

Part C. Radiation shielding

1.Electron accelerators 2. Proton accelerators **3.Synchrotron radiation facilities** 4.Specific: a.Beam dump **b.Induced** Activity c.RF generator plants

1. Electron accelerators

Prompt radiation fields around accelerators:

1. Electron accelerators

photons (bremsstrahlung) neutrons

2. Proton accelerators

neutrons

3. Electron/Proton accelerator facilities

Science and Technology Facilities Council beamlines

Examples of neutron spectra

Science and Technology Facilities Council

juas

Source: Science and Technology **Facilities Council**

2. Proton accelerators

Examples of neutron spectra

- The Ott's code allows to compute the effective annual dose D, at the following directions:
 - Front / Back
 - Front / Side
 - Inside / Outside
 - Roof / Floor
 - Skyshine
 - Labyrinth

(For a given: i_e (P_S), t_{User} (P_S), $t_{Machine}$ (P_S), E_e and shielding conditions)

Science and Technology Facilities Council

≻e-Loss Points:

	Machine Point
0	LINAC prebuncher
1	LINAC-1
2	LINAC-2
3	Transferline LINAC->Booster
4	Transferline LINAC->Booster
5	Injection Septum
6	Extraction Septum
7	Point Sources-Booster
8	Extraction Septum
9	Transferline Booster->SR-1
10	Transferline Booster->SR-2
11	Injection Septum
12	Point Sources-Storage Ring

Electron losses estimation during injection:

		Elect			
Machine Point	% loss	LOSS	IN	OUT	Energy [GeV]
0 LINAC prebuncher	-		7.02E+10	9.24E+10	0,00009
1 LINAC-1	10%	9.24E+09	9.24E+10	8.32E+10	0,05
2 LINAC-2	10%	8.32E+09	8.32E+10	7.49E+10	0,1
3 Transferline LINAC->Booster-1	5%	3.74E+09	7.49E+10	7.11E+10	0,1
4 Transferline LINAC->Booster-2	5%	3.56E+09	7.11E+10	6.76E+10	0,1
5 Injection Septum	20%	1.35E+10	6.76E+10	3.38E+10	0,1 to 3
6 Extraction Septum	15%	1.01E+10	3.38E+10	3.38E+10	0,1 to 3
7 Point Sources-Booster	15%	1.01E+10	3.38E+10	3.38E+10	0,1 to 3
8 Extraction Septum	15%	5.07E+09	3.38E+10	2.87E+10	3
9 Transferline Booster->SR-1	5%	1.44E+09	2.87E+10	2.73E+10	3
10 Transferline Booster->SR-2	5%	1.36E+09	2.73E+10	2.59E+10	3
11 Injection Septum	40%	6.48E+09	2.59E+10	1.30E+10	3
12 Point Sources-Storage Ring	30%	6.48E+09	1.30E+10	1.30E+10	3

Science and Technology Facilities Council

> Operation time, depending on the machine mode:

User mode

Operating time /day	24	hours
Operating time/year (250 days/year)	6000	hours
Storage time /filling	5	hours
Injections / day	5	
Injections / year	1200	
Booster operation / injection	12	minutes
Booster operation / year	250	houre
	LOV	nours
Min. injection time/ injection	169	seconds
Min. injection time/ injection Min. injection time/ year	169 59	seconds hours
Min. injection time/ injection Min. injection time/ year Max. injection time/ injection	169 59 507	seconds hours seconds

Max. injection time / year	422	hours
Max. injection time / injection	2535	seconds
Min. injection time / year	28	hours
Min. injection time / injection	169	seconds
Synchrotron operation / year	476	hours
Synchrotron operation / injection	48	minutes
Injections / year	600	hours
Injections / day	10	hours
Machine test weeks / year	12	hours

Machine Test mode

The dose limit objective at ALBA (following the ALARA principle) is 1 mSv/a in all the site

Science and Technology Facilities Council

$$D = \sum_{i=1}^{3} D_i = D_{\gamma-ray} + D_{giant-neutron} + D_{fast-neutron}$$

Where D_i is given by:

$$D_{i}(\vec{s}) = i_{e}(s) \cdot t(s) \cdot H_{i}(\vec{s})$$

 $i < j = e^{iS} i = t$ S: accelerator point $i_e(s)$: is the electron loss rate at s-point

 $t(s) = t_{User}(s) + t_{Machine}(s)$: is the time that the e-loss occurs (at s-point)

 $H_i(\vec{s})$: is the dose rate (at s-point) for i-particle

Science and Technology Facilities Council

> Shielding Scheme Drawing:

> Dose at P_1 , (per incident electron at P_0):

 $H = H(E_e; w (d_T, \phi), \rho_T; r, \rho_{S1}, d_{S1}, \rho_{S2}, d_{S2}, \theta)$

In the ALBA case: Source (for the Storage Ring): le = 400 mA Ee = 3.0 GeV

Target:

 d_T [cm]: depends on the machine point φ : depends on the machine point ρ_T [g/cm3] : stain steel

Shielding:

r [cm]: depends on the machine point ρ_{S1} [g/cm³]: lead $d_{S1} = 5$ cm ρ_{S2} [g/cm3] : concrete (normal & heavy) $d_{S2} = 1$ m (side) & 1.5 m (front) & 1.4 m (roof)

Θ: depends on machine point

JUas

Radiation Safety

Science and Technology Facilities Council

Analytical model (<u>for photons</u>): H_{p} =

$$= \prod_{i} \frac{\dot{\mathrm{H}_{0}} \times e^{\left[-\binom{\mu}{\rho}_{i} \rho_{i} \times d\right]}}{r_{\mathrm{p}}^{2}} = \frac{\dot{\mathrm{H}_{0}}}{r_{\mathrm{p}}^{2}} \prod_{i} e^{\left[-\binom{\mu}{\rho}_{i} \rho_{i} \times d\right]}$$

 $\dot{H_p}$: Dose rate equivalent rate (in Sv/h) in a given point-p, out of the shielding area $\dot{H_0}$: Dose rate equivalent rate (in Sv/h) at 1 m from the source, without the shielding

d : Shield thickness (in cm)

 $(\mu/\rho)_i$: mass attenuation coefficient (in cm⁻¹) for the material-i

r_p: distance from the source point to the dose point-p (in m)

i: sum over different materials

Example (<u>in air</u>): a 1 Sv/h (at 1 meter in vacuum) 100 keV photon source, at 10 m?

$$\dot{H_p} = \frac{1 \times e^{[-(0.1541 \times 0.00123) \times 1000]}}{10^2} = 8.3 \text{ mSv/h}$$

Buildup factor effect: how the shielding 'unshield' the source

juas

Science and Technology Facilities Council Example: MARS calculation for the electron dump line of the LCLS facility - Courtesy of T. Sanami.

3. Synchrotron radiation facilities

juas

Inner and side walls thickness	1 m
Inner wall thickness at injection	1.65 m
Side wall thickness at injection	1.25 m
Roof thickness	1 m
Roof thickness at injection	1.4 m
Linac walls thickness	1 m
Labyrinths walls thickness	0.7 m
Front walls thickness	1.5 m
Number of side/front walls	19
Concrete density	2.4 g/cm ³
Heavy concrete density	3.2 g/cm ³

Front wall

Science and Technology Facilities Council

3. Synchrotron radiation facilities

juas

ALBA SYNCHROTRON: EXPERIMENTAL BEAMLINES

19 / **51**

21 / 51

Molière radius (ρ_M): it is the radius of a cylinder containing on average 90% of the shower's energy deposition.

```
\rho_{M} [cm] = 0.0265 [cm<sup>3</sup>/g] X<sub>0</sub> (Z + 1.2)
```

Where:

X₀ [g/cm²]: Radiation length (for Cu: 12.86 g/cm2)

Z: atomic number (for Cu: 29)

Science and Technology Facilities Council

 $\rho_{\rm M} = 10.29 \ {\rm cm}$

4a. Beam dump cylinder

Juas 4b. Induced Activity

- radiation remains after accelerator switched off •
- work permits for people entering tunnels •
- radiation protection: personnel and environment •
- management of activated accelerator components •
- decommissioning of facilities •
- thermal and slow neutron reactions •
- medium energy neutron reactions •
- nuclear reactions at high energy (spallation) •
- photonuclear reactions •

relatively insensitive to activation	moderately susceptible to activation	highly susceptible to activation	fissionable
ordinary concrete, Pb, Al, wood, plastics Science and	Fe (steel, ferrites), Cu	Stainless steel, W, Ta, Zn, Au, Mn, Co, Ni	U, Pu, Th
Technology Facilities Counci	I		

4b. Induced Activity Activation from electron beam

juas

Radiation Safety

Activation from proton beam

Isotope	Half-life	Decay	fSv.h ⁻¹ .Bq ⁻¹ at 1
		mode	m
⁷ Be	53 d	EC	7.8
¹¹ C	20 min	β+	140
¹⁸ F	1.8 h	β+	132
²² Na	2.6 y	β+	298
²⁴ Na	15 h	β+	560
⁴⁶ Sc	84 d	β+	283
⁴⁸ Sc	1.8 d	β+	455
⁴⁸ V	16 d	β+	397
⁵¹ Cr	28 d	ÉC	4.3
⁵² Mn	5.7 d	β+	326
⁵⁴ Mn	303 d	ÉC	114
⁵⁶ Co	77 d	β+	350
⁶⁰ Co	5.3 y	β+	340
⁶⁵ Zn	245 d	ĖC	76

Main radioactive isotopes produced in accelerator structures by spallation reactions

Radionuclide activity [A]: number of decays per unit time.

International Unit: becquerel **[Bq]**, one nucleus decay per second [s⁻¹].

Nuclide	half-life	radiation	principal energies	gamma dose rate at 1 metre (µSv/h/GBq)
Co-60	5.27 y	β	0.32 MeV (100%)	
	1 A. 1 A. 1 A. 1 A.	Y	1.17 MeV (100%)	
			1.33 MeV (100%)	357

Therefore the dose rate of a 60Co source of 1 Bq at 1 m Science and in air is: $3.57 \cdot 10^{-7} \, \mu Sv/h$

It means that, the dose rate [μ Sv/h] produced by a radioactive source of **1 kBq** of ⁶⁰Co in air is 357·10⁻⁶ μ Sv/h:

 $\dot{D}(t) = k \times A(t)$

And the **accumulated dose over a year is**:

$$D(t) = \int_0^t k \times A(t) = \int_0^t k \times A_0 \times e^{-\lambda \cdot t}$$
$$D(t) = \frac{k \cdot A_0}{\lambda} \left[1 - e^{-\lambda \cdot t} \right]; t_{1/2} = \frac{Ln2}{\lambda} = \tau Ln2$$

$$\tau = \frac{t_{1/2}}{Ln2} = 2.398 \cdot 10^8 \,\mathrm{s}$$
; $t_{1 year} = 0.315 \cdot 10^8 \,\mathrm{s}$

 $D(t_{1 year}) = 10.5 mSv$

4b. 60Co Radiation term

$$D(t) = k \cdot A_0 \cdot \tau \cdot \left[1 - e^{-t/\tau}\right]$$

Two Limit cases:

a.
$$t \ll \tau$$
: $e^{t/\tau} \cong 1 + \frac{t}{\tau}$

 $\boldsymbol{D}(\boldsymbol{t}) = \boldsymbol{k} \cdot \boldsymbol{A}_0 \cdot \boldsymbol{t}$

b.
$$t \gg \tau$$
: $e^{-t/\tau} \cong 0$

$$\boldsymbol{D} = \boldsymbol{k} \cdot \boldsymbol{A}_0 \cdot \boldsymbol{\tau}$$

4b. Induced Activity: proton beam

juas

Radiation Safety

ator School

Science and Technology Facilities Council

Most important isotopes near high energy particle accelerators formed by thermal neutron capture

40 / 51

Parent	natura	σ	Active		<u>120'U-U</u>	
isotope	(%)	(barn)	isotope	life	per	Bq
					pe	r g
²³ Na	100	0.53	²⁴ Na	15 h	560	7.7
⁴⁰ Ar	99.6	0.61	⁴¹ Ar	1.8 h	150	1.4
⁴⁴ Ca	2.0	0.70	⁴⁵ Ca	165 h	-	-
⁵⁰ Cr	4.3	17	⁵¹ Cr	28 d	4	0.04
⁵⁵ Mn	100	13	⁵⁶ Mn	2.6 h	2520	35
⁵⁹ Co	100	37	⁶⁰ Co	5.3 y	340	128
⁶³ Cu	69	4.5	⁶⁴ Cu	13 h	28	0.84
⁶⁴ Zn	49	0.46	⁶⁵ Zn	245 d	76	0.16
¹²¹ Sb	57	6.1	¹²² Sb	2.8 d	60	1.0
¹²³ Sb	43	3.3	¹²⁴ Sb	60 d	200	1.4
¹³³ Cs	100	31	¹³⁴ Cs	2.1 y	116	17
¹⁵¹ Eu	48	8700	¹⁵² Eu	12 y	45	750
¹⁵³ Eu	52	320	¹⁵⁴ Eu	8 y	286	190
¹⁸⁶ W	28	40	¹⁸⁷ W	1d	73	2.6

A

Facilities Council RL

4b. Example-1: ISIS TS1 target

for all the second states

juas

Radiation Safety

School

Irradiation Time	Cooling time	Dose rate TOP	values)									
[v]	[v]	[mSv/h]										
4	1 0	292.42										
4	l 3	1.19										
4	1 4	0.69										
4	l 5	0.48										
4	1 6	0.35										
4	6.5	0.30										
				Total DR after 0 seconds of cooling [mSv/h]	292.42	100.0%	Total DR after 3 years of cooling	1.19	100.0%	Total DR after 4 years of cooling	0.69	100.0%
#CL	Nuclide	Halflive [s]	A0 (after 4 years irradiation)	DoseRate[mSv/h;3. 7E10Bq]	DR[mSv/h]	%DR	A3y[Bq]	DR[mSv/h]	%DR	A4y[Bq]	DR[mSv/h]	%DR
1	L Lu172	5.79E+05	1.62E+14	7.25E-04	3.18E+00	1.09E-02	3.69E+13	7.24E-01	6.06E-01	2.62E+13	5.137E-01	7.42E-01
2	2 Co60	1.66E+08	1.26E+12	3.28E-03	1.12E-01	3.81E-04	8.42E+11	7.46E-02	6.25E-02	7.45E+11	6.605E-02	9.54E-02
3	8 Hf172	5.90E+07	1.14E+14	9.38E-05	2.88E-01	9.87E-04	3.66E+13	9.27E-02	7.76E-02	2.60E+13	6.579E-02	9.50E-02
4	Ta182	9.89E+06	4.44E+16	2.13E-04	2.55E+02	8.74E-01	5.07E+13	2.92E-01	2.44E-01	6.55E+12	3.767E-02	5.44E-02
5	5 Lu174	1.05E+08	8.91E+12	4.76E-05	1.15E-02	3.92E-05	4.73E+12	6.08E-03	5.09E-03	3.90E+12	5.015E-03	7.24E-03
6	6 Eu152	4.21E+08	1.53E+11	7.86E-04	3.26E-03	1.11E-05	1.31E+11	2.78E-03	2.33E-03	1.25E+11	2.650E-03	3.83E-03
7	7 Mn54	2.70E+07	1.31E+14	6.77E-06	2.40E-02	8.22E-05	1.10E+13	2.00E-03	1.68E-03	5.17E+12	9.462E-04	1.37E-03
8	3 Sc44	1.41E+04	1.55E+13	4.67E-04	1.96E-01	6.70E-04	2.42E+10	3.06E-04	2.56E-0 <mark>4</mark>	2.39E+10	3.015E-04	4.35E-04
g	7i44	1.49E+09	2.53E+10	1.56E-04	1.06E-04	3.64E-07	2.42E+10	1.02E-04	8.52E-05	2.39E+10	1.004E-04	1.45E-04
10) Co56	6.81E+06	1.60E+13	1.71E-02	7.38E+00	2.52E-02	8.57E+08	3.95E-04	3.31E-0 <mark>4</mark>	4.38E+07	2.022E-05	2.92E-05
					266.64			1.19			0.69	
					8.8%			0.005%			0.003%	
				Total DR after 5 years of cooling	0.48	100.0%	Total DR after 6 years of cooling	0.3507	100.0%	Total DR after 6.5 years of cooling	0.30	100.0%
				A5y[Bq]	DR[mSv/h]	%DR	A6y[Bq]	DR[mSv/h]	%DR	A6.5y[Bq]	DR[mSv/h]	%DR
				1.86E+13	3.65E-01	7.56E-01	1.32E+13	2.587E-01	7.38E-01	1.11E+13	2.18E-01	7.25E-01
				6.60E+11	5.85E-02	1.21E-01	5.84E+11	5.180E-02	1.48E-01	5.50E+11	4.87E-02	1.62E-01
				1.84E+13	4.67E-02	9.68E-02	1.31E+13	3.313E-02	9.45E-02	1.10E+13	2.79E-02	9.28E-02
				8.46E+11	4.87E-03	1.01E-02	1.09E+11	6.287E-04	1.79E-03	3.93E+10	2.26E-04	7.51E-04
				3.21E+12	4.14E-03	8.58E-03	2.65E+12	3.412E-03	9.73E-03	2.41E+12	3.10E-03	1.03E-02
				1.19E+11	2.53E-03	5.24E-03	1.13E+11	2.407E-03	6.86E-03	1.11E+11	2.35E-03	7.81E-03
				2.44E+12	4.47E-04	9.27E-04	1.15E+12	2.110E-04	6.02E-04	7.93E+11	1.45E-04	4.82E-04
k				2.35E+10	2.97E-04	6.17E-04	2.32E+10	2.934E-04	8.37E-04	2.31E+10	2.91E-04	9.69E-04
	Sala	noo and		2.35E+10	9.91E-05	2.05E-04	2.32E+10	9.774E-05	2.79E-04	2.31E+10	9.71E-05	3.23E-04
	SCIE			2.24E+06	1.03E-06	2.14E-06	1.15E+05	5.287E-08	1.51E-07	2.59E+04	1.20E-08	3.97E-08
- 67	Tech	nology	24		0.48			0.35			0.30	
	Fac	lities Counc			0.002%			0.001%			0.001%	

Radiation Safety

juas

IOT (Inductive Output Tube)

G ≈ 23 dB (for comparison: Tetrode G ≈ 15 dB) Intensity modulated Class AB Peak efficiency ≈ 75% Compact size

Klystron

G ≈ 40 dB Velocity modulated Class A Peak efficiency ≈ 65%

4c. RF generator plants RADIATION MEASUREMENTS: IOT

	Booster	Storage Ring
Voltage on axis (kV)	1350	750
Maximum E field on surface (MV/m)	2.0	6.2

$$j(E_{SUP}) = \frac{A_{FN} \cdot (\beta \cdot E_{SUP})^2}{\phi} \times exp\left[-\frac{B_{FN} \cdot \phi^{3/2}}{\beta \cdot E_{SUP}}\right]$$
Science and
Technology
Facilities Council

Science and

4c. RF generator plants

RAD. MEAS.: DOSE RATE ON SURFACE

80kW (max power) @ 20%

4c. RF generator plants

