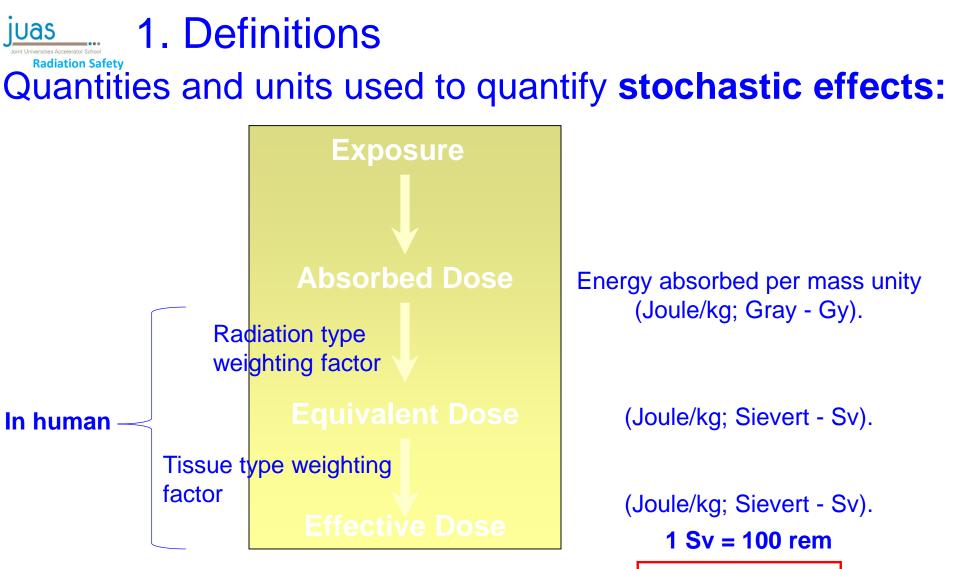
Part A. Dose magnitudes

1.Definitions

2. Effects of the ionization radiation

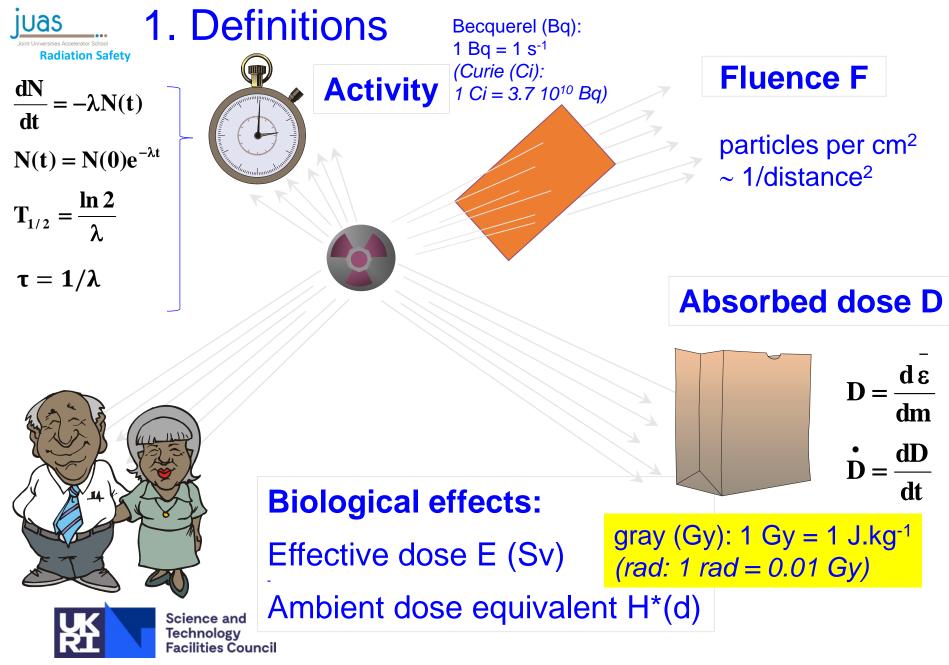
3.Natural background

4. Rules for workers & zones


1. Definitions

Ionizing radiation

- → directly ionizing: charged particles (electrons, protons, ...)
- \rightarrow indirectly ionizing: photons, neutrons


of the order of 10 eV required to ionise an atom $(1 \text{ eV} = 1.6022 \text{ } 10^{-19} \text{ J})$

electromagnetic radiation:		Ionisation potential (eV)
$\mathbf{E} = \frac{\mathbf{hc}}{\lambda} \Rightarrow \lambda \approx 100 \text{ nm}$	carbon	11.260
$\boldsymbol{\mathcal{N}}$	oxygen	13.618
E = 12.4 eV	potassium	4.341
(hard ultraviolet) h = 6.626 10 ⁻³⁴ J s	iron	7.870
$c = 2.998 \ 10^8 \ m \ s^{-1}$	lead	7.416
Facilities Council		

1 mSv = 0.1 rem

Ionising Radiation Dose (Equivalent Dose):

is a measure of the radiation dose absorbed by a tissue depending on the different types of ionizing radiation.

1 mSv = 0,001 Sv (Sievert)

Energy absorbed per kilogram: 1 Sv = 1 Joule / 1 kg (1 Joule = 0,25 calories)

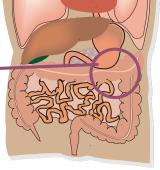
Assuming **2000 hours** per year and worker: 0,001 Sv / 2000 h = 0,0000005 Sv/h = 0,5 μ Sv/h

ICRP Publication 60 (1991):

Organ dose D_T

JUas

$$D_T = \frac{1}{m_T} \int_{m_T} D dm$$


Tissue or organ equivalent dose H_{T.R}

$$H_{T,R} = w_R \cdot D_{T,R}$$
$$H_T = \sum_R w_R \cdot D_{T,R}$$

Unit of equivalent dose: J.kg⁻¹ **Special name: Sievert (Sv)** *Old unit: rem (1 Sv = 100 rem)*

Science and Technology **Facilities** Council **Individual organ** e.g. stomach

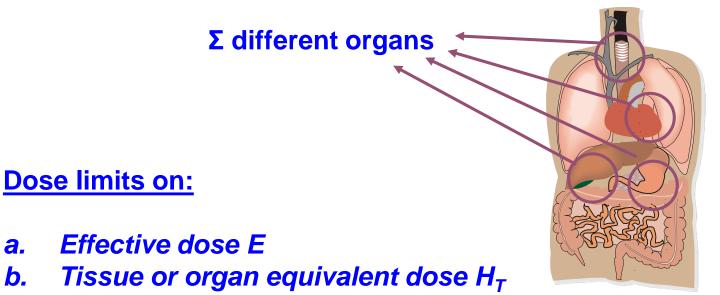
W_R: Radiation type weighting factor

Radiation weighting factors*		
Type and energy range	WR	
Photons, all energies	1	
Electrons and muons, all energies	1	
Neutrons, energy <10 keV	5	
10 keV–100 keV	10	
>100 keV-2 MeV	20	
>2 MeV-20 MeV	10	
>20 MeV	5	
Protons, other than recoil, energy >2 MeV	5	
Alpha particles, fission fragments, heavy nuclei	20	

See Table 1 of *Publication 60* for further details (ICRP, 1991).

ICRP Publication 103 (2007)

Effective dose E


$$E = \sum_{T} w_{T} \cdot H_{T}$$

Unit of effective dose: Sv

Table 3. Recommended tissue weighting factors.

Tissue	w _T	$\sum w_{\mathrm{T}}$
Bone-marrow (red), Colon, Lung, Stomach,	0.12	0.72
Breast, Remainder tissues*		
Gonads	0.08	0.08
Bladder, Oesophagus, Liver, Thyroid	0.04	0.16
Bone surface, Brain, Salivary glands, Skin	0.01	0.04
	Total	1.00

* Remainder tissues: Adrenals, Extrathoracic (ET) region, Gall bladder, Heart, Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas, Prostate (\mathcal{J}), Small intestine, Spleen, Thymus, Uterus/cervix (\mathcal{Q}).

а.

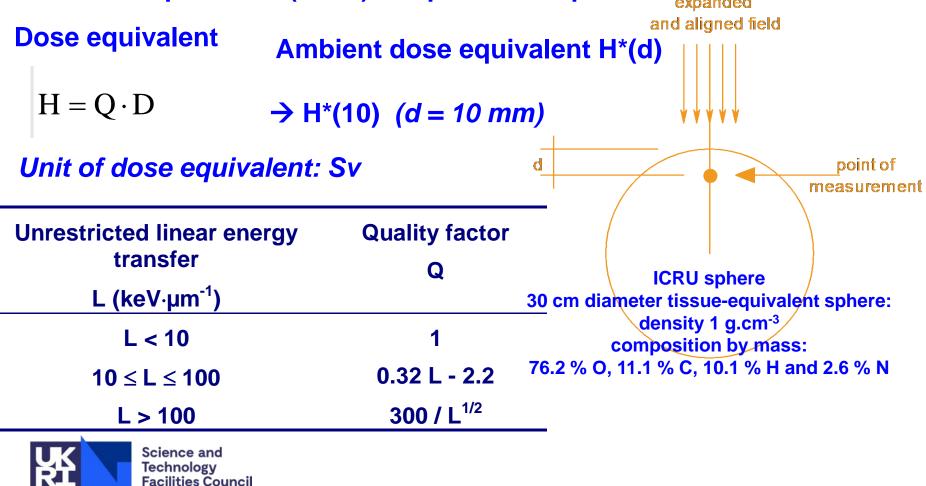
b.

Science and Technology **Facilities** Council

Technology Facilities Council

ICRP Publication 103 (2007)

ICRP 60 ICRP 103 Tissue weighting factor w_{T} Gonads 0.20 0.08 Bone marrow (red) 0.12 0.12 Colon 0.12 0.12 Radiation 0.12 0.12 Lung weighting factor W_{R} Stomach 0.12 0.12 Bladder 0.05 0.04 $2.5 + 18.2 e^{-[\ln E_n]^2/6}, \quad E_n < 1 MeV$ Breast 0.05 0.12 Liver 0.05 0.04 $5.0 + 17.0 e^{-[\ln 2E_n]^2/6}$, $1 \text{ MeV} \le E_n \le 50 \text{ MeV}$ **Oesophagus** 0.05 0.04 $2.5 + 3.25 e^{-[\ln 0.04 E_n]^2/6}, E_n > 50 MeV$ Thyroid 0.05 0.04 Skin 0.01 0.01 neutrons **Bone surface** 0.01 0.01 0.01 Brain protons: 2 0.01 Salivary gland -Remainder 0.12 0.05 Total 1 1 Science and

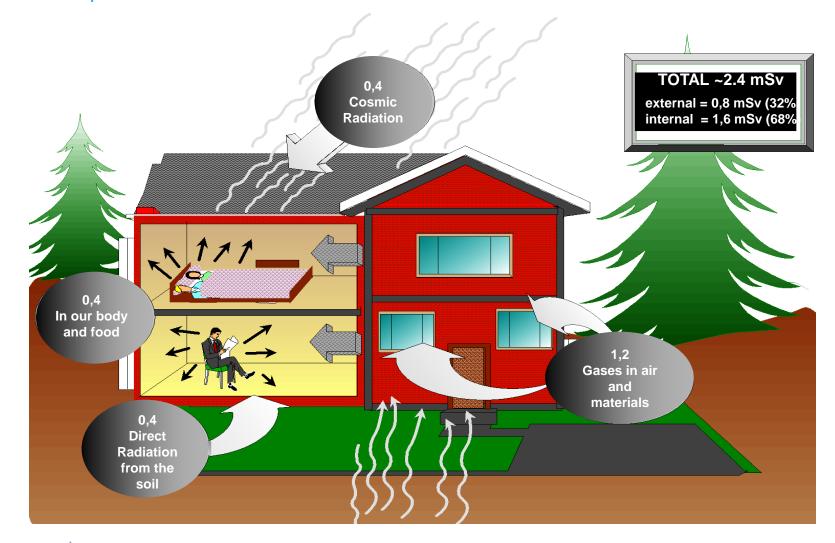

ICRP Publication 60 (1991): Irradiation geometries

ICRU Report 51 (1993):

Protection quantities (ICRP) \rightarrow operational quantities

2. Effects of the ionization radiation JUas **Radiation Safety** Radiation **Electrical Effect (Ionization) Physical & Chemical Changes** Damage to DNA **Cell Transformation** Cell Death Early Effect Hereditary Cancer

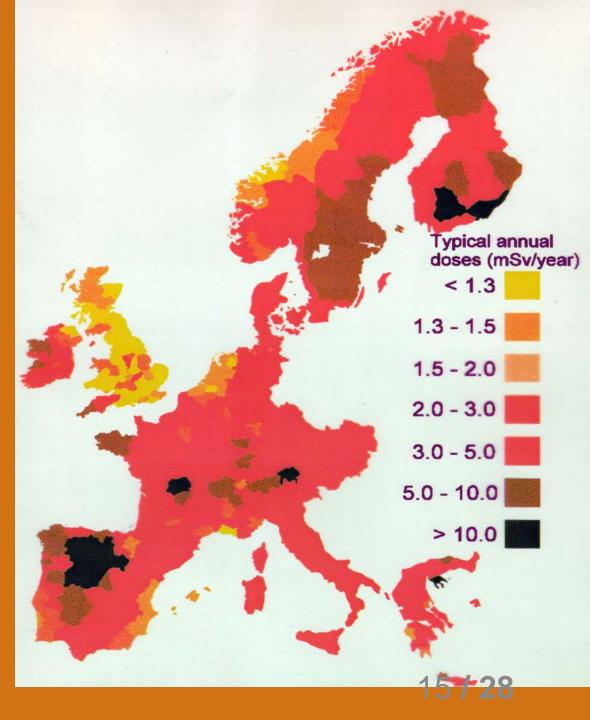
11 / 28


Defects

juas Radiation Safety 2. Effects of the ionization radiation

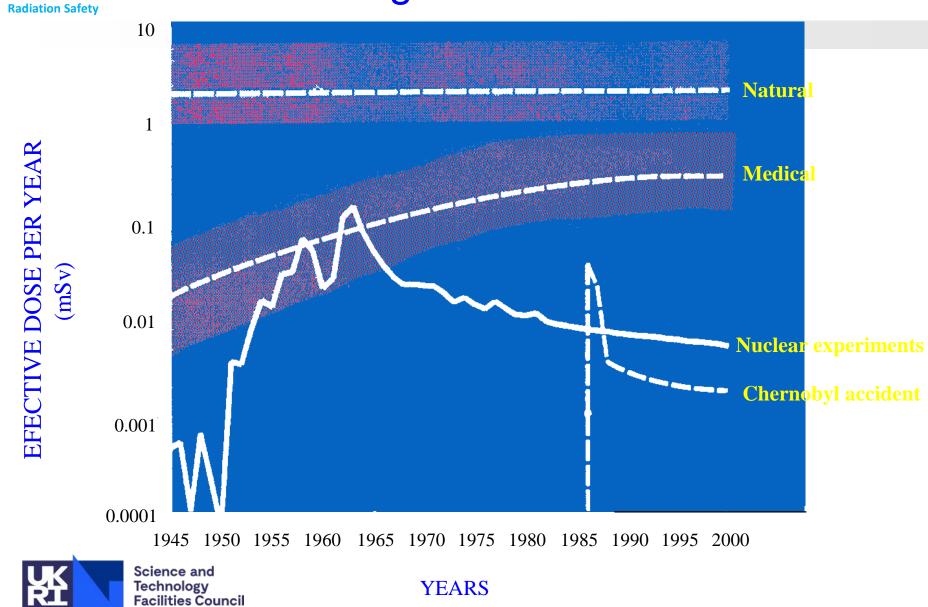
Effect	Population	Exposure period	Probability/Sv
Hereditary effects	Whole population	Lifetime	1 % (all generations)
Fatal cancer	Whole population	Lifetime	5 %
	Working population	Age 18-65	4 %
Health detriment	Whole population	Lifetime	7.3 %
	Working population	Age 18-65	5.6 %

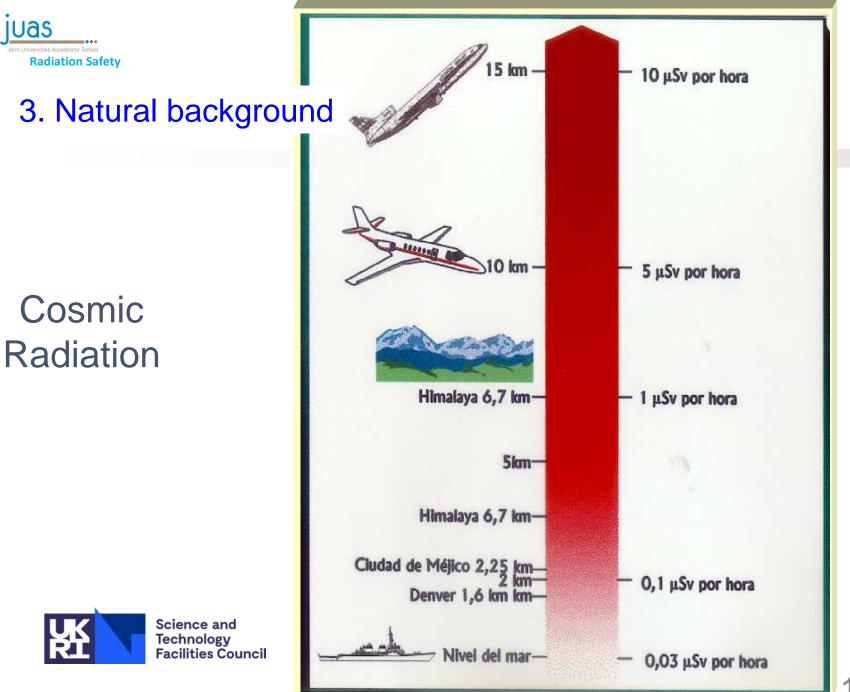
juas Juit Universities Accelerator School Radiation Safety

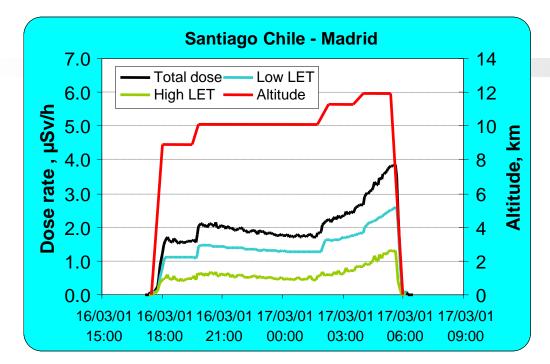


WORLDWIDE AVERAGE DOSES

Source	Effective dose (mSv per year)	Typical range (mSv per year)
External exposure		
Cosmic rays	0.4	0.3-1.0
 Terrestrial gamma rays 	0.5	0.3-0.6
Internal exposure		
Inhalation	1.2	0.2-10
Ingestion	0.3	0.2-0.8
Total	2.4	1–10




Natural background radiation exposure in Europe


3. Natural background

juas

AVERAGE DOSES TO WORKERS

Radiation source	Number of workers	Average dose (mSv per year)
Enhanced natural sources		
• Mining (excluding coal)	760,000	2.7
Coal mining	3,900,000	0.7
• Air travel (crew)	250,000	3
Mineral processing	300,000	1.0
Above ground workplaces	(radon) 1,250,000	4.8
Total	6.500,000	1.7

4. Rules for workers & zones DOSE LIMITS - PERSONAL

>WORKERS :

- 1. For Exposed Workers A: maximum dose 50 mSv per official year (100 mSv for 5 years)
- 2. For Exposed Workers B: maximum dose 6 mSv per official year
- 3. For None Exposed Workers: 1 mSv per official year
- 4. For women during pregnancy (*): 1 mSv
- 5. For general public: 1 mSv per official year

4. Rules for workers & zones **Radiation Safety**

	Dose Limit		
Aplication	Workers	Public	
Effective Dose	20 mSv/year averaged for 5 years periods ¹	1 mSv/year ²	
Equivalent Dose (/year):			
Lens (Crystalline)	20 mSv ⁴	5 mSv	
Skin ³	500 mSv	50 mSv	
Hands and foot	500 mSv		

- 1 The effective dose will be below 50 mSv any year.
- 2 Under exceptional situations a higher effective dose could be accepted, if the average in 5 years Is not above 1mSv/year.
- 3 These dose limits (equivalent dose) prevent deterministic effects after local exposures.

IUas

Science and Technology **Facilities** Council

4 IAEA, 2014. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. IAEA Safety Standards Series No. GSR Part 3. International Atomic Energy Agency, Vienna

Dose per day:

1 mSv/year is the annual limit for public due to

artificial radiations

Exposed Worker

< 1 mSv/year

< 12 μSv

< 0.5 µSv/h

The smoker case

Annual dose (1.5 pack/day):

13 mSv/year Dose per cigarrette:

~ **1.2 μSv/cigarette** Dose rate (5min/cigarette):

~ 14.4 µSv/h

Annual dose (2000 h/year):

Dose rate @ public areas:

AREA DOSE LIMITS

> Area Designation:

Controlled Area: dose higher than 6 mSv (per official year)
 i. Limit Access Zone: dose higher than 100 mSv (for 5 years)
 ii. Ruled Access Zone: high dose rate (short period)
 iii. Prohibited Access Zone: high dose (single exposition)

2. Supervised Area: dose lower than 6 mSv (per official year)

Always ANNUAL DOSE is ABOVE the background LEVEL

4. Rules for workers & area DOSE LIMITS - SIGNALS

It is likely than in 1 year:

SUPERVISED AREA from 1 mSv/y to 6 mSv/y

CONTROLLED AREA from 6 mSv/y to 50mSv/y

LIMIT ACCESS AREA Less than a year (months): 50 mSv

RULED ACCESS AREA

Less than month (days): 50 mSv

PROHIBITED ACCESS AREA Single exposition (hours): 50 mSv

Technology Facilities Council

4. Rules for workers & zones DOSE LIMITS - SIGNALS

If we assume 2,000 hours/year:

SUPERVISED AREA > 0,5 μ Sv/h up to 3 μ Sv/h

CONTROLLED AREA > 3 μ Sv/h up to 25 μ Sv/h

ZONA FERMANENCIA LIMITADA

RIESOO DE IRRADIACIÓN EXTERNA

LIMIT ACCESS AREA > 25 μ Sv/h up to 100 μ Sv/h

RULED ACCESS AREA

> 100 μ Sv/h up to 25 mSv/h

PROHIBITED ACCESS AREA > 25 mSv/h

Science and Technology Facilities Council

Passive personnel dosimeters

- Thermoluminiscense
- Based on detectors TLD-100 (LiF: Mg, Ti):
 - Equivalent dose
 - Range of usage: 10µGy-10Gy.
- The filter system allow to distinguish the energy

radiation

Whole body dosimeter

Different passive dosimeters configurations

