LONGITUDINAL BEAM DYNAMICS

Elias Métral (CERN BE Department)

This course started with the one of Frank Tecker (CERN-BE) in 2010 (I took over from him in 2011), who inherited it from Roberto Corsini (CERN-BE), who gave this course in the previous years, based on the transparencies written by Louis Rinolfi (CERN-BE) who held the course at JUAS from 1994 to 2002 (see CERN/PS 2000-008 (LP)):

Material from Joel LeDuff's Course at the CERN Accelerator School held at Jyvaskyla, Finland the 7-18 September 1992 (CERN 94-01) has been used as well:
http:/ / cdsweb.cern.ch/record/235242/files/p253.pdf
http://cdsweb.cern.ch/record/235242/files/p289.pdf
I attended the course given by Louis Rinolfi in 1996 and was his assistant in 2000 and 2001 (and the assistant of Michel Martini for his course on transverse beam dynamics)

This course and related exercises / exams (as well as other courses) can be found in my web page: http://emetral.web.cern.ch/emetral/

Assistant: Benoit Salvant (CERN BE Department)

PURPOSE OF THIS COURSE

Discuss the oscillations of the particles in the longitudinal plane of synchrotrons, called SYNCHROTRON OSCILLATIONS (similarly to the betatron oscillations in the transverse planes), and derive the basic equations

Example of the LHC p beam in the injector chain

$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$ (energy gain by an e-accelerated by a potential difference of 1 Volt)

PURPOSE OF THIS COURSE

PURPOSE OF THIS COURSE

IN REAL SPACE

IN PHASE SPACE
(a)

Longitudinal,
bunched beam, below transition

Longitudinal,
unbunched beam, below transition

$\delta=\frac{\Delta p}{p}$
(e)

Longitudinal, bunched beam, above transition

PURPOSE OF THIS COURSE

Some movies (in phase space) to have a better idea of what we will work on during this course and what you will be able to understand and do after this course...
"MATCHED" AND "MISMATCHED" BUNCH

MISMATCHED BUNCH

MISMATCHED BUNCH

SOME "RF GYMNASTICS"

BUNCH ROTATION

(to shorten bunches before extraction)

juas...
JUAS - TIMETABLE 2020 - WEEK 4

+ Examination on TH 13/02/2020 (09:00 to 10:30)

Units of physical quantities

Quantity	unit	SI unit	SI derived unit
Capacitance	F (farad)	$\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$	C / V
Electric charge	C (coulomb)	As	
Electric potential	V (volt)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$	$\mathrm{~W} / \mathrm{A}$
Energy	J (joule)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$	Nm
Force	N (newton)	$\mathrm{m} \mathrm{kg} \mathrm{s}^{-2}$	N
Frequency	Hz (hertz)	s^{-1}	
Inductance	H (henry)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-2}$	$\mathrm{~Wb} / \mathrm{A}$
Magnetic flux	Wb (weber)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-1}$	Vs
Magnetic flux density	T (tesla)	$\mathrm{kg} \mathrm{s}^{-2} \mathrm{~A}^{-1}$	$\mathrm{~Wb} / \mathrm{m}^{2}$
Power	W (watt)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3}$	$\mathrm{~J} / \mathrm{s}$
Pressure	Pa (pascal)	$\mathrm{m}^{-1} \mathrm{~kg} \mathrm{~s}^{-2}$	$\mathrm{~N} / \mathrm{m}^{2}$
Resistance	Ω (ohm)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$	$\mathrm{~V} / \mathrm{A}$

Fundamental physical constants

Physical constant	symbol	value	unit
Avogadro's number	N_{A}	6.0221367×10^{23}	$/ \mathrm{mol}$
atomic mass unit $\left(\frac{1}{12} m\left(\mathrm{C}^{12}\right)\right)$	m_{u} or u	$1.6605402 \times 10^{-27}$	kg
Boltzmann's constant	k	1.380658×10^{-23}	$\mathrm{~J} / \mathrm{K}$
Bohr magneton	$\mu_{\mathrm{B}}=e \hbar / 2 m_{\mathrm{e}}$	$9.2740154 \times 10^{-24}$	$\mathrm{~J} / \mathrm{T}$
Bohr radius	$a_{0}=4 \pi \epsilon_{0} \hbar^{2} / m_{\mathrm{e}} c^{2}$	$0.529177249 \times 10^{-10}$	m
classical radius of electron	$r_{\mathrm{e}}=e^{2} / 4 \pi \epsilon_{0} m_{\mathrm{e}} c^{2}$	$2.81794092 \times 10^{-15}$	m
classical radius of proton	$r_{\mathrm{p}}=e^{2} / 4 \pi \epsilon_{0} m_{\mathrm{p}} c^{2}$	$1.5346986 \times 10^{-18}$	m
elementary charge	e	$1.60217733 \times 10^{-19}$	C
fine structure constant	$\alpha=e^{2} / 2 \epsilon_{0} h c$	$1 / 137.0359895$	
$m_{u} c^{2}$		931.49432	MeV
mass of electron	m_{e}	$9.1093897 \times 10^{-31}$	kg
$m_{\mathrm{e}} c^{2}$	0.51099906	MeV	
mass of proton		$1.6726231 \times 10^{-27}$	kg
$m_{\mathrm{p}} c^{2}$	938.27231	MeV	
mass of neutron	m_{p}	$1.6749286 \times 10^{-27}$	kg
$m_{\mathrm{p}} c^{2}$	m_{n}	939.56563	MeV
molar gas constant	$R=N_{\mathrm{A}} k$	8.314510	$\mathrm{~J} / \mathrm{mol} \mathrm{K}$
neutron magnetic moment	μ_{n}	$-0.96623707 \times 10^{-26}$	$\mathrm{~J} / \mathrm{T}$
nuclear magneton	$\mu_{\mathrm{p}}=e \hbar / 2 m_{u}$	$5.0507866 \times 10^{-27}$	$\mathrm{~J} / \mathrm{T}$
Planck's constant	h	6.626075×10^{-34}	J s
permeability of vacuum	μ_{0}	$4 \pi \times 10^{-7}$	$\mathrm{~N} / \mathrm{A}^{2}$
permittivity of vacuum	ϵ_{0}	$8.854187817 \times 10^{-12}$	$\mathrm{~F} / \mathrm{m}$
proton magnetic moment	μ_{p}	$1.41060761 \times 10^{-26}$	$\mathrm{~J} / \mathrm{T}$
proton g factor	2.792847386		
speed of light (exact)	$g_{\mathrm{p}}=\mu_{\mathrm{p}} / \mu_{\mathrm{N}}$	299792458	$\mathrm{~m} / \mathrm{s}$
vacuum impedance	c	376.7303	Ω

LESSON I

Fields \& forces

Acceleration by time-varying electric field

Relativistic equations

Equation of motion for a particle of charge q

$$
\vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=q(\vec{E}+\vec{v} \times \vec{B})
$$

$\vec{p}=m \vec{v}$
\vec{v}
\vec{E}
\vec{B}

Momentum
Velocity
Electric field
Magnetic field

Constant electric field

$$
\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=-e \vec{E}
$$

1. Direction of the force always parallel to the field
2. Trajectory can be modified, velocity also \Rightarrow momentum and energy can be modified

This force can be used to accelerate and decelerate particles

Constant magnetic field

$$
e v B=\frac{m v^{2}}{\rho}
$$

$$
\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=\vec{F}=-e(\vec{v} \times \vec{B})
$$

1. Direction always perpendicular to the velocity
2. Trajectory can be modified, but not the velocity

This force cannot modify the energy
magnetic rigidity: $\quad B \rho=\frac{p}{e} \quad$ angular frequency: $\quad \omega=2 \pi f=\frac{e}{m} B$

Important relationship:

$$
B \rho=\frac{p}{e} \Rightarrow \rho=\frac{p}{e B}
$$

Practical units:

$$
B \rho[\mathrm{Tm}] \approx \frac{p[\mathrm{GeV} / \mathrm{c}]}{0.3}
$$

Application: spectrometer

Comparison of magnetic and electric forces

$$
\begin{aligned}
& |\vec{B}|=1 \mathrm{~T} \\
& |\vec{E}|=10 \mathrm{MV} / \mathrm{m}
\end{aligned}
$$

$$
\frac{F_{M A G N}}{F_{E L E C}}=\frac{e v B}{e E}=\beta c \frac{B}{E} \cong 3 \cdot 10^{8} \frac{1}{10^{7}} \beta=30 \beta
$$

Acceleration by time-varying electric field

- Let $V_{R F}$ be the amplitude of the RF voltage across the gap g
- The particle crosses the gap at a distance r
- The energy gain is:

In the cavity gap, the electric field is supposed to be:

$$
E(s, r, t)=E_{1}(s, r) \cdot E_{2}(t)
$$

In general, $E_{2}(t)$ is a sinusoidal time variation with angular frequency $\omega_{R F}$

$$
E_{2}(t)=E_{\circ} \sin \Phi(t) \quad \text { where } \quad \Phi(t)=\int_{t_{0}}^{t} \omega_{R F} \mathrm{~d} t+\Phi_{0}
$$

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope
2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

Time $t=0$ chosen such that:

$$
E_{2}(t)=E_{\circ} \sin \left(\omega_{R F} t\right)
$$

$$
E_{2}(t)=E_{\circ} \cos \left(\omega_{R F} t\right)
$$

Relativistic Equations

$$
E=m c^{2}
$$

$$
\begin{aligned}
& \text { normalized velocity } \\
& \beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}} \\
& \begin{array}{c}
E=E_{\text {kin }}+E_{0} \\
\text { total } \\
\text { kinetic }
\end{array} \\
& \begin{array}{c}
E=E_{\text {kin }}+E_{0} \\
\text { total } \\
\text { kinetic }
\end{array} \\
& \text { energy } \\
& \frac{\text { total energy }}{\text { rest energy }} \\
& \text { momentum } \\
& \gamma=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}} \\
& p=m v=\beta \frac{E}{c}=\beta \gamma m_{0} c \\
& p^{2} c^{2}=E^{2}-E_{0}{ }^{2} \quad \gamma=1+\frac{E_{\text {kin }}}{E_{0}} \\
& p[\mathrm{GeV} / \mathrm{c}] \cong 0.3 B[\mathrm{~T}] \rho[\mathrm{m}]
\end{aligned}
$$

normalized velocity

$$
\beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}}
$$

> total energy
> rest energy

$$
\gamma=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}}
$$

First derivatives

$$
\begin{aligned}
& \mathrm{d} \beta=\beta^{-1} \gamma^{-3} \mathrm{~d} \gamma \\
& \mathrm{~d}(c p)=E_{0} \gamma^{3} \mathrm{~d} \beta \\
& \mathrm{~d} \gamma=\beta\left(1-\beta^{2}\right)^{-3 / 2} \mathrm{~d} \beta
\end{aligned}
$$

Logarithmic derivatives

$$
\begin{aligned}
& \frac{\mathrm{d} \beta}{\beta}=(\beta \gamma)^{-2} \frac{\mathrm{~d} \gamma}{\gamma} \\
& \frac{\mathrm{~d} p}{p}=\frac{\gamma^{2}}{\gamma^{2}-1} \frac{\mathrm{~d} E}{E}=\frac{\gamma}{\gamma+1} \frac{\mathrm{~d} E_{\text {kin }}}{E_{\text {kin }}} \\
& \frac{\mathrm{d} \gamma}{\gamma}=\left(\gamma^{2}-1\right) \frac{\mathrm{d} \beta}{\beta}
\end{aligned}
$$

LESSON II

Particle acceleration => Synchrotrons

Transit time factor

Main RF parameters

Momentum compaction

Transition energy

Synchrotron

Synchronism condition

h integer, harmonic number

1. $\quad \omega_{\mathrm{RF}}$ and ω increase with energy
2. To keep particles on the closed orbit, B should increase with time

Synchrotron

- In reality, the orbit in a synchrotron is not a circle, straight sections are added for RF cavities, injection and extraction, etc..
- Usually the beam is pre-accelerated in a linac (or a smaller synchrotron) before injection
- The bending radius ρ does not coincide to the machine radius $R=L / 2 \pi$

Examples of different proton and electron synchrotrons at CERN

Parameters for circular accelerators

The basic principles, for the common circular accelerators, are based on the two relations:

1. The Lorentz equation: the orbit radius can be espressed as:

$$
R=\frac{\gamma v m_{0}}{e B}
$$

2. The synchronicity condition: The revolution frequency can be expressed as:

$$
f=\frac{e B}{2 \pi \gamma m_{0}}
$$

According to the parameter we want to keep constant or let vary, one has different acceleration principles. They are summarized in the table below:

Machine	Energy (γ)	Velocity	Field	Orbit	Frequency
Cyclotron	~ 1	var.	const.	$\sim v$	const.
Synchrocyclotron	var.	var.	$B(r)$	$\sim p$	$B(r) / \gamma(t)$
Proton/Ion synchrotron	var.	var.	$\sim p$	R	$\sim v$
Electron synchrotron	var.	const.	$\sim p$	R	const.

Transit time factor

RF acceleration in a gap g
$E(s, r, t)=E_{1}(s, r) \cdot E_{2}(t)$

Simplified model \square

$$
\begin{aligned}
& E_{1}(s, r)=\frac{V_{R F}}{g}=\text { const. } \\
& E_{2}(t)=\sin \left(\omega_{R F} t+\phi_{0}\right)
\end{aligned}
$$

At $t=0, s=0$ and $v \neq 0$, parallel to the electric field
Energy gain:

$$
\Delta E=e \int_{-g / 2}^{g / 2} E(s, r, t) \mathrm{d} s
$$

$$
\Delta E=e V_{R F} T_{a} \sin \phi_{0}
$$

where

$$
T_{a}=\frac{\sin \frac{\omega_{R F} g}{2 v}}{\frac{\omega_{R F} g}{2 v}}
$$

T_{a} is called transit time factor

$$
\cdot T_{a}<1
$$

$$
\text { - } T_{a} \rightarrow 1 \text { if } g \rightarrow 0
$$

Transit time factor II

In the general case, the transit time factor is given by:

$$
T_{a}=\frac{\int_{-\infty}^{+\infty} E_{1}(s, r) \cos \left(\omega_{R F} \frac{s}{v}\right) \mathrm{d} s}{\int_{-\infty}^{+\infty} E_{1}(s, r) \mathrm{d} s}
$$

It is the ratio of the peak energy gained by a particle with velocity v to the peak energy gained by a particle with infinite velocity.
I. Voltage, phase, frequency

Main RF parameters

In order to accelerate particles, longitudinal fields must be generated in the direction of the desired acceleration

$$
\begin{array}{ll}
E(s, t)=E_{1}(s) \cdot E_{2}(t) & E_{2}(t)=E_{0} \sin \left[\int_{t_{0}}^{t} \omega_{R F} \mathrm{~d} t+\phi_{0}\right] \\
\omega_{R F}=2 \pi f_{R F} & \Delta E=e V_{R F} T_{a} \sin \phi_{0}
\end{array}
$$

Such electric fields are generated in RF cavities characterized by the voltage amplitude, the frequency and the phase
II. Harmonic number

$$
T_{\text {rev }}=h T_{R F} \Rightarrow f_{R F}=h f_{\text {rev }}
$$

$f_{\text {rev }}=$ revolution frequency
$f_{R F}=$ frequency of the RF
$h=$ harmonic number
harmonic number in different machines:

$A A$	EPA	PS	SPS
1	8	20	4620

Dispersion

Momentum compaction factor in a transport system

In a particle transport system, a nominal trajectory is defined for the nominal momentum p.
For a particle with a momentum $p+\Delta p$ the trajectory length can be different from the length L of the nominal trajectory.

The momentum compaction factor is defined by the ratio:

$$
\alpha_{p}=\frac{d L / L}{d p / p}
$$

Therefore, for small momentum deviation, to first order it is:

$$
\frac{\Delta L}{L}=\alpha_{p} \frac{\Delta p}{p}
$$

Example: constant magnetic field

To first order, only the bending magnets contribute to a change of the trajectory length ($r=\infty$ in the straight sections)

Momentum compaction in a ring

In a circular accelerator, a nominal closed orbit is defined for the nominal momentum p.
For a particle with a momentum deviation Δp produces an orbit length variation ΔC with:

The momentum compaction factor is defined by the ratio:

$$
\alpha_{p}=\frac{d C / C}{d p / p}=\frac{d R / R}{d p / p} \quad \text { and } \quad \alpha_{p}=\frac{1}{C} \int_{C} \frac{D_{x}(s)}{\rho(s)} \mathrm{d} s
$$

N.B.: in most circular machines, α_{p} is positive \Rightarrow higher momentum means longer circumference

Momentum compaction as a function of energy

$$
E=\frac{p c}{\beta} \quad \Rightarrow \quad \frac{\mathrm{~d} E}{E}=\beta^{2} \frac{d p}{p}
$$

$$
\alpha_{p}=\beta^{2} \frac{E}{R} \frac{\mathrm{~d} R}{\mathrm{~d} E}
$$

Momentum compaction as a function of magnetic field

Definition of average magnetic field

$$
\begin{array}{ll}
=\frac{1}{2 \pi R} \int_{C} B_{f} \mathrm{~d} s=\frac{1}{2 \pi R}\left(\int_{\text {straights }} B_{f} \mathrm{~d} s+\int_{\text {magnets }} B_{f} \mathrm{~d} s\right) \\
=\frac{B_{f} \rho}{n} & =0
\end{array}
$$

$$
B_{f} \rho=\frac{p}{\rho} \quad \square \frac{\mathrm{~d}\langle B\rangle}{\langle B\rangle}=\frac{\mathrm{d} B_{f}}{B_{f}}+\frac{\mathrm{d} \rho}{\rho}-\frac{\mathrm{d} R}{R}
$$

$$
R=\frac{p}{e} \quad \Rightarrow \quad \frac{\mathrm{~d}}{}+\frac{\mathrm{d} R}{R}=\frac{\mathrm{d} p}{p}
$$

For $B_{f}=$ const.

$$
\alpha_{p}=1-\frac{\mathrm{d}<B\rangle}{\langle B>} / \frac{\mathrm{d} p}{p}
$$

Proton (ion) circular machine with α_{p} positive

1. Momentum larger than the nominal $(p+\Delta p) \Rightarrow$ longer orbit $(C+\Delta C)$
2. Momentum larger than the nominal $(p+\Delta p) \Rightarrow$ higher velocity $(v+\Delta v)$

$$
\text { What happens to the revolution frequency } f=v / C \text { ? }
$$

- At low energy, v increases faster than C with momentum
- At high energy $v \cong c$ and remains almost constant

There is an energy for which the velocity variation is compensated by the trajectory variation \Rightarrow transition energy

Below transition: higher energy \Rightarrow higher revolution frequency Above transition: higher energy \Rightarrow lower revolution frequency

Transition energy - quantitative approach

We define a parameter η (revolution frequency spread per unit of momentum spread), called slip or slippage factor:

$$
\begin{aligned}
& \quad \eta=\frac{\mathrm{d} f / f}{\mathrm{~d} p / p}=\frac{\mathrm{d} \omega / \omega}{\mathrm{d} p / p} \\
& f=\frac{v}{C} \quad \longrightarrow \quad \frac{\mathrm{~d} f}{f}=\frac{\mathrm{d} \beta}{\beta}-\frac{\mathrm{d} C}{C}
\end{aligned}
$$

from $p=\frac{m_{0} c \beta}{\sqrt{1-\beta^{2}}} \Rightarrow \frac{\mathrm{~d} \beta}{\beta}=\frac{1}{\gamma^{2}} \frac{\mathrm{~d} p}{p} \quad \begin{aligned} & \text { definition of momentum } \\ & \text { compaction factor: }\end{aligned} \quad \frac{\mathrm{d} C}{C}=\alpha_{p} \frac{\mathrm{~d} p}{p}$

$$
\frac{\mathrm{d} f}{f}=\left(\frac{1}{\gamma^{2}}-\alpha_{p}\right) \frac{\mathrm{d} p}{p}
$$

Transition energy - quantitative approach

$$
\eta=\frac{1}{\gamma^{2}}-\alpha_{p}
$$

The transition energy is the energy that corresponds to $\eta=0$ (α_{p} is fixed, and γ variable)

$$
\gamma_{t r}=\sqrt{\frac{1}{\alpha_{p}}}
$$

The parameter η can also be written as

$$
\eta=\frac{1}{\gamma^{2}}-\frac{1}{\gamma_{t r}^{2}}
$$

- At low energy $\quad \eta>0$
- At high energy $\eta<0$
N.B.: for electrons, $\gamma \gg \gamma_{t r} \Rightarrow \eta<0$ for linacs $\alpha_{p}=0 \Rightarrow \eta>0$

LESSON III

Equations related to synchrotrons

Synchronous particle

Synchrotron oscillations

Principle of phase stability

Equations related to synchrotrons

$$
\begin{aligned}
& \frac{\mathrm{d} p}{p}=\gamma_{t r}^{2} \frac{\mathrm{~d} R}{R}+\frac{\mathrm{d} B}{B} \\
& \frac{\mathrm{~d} p}{p}=\gamma^{2} \frac{\mathrm{~d} f}{f}+\gamma^{2} \frac{\mathrm{~d} R}{R} \\
& \frac{\mathrm{~d} B}{B}=\gamma_{t r}^{2} \frac{\mathrm{~d} f}{f}+\left[1-\left(\frac{\gamma_{t r}}{\gamma}\right)^{2}\right] \frac{\mathrm{d} p}{p} \\
& \frac{\mathrm{~d} B}{B}=\gamma^{2} \frac{\mathrm{~d} f}{f}+\left(\gamma^{2}-\gamma_{t r}^{2}\right) \frac{\mathrm{d} R}{R}
\end{aligned}
$$

$p[\mathrm{MeV} / \mathrm{c}]$ momentum
$R[\mathrm{~m}] \quad$ orbit radius
$B[\mathrm{~T}] \quad$ magnetic field
$f[\mathrm{~Hz}] \quad$ rev. frequency
$\gamma_{t r}$
transition energy

I-Constant radius

$\mathrm{d} R=0$

Beam maintained on the same orbit when energy varies

$$
\begin{aligned}
& \frac{\mathrm{d} p}{p}=\frac{\mathrm{d} B}{B} \\
& \frac{\mathrm{~d} p}{p}=\gamma^{2} \frac{\mathrm{~d} f}{f}
\end{aligned}
$$

If p increases
B increases
f increases

II - Constant energy

$$
\mathrm{d} p=0
$$

$$
V_{R F}=0 \quad \text { Beam debunches }
$$

$$
\begin{aligned}
& \frac{\mathrm{d} p}{p}=0=\gamma_{t r}{ }^{2} \frac{\mathrm{~d} R}{R}+\frac{\mathrm{d} B}{B} \\
& \frac{\mathrm{~d} p}{p}=0=\gamma^{2} \frac{\mathrm{~d} f}{f}+\gamma^{2} \frac{\mathrm{~d} R}{R}
\end{aligned}
$$

If B increases
R decreases
f increases

III - Magnetic flat-top
 $$
\mathrm{d} B=0
$$

Beam bunched with constant magnetic field

$$
\begin{aligned}
\frac{\mathrm{d} p}{p}=\gamma_{t r}^{2} \frac{\mathrm{~d} R}{R} \quad \frac{\mathrm{~d} B}{B} & =0
\end{aligned}=\gamma_{t r}^{2} \frac{\mathrm{~d} f}{f}+\left[1-\left(\frac{\gamma_{t r}}{\gamma}\right)^{2}\right] \frac{\mathrm{d} p}{p}, ~\left(\frac{\mathrm{~d} B}{B}=0=\gamma^{2} \frac{\mathrm{~d} f}{f}+\left(\gamma^{2}-\gamma_{t r}^{2}\right) \frac{\mathrm{d} R}{R}\right.
$$

If p increases
R increases
f increase $\quad \gamma<\gamma_{t r}$ decreases $\gamma>\gamma_{t r}$

IV - Constant frequency
 $$
\mathrm{d} f=0
$$

Beam driven by an external oscillator

$$
\begin{aligned}
\frac{\mathrm{d} p}{p}=\gamma^{2} \frac{\mathrm{~d} R}{R} \quad \frac{\mathrm{~d} B}{B} & =\left[1-\left(\frac{\gamma_{t r}}{\gamma}\right)^{2}\right] \frac{\mathrm{d} p}{p} \\
\frac{\mathrm{~d} B}{B} & =\left(\gamma^{2}-\gamma_{t r}^{2}\right) \frac{\mathrm{d} R}{R}
\end{aligned}
$$

If p increases
R increases
$\begin{array}{ll}\mathrm{B} \text { decreases } & \gamma<\gamma_{t r} \\ \text { increase } & \gamma>\gamma_{t r}\end{array}$

Four conditions - resume

Beam	Parameter	Variations		momentum
Debunched	$\Delta p=0$	$B \Uparrow, R \Downarrow, f \Uparrow$		
Fixed orbit	$\Delta R=0$	$B \Uparrow, p \Uparrow, f \Uparrow$		orbit radius
Magnetic flat-top	$\Delta B=0$	$\begin{array}{r} p \Uparrow, R \Uparrow, f \Uparrow(\eta>0) \\ f \Downarrow(\eta<0) \end{array}$	B	magnetic field
External oscillator	$\Delta f=0$	$\begin{array}{r} B \Uparrow, p \Downarrow, R \Downarrow(\eta>0) \\ p \Uparrow, R \Uparrow(\eta<0) \end{array}$	f	frequency

Simple case (no accel.): $B=$ const. $\quad \gamma<\gamma_{t r}$

Synchronous particle

Synchronous particle: particle that sees always the same phase (at each turn) in the RF cavity

In order to keep the resonant condition, the particle must keep a constant energy
The phase of the synchronous particle must therefore be $\phi_{0}=0$ (circular machines convention)
Let's see what happens for a particle with the same energy and a different phase (e.g., ϕ_{1})

Synchrotron oscillations

$\phi_{1} \quad$ - The particle is accelerated

- Below transition, an increase in energy means an increase in revolution frequency
- The particle arrives earlier - tends toward ϕ_{0}

- The particle is decelerated
- decrease in energy - decrease in revolution frequency
- The particle arrives later - tends toward ϕ_{0}

Longitudinal phase space

The particle trajectory in the phase space ($\phi, \Delta p / p$,) describes its longitudinal motion

Emittance: phase space area including all the particles

NB: if the emittance contour correspond to a possible orbit in phase space, its shape does not change with time (matched beam)

Case with acceleration B increasing $\quad \gamma<\gamma_{t r}$

Synchronous particle

$$
\Delta E=e \hat{V}_{R F} \sin \phi
$$

The phase of the synchronous particle is now $\phi_{s}>0$ (circular machines convention)
The synchronous particle accelerates, and the magnetic field is increased accordingly to keep the constant radius R

$$
R=\frac{\gamma v m_{0}}{e B}
$$

The RF frequency is increased as well in order to keep the resonant condition

$$
\omega=\frac{e B}{\gamma m_{0}}=\frac{\omega_{R F}}{h}
$$

Phase stability

The symmetry of the case with $\mathrm{B}=$ const. is lost

Phase stability

$\phi_{s}<\phi<\pi-\phi_{s}$

LESSON IV

RF acceleration for synchronous particle

RF acceleration for non-synchronous particle
Small amplitude oscillations
Large amplitude oscillations - the RF bucket
Synchrotron frequency and tune
Tracking
Nonadiabatic theory needed "close" to transition
Double RF systems

Let's assume a synchronous particle with a given $\phi_{s}>0$
We want to calculate its rate of acceleration, and the related rate of increase of B, f.

$$
\begin{aligned}
& p=e B \rho \\
& \text { Want to keep } \rho=\text { cons } \dagger \\
& \frac{\mathrm{d} p}{\mathrm{~d} t}=e \rho \frac{\mathrm{~d} B}{\mathrm{~d} t}=e \rho \dot{B} \\
& \text { Over one turn: } \quad(\Delta p)_{t u r n}=e \rho \dot{B} T_{r e v}=e \rho \dot{B} \frac{2 \pi R}{\beta c} \\
& \text { We know that (relativistic equations) : } \Delta p=\frac{\Delta E}{\beta c}
\end{aligned}
$$

$$
(\Delta E)_{\text {turn }}=e \rho \dot{B} 2 \pi R
$$

RF acceleration for synchronous particle - phase

$(\Delta E)_{u u r n}=e \rho \dot{B} 2 \pi R$
On the other hand, for the synchronous particle:
$(\Delta E)_{u u n}=e \hat{V}_{R F} \sin \phi_{s}$

$$
e \rho \dot{B} 2 \pi R=e \hat{V}_{R F} \sin \phi_{s}
$$

Therefore: 1. Knowing ϕ_{s}, one can calculate the increase rate of the magnetic field needed for a given RF voltage:

$$
\dot{B}=\frac{\hat{V}_{R F}}{2 \pi \rho R} \sin \phi_{s}
$$

2. Knowing the magnetic field variation and the RF voltage, one can calculate the value of the synchronous phase:

$$
\sin \phi_{s}=2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}} \Rightarrow \phi_{s}=\arcsin \left(2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}}\right)
$$

RF acceleration for synchronous particle - frequency

$$
\begin{aligned}
& \omega_{R F}=h \omega_{s}=h \frac{e}{m}\quad\left(v=\frac{e}{m} B \rho\right) \\
& \omega_{R F}=h \frac{e}{m} \frac{\rho}{R} B
\end{aligned}
$$

From relativistic equations:

$$
\omega_{R F}=\frac{h c}{R} \sqrt{\frac{B^{2}}{B^{2}+\left(E_{0} / e c \rho\right)^{2}}}
$$

Let

$$
B_{0} \equiv \frac{E_{0}}{e c \rho} \quad \Rightarrow \quad f_{R F}=\frac{h c}{2 \pi R}\left(\frac{B}{B_{0}}\right) \frac{1}{\sqrt{1+\left(B / B_{0}\right)^{2}}}
$$

Example: PS

At the CERN Proton Synchrotron machine, one has:

$$
\begin{aligned}
& R=100 \mathrm{~m} \\
& \dot{B}=2.4 \mathrm{~T} / \mathrm{s}
\end{aligned}
$$

100 dipoles with $l_{\text {eff }}=4.398 \mathrm{~m}$. The harmonic number is 20

Calculate:

1. The energy gain per turn
2. The minimum RF voltage needed
3. The RF frequency when $B=1.23 \mathrm{~T}$ (at extraction)

RF acceleration for non synchronous particle

Parameter definition (subscript "s" stands for synchronous particle):

$$
\begin{array}{ll}
f=f_{s}+\Delta f & \text { revolution frequency } \\
\phi=\phi_{s}+\Delta \phi & \text { RF phase } \\
p=p_{s}+\Delta p & \text { Momentum } \\
E=E_{s}+\Delta E & \text { Energy } \\
\theta=\theta_{s}+\Delta \theta & \text { Azimuth angle }
\end{array}
$$

$$
\begin{aligned}
& \mathrm{d} s=R \mathrm{~d} \theta \\
& \theta(t)=\int_{t_{0}}^{t} \omega(\tau) \mathrm{d} \tau
\end{aligned}
$$

Since $\quad f_{R F}=h f_{\text {rev }}$
$\Delta \phi=-h \Delta \theta$
Over one turn θ varies by 2π ϕ varies by $2 \pi h$

1. Angular frequency

$$
\begin{aligned}
\theta(t)=\int_{t_{0}}^{t} \omega(\tau) \mathrm{d} \tau \quad \Delta \omega & =\frac{\mathrm{d}}{\mathrm{~d} t}(\Delta \theta) \\
& =-\frac{1}{h} \frac{\mathrm{~d}}{\mathrm{~d} t}(\Delta \phi) \\
& =-\frac{1}{h} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\phi-\phi_{s}\right) \quad \frac{\mathrm{d} \phi_{s}}{\mathrm{~d} t}=0 \text { by definition } \\
& =-\frac{1}{h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}
\end{aligned}
$$

Parameters versus $\dot{\phi}$

2. Momentum

$$
\eta=\frac{\mathrm{d} \omega / \omega}{\mathrm{d} p / p}=\frac{\Delta \omega / \omega}{\Delta p / p}
$$

$$
\Delta p=\frac{p_{s}}{\omega_{s}} \frac{\Delta \omega}{\eta}=\frac{p_{s}}{\omega_{s} \eta}\left(-\frac{1}{h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)
$$

$$
\Delta p=\frac{-p_{s}}{\omega_{s} \eta h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}
$$

3. Energy

$$
\frac{\mathrm{d} E}{\mathrm{~d} p}=v
$$

$$
\frac{\Delta E}{\Delta p}=v=\omega R
$$

$$
\Delta E=-\frac{R p_{s}}{\eta h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}
$$

Derivation of equations of motion

Energy gain after the RF cavity

$$
\begin{aligned}
& (\Delta E)_{t u r n}=e \hat{V}_{R F} \sin \phi \\
& (\Delta p)_{t u r n}=\frac{e}{\omega R} \hat{V}_{R F} \sin \phi
\end{aligned}
$$

Average increase per time unit

$$
\frac{(\Delta p)_{\text {turn }}}{T_{\text {rev }}}=\frac{e}{2 \pi R} \hat{V}_{R F} \sin \phi \quad 2 \pi R \dot{p}=e \hat{V}_{R F} \sin \phi \quad \text { valid for any particle! }
$$

$$
2 \pi\left(R \dot{p}-R_{s} \dot{p}_{s}\right)=e \hat{V}_{R F}\left(\sin \phi-\sin \phi_{s}\right)
$$

Derivation of equations of motion

$$
\begin{aligned}
R \dot{p}-R_{s} \dot{p}_{s} & =\left(R_{s}+\Delta R\right)\left(\dot{p}_{s}+\Delta \dot{p}\right)-R_{s} \dot{p}_{s} \\
& \approx R_{s} \Delta \dot{p}+\dot{p}_{s} \Delta R \\
& \approx R_{s} \Delta \dot{p}+\dot{p}_{s}\left(\frac{d R}{d p}\right)_{s} \Delta p \\
& =R_{s} \Delta \dot{p}+\frac{d p_{s}}{d t} \frac{d R_{s}}{d p_{s}} \Delta p \\
& =R_{s} \Delta \dot{p}+\dot{R}_{s} \Delta p \\
& =\frac{d}{d t}\left(R_{s} \Delta_{p}\right) \\
& =\frac{d}{d t}\left(\frac{\Delta E}{\omega_{s}}\right)
\end{aligned}
$$

Derivation of equations of motion

$$
2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{s}}\right)=e \hat{V}_{R F}\left(\sin \phi-\sin \phi_{s}\right)
$$

An approximated version of the above is

$$
\frac{\mathrm{d}(\Delta p)}{\mathrm{d} t}=\frac{e \hat{V}_{R F}}{2 \pi R_{s}}\left(\sin \phi-\sin \phi_{s}\right)
$$

Which, together with the previously found equation

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=-\frac{\omega_{s} \eta h}{p_{s}} \Delta p
$$

Describes the motion of the non-synchronous particle in the longitudinal phase space ($\Delta p, \phi$)

Equations of motion I

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}(\Delta p)}{\mathrm{d} t}=A\left(\sin \phi-\sin \phi_{s}\right) \\
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=B \Delta p
\end{array} \quad \text { with } \quad A=\frac{e \hat{V}_{R F}}{2 \pi R_{s}}\right.
$$

B is not the magnetic field (induction) here!
 $$
B=-\frac{\eta h}{p_{s}} \frac{\beta_{s} c}{R_{s}}
$$

Equations of motion II

1. First approximation - combining the two equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{B} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)-A\left(\sin \phi-\sin \phi_{s}\right)=0
$$

We assume that A and B change very slowly compared to the variable $\Delta \phi=\phi-\phi_{s}$

$$
\Rightarrow \frac{\mathrm{d}^{2} \phi}{\mathrm{~d} t^{2}}+\frac{\Omega_{s y n c}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0
$$

with $\frac{\Omega_{s y m c}^{2}}{\cos \phi_{s}}=-A B \quad$ We can also define: $\quad \Omega_{0}^{2}=\frac{\Omega_{s y m c}^{2}}{\cos \phi_{s}}=\frac{e \hat{V}_{R F} \eta h c^{2}}{2 \pi R_{s}^{2} E_{s}}$
2. Second approximation

$$
\begin{aligned}
\sin \phi & =\sin \left(\phi_{s}+\Delta \phi\right) \\
& =\sin \phi_{s} \cos \Delta \phi+\cos \phi_{s} \sin \Delta \phi
\end{aligned}
$$

$\Delta \phi$ small $\Rightarrow \sin \phi \cong \sin \phi_{s}+\cos \phi_{s} \Delta \phi$

$$
\frac{\mathrm{d} \phi_{s}}{\mathrm{~d} t}=0 \quad \Rightarrow \quad \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(\phi_{s}+\Delta \phi\right)=\frac{\mathrm{d}^{2} \Delta \phi}{\mathrm{~d} t^{2}}
$$

by definition

$$
\Rightarrow \frac{\mathrm{d}^{2} \Delta \phi}{\mathrm{~d} t^{2}}+\Omega_{\text {sync }}^{2} \Delta \phi=0
$$

Harmonic oscillator!

Stability condition for ϕ_{s}

Stability is obtained when the angular frequency of the oscillator, $\Omega_{s y n c}^{2}$ is real positive:

$$
\Omega_{s y n c}^{2}=\frac{e \hat{V}_{R F} \eta h c^{2}}{2 \pi R_{s}^{2} E_{s}} \cos \phi_{s} \Rightarrow \Omega_{s y n c}^{2}>0 \quad \Leftrightarrow \quad \eta \cos \phi_{s}>0
$$

Small amplitude oscillations - orbits

For $\eta \cos \phi_{s}>0$ the motion around the synchronous particle is a stable oscillation:

$$
\left\{\begin{array}{l}
\Delta \phi=\Delta \phi_{\max } \sin \left(\Omega_{\text {sync }} t+\phi_{0}\right) \\
\Delta p=\Delta p_{\max } \cos \left(\Omega_{\text {sync }} t+\phi_{0}\right)
\end{array}\right.
$$

$$
\text { with } \quad \Delta p_{\max }=\frac{\Omega_{s y n c}}{B} \Delta \phi_{\max }
$$

Synchrotron (angular) frequency and synchrotron tune

 (for small amplitudes)$$
\Omega_{s y n c}=\omega_{s} \sqrt{\frac{e \hat{V}_{R F} h}{2 \pi \beta^{2} E_{s}} \eta \cos \phi_{s}} \quad \begin{aligned}
\Omega_{s y n c} & =2 \pi f_{s y y c} \\
\omega_{s} & =2 \pi f_{s}
\end{aligned}
$$

Number of synchrotron oscillations per turn:

$$
Q_{s y n c}=\frac{\Omega_{s y n c}}{\omega_{s}}=\sqrt{\frac{e \hat{V}_{R F} h}{2 \pi \beta^{2} E_{s}} \eta \cos \phi_{s}} \quad \text { "synchrotron tune" }
$$

Large amplitude oscillations

$$
\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{S}\right)=0
$$ - $\begin{aligned} & \text { Multiplying by } \dot{\phi} \\ & \text { and integrating }\end{aligned}$

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{\mathrm{s}}\right)=c t e
$$

Constant of motion

$$
\text { here } \begin{aligned}
\dot{\phi} & =0 \\
\qquad \phi & =\pi-\phi_{s}
\end{aligned}
$$

Equation of the separatrix

$\Omega_{\text {sync }}$ will now be noted Ω

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left[\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}\right]
$$

Phase space separatrix and particle trajectories

- Equation of the bucket separatrix

$$
\frac{\dot{\phi}}{\Omega_{s}}= \pm \sqrt{\frac{2}{\cos \phi_{s}}\left[\cos \phi+\phi \sin \phi_{s}-\cos \left(\pi-\phi_{s}\right)-\left(\pi-\phi_{s}\right) \sin \phi_{s}\right]}
$$

- Equation of a particle trajectory

$$
\frac{\dot{\phi}}{\Omega_{s}}= \pm \sqrt{\frac{2}{\cos \phi_{s}}\left[\cos \phi+\phi \sin \phi_{s}\right]+C t e}
$$

Phase space separatrix and particle trajectories

- (Bucket) separatrices: Below transition
- Above transition

$\phi_{s}=0^{\circ}$	$\phi_{s}=30^{\circ}$
$\phi_{s}=60^{\circ}$	$\phi_{s}=85^{\circ}$

$$
\begin{array}{ll}
\phi_{s} \Rightarrow \pi-\phi_{s} & \phi_{s}=180^{\circ} \\
\phi_{s}=120^{\circ} & \phi_{s}=150^{\circ} \\
\phi_{s}=95^{\circ}
\end{array}
$$

Phase space separatrix and particle trajectories

- Particle trajectories: Below transition

$$
\phi_{s}=0^{\circ}
$$

$$
\phi_{s}=30^{\circ}
$$

- Change of variables if one wants to use $(\Phi, \Delta E)$ or $(\Delta t, \Delta E)$ instead of $(\Phi, d \Phi / d t)$

$$
\begin{aligned}
& \Delta \phi=\phi-\phi_{s} \\
= & \omega_{R F} \Delta t \\
= & h \omega_{s} \Delta t
\end{aligned}
$$

$$
\Delta p=\frac{\Delta E}{\beta_{s} c} \quad \dot{\phi}=-\frac{\eta h c}{\beta_{s} E_{s} R_{s}} \Delta E
$$

=> System of 2 equations to be solved

$$
\begin{gathered}
\frac{d}{d t}(\Delta E)=\frac{e \hat{V}_{R F} \omega_{s}}{2 \pi}\left[\sin \left(\phi_{s}+h \omega_{s} \Delta t\right)-\sin \phi_{s}\right] \\
\frac{d}{d t}(\Delta t)=-\frac{\eta}{\beta_{s}^{2} E_{s}} \Delta E
\end{gathered}
$$

- 2 questions

- $\Phi_{\text {min }}$ is obtained from the equation of the separatrix when $\dot{\phi}=0$

$$
\Rightarrow \cos \phi+\phi \sin \phi_{s}-\cos \left(\pi-\phi_{s}\right)-\left(\pi-\phi_{s}\right) \sin \phi_{s}=0
$$

- $\Delta E_{\max }^{\text {sep }}$ is obtained from the equation of the separatrix when $\phi=\phi_{s}$

$$
\Delta E_{\max }^{\operatorname{sep}}\left(\phi_{s}\right)=\sqrt{\frac{2 \beta_{s}^{2} E_{s} e \hat{V}_{R F}}{\pi h|\eta|}} G\left(\phi_{s}\right) \quad \text { with } \quad G\left(\phi_{s}\right)=\frac{\sqrt{\left|2 \cos \phi_{s}-\left(\pi-2 \phi_{s}\right) \sin \phi_{s}\right|}}{\sqrt{2}}
$$

$$
\phi_{s}=0^{\circ} \phi_{s}=30^{\circ} \quad \phi_{s}=60^{\circ} \quad \phi_{s}=85^{\circ}
$$

- nTOF bunch in the CERN PS (near transition)

Average machine radius: $R[\mathrm{~m}]$	100
Bending dipole radius: $\rho[\mathrm{m}]$	70
$\dot{B}[\mathrm{~T} / \mathrm{s}]$	2.2
$\hat{V}_{R F}[\mathrm{kV}]$	200
h	8
α_{p}	0.027
20 kV at	
injection	
Longitudinal (total) emittance: $\varepsilon_{L}[\mathrm{eVs}]$	2
Number of protons/bunch: $N_{b}[1 \mathrm{E} 10 \mathrm{p} / \mathrm{b}]$	800
Norm. rms. transverse emittance: $\varepsilon_{x, y}^{*}[\mu \mathrm{~m}]$	5
Trans. average betatron function: $\beta_{x, y}[\mathrm{~m}]$	16
Beam pipe $[\mathrm{cm} \times \mathrm{cm}]$	3.5×7
Trans. tunes: $Q_{x, y}$	6.25

Tracking

- The motion of the particles can be tracked turn by turn using the recurrence relation (between turn n and turn $n+1$)

$$
\begin{aligned}
& \Delta E_{n+1}=\Delta E_{n}+e \hat{V}_{R F}\left[\sin \phi_{n}-\sin \phi_{s}\right] \\
& \phi_{n+1}=\phi_{n}-\frac{2 \pi h \eta}{\beta_{s}^{2} E_{s}} \Delta E_{n+1}
\end{aligned}
$$

Tracking applied to the nTOF bunch at PS injection

$\phi_{s}=0 \mathrm{deg}$

One can show (but the detailed computation is beyond the scope of this course) that
$\frac{Q_{s}(\phi)}{Q_{s}(0)}=\frac{\pi}{2 K_{c e i 1}\left[\sin ^{2}(\phi / 2)\right]}$
$K_{c e i 1}(x)=\int_{0}^{\pi / 2} \frac{d y}{\sqrt{1-x \sin ^{2} y}}$
 of the first kind

Tracking applied to the nTOF bunch at PS injection
$\phi_{s}=20 \mathrm{deg}$

$$
n_{\max }=782=1 / Q_{s}
$$

Bucket height near transition (with "adiabatic" theory)

- Case of a stationary bucket in the PS with the nTOF bunch from injection (~ 2.4 GeV total energy) till top energy ($\sim 20 \mathrm{GeV}$ total energy) assuming a constant RF voltage (200 kV)

Nonadiabatic theory needed "close" to transition

- Reminder: the (general, nonlinear) equations, which have to be solved, using the variables $(\Delta \Phi, \Delta E)$, are

$$
\begin{aligned}
\frac{d \Delta \phi}{d t} & =-\frac{h \eta \omega_{s}}{\beta_{s}^{2} E_{s}} \Delta E \\
\frac{d \Delta E}{d t} & =\frac{e \hat{V}_{R F} \omega_{s}}{2 \pi}\left[\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s}\right]
\end{aligned}
$$

- Assuming here only small amplitude particles

$$
\frac{d \Delta E}{d t}=\frac{e \hat{V}_{R F} \omega_{s}}{2 \pi}\left[\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s}\right] \approx \frac{e \hat{V}_{R F} \omega_{s}}{2 \pi} \cos \phi_{s} \Delta \phi
$$

Nonadiabatic theory needed "close" to transition

$\Rightarrow \quad \frac{d}{d t}\left(\frac{\beta_{s}^{2} E_{s}}{h \eta \omega_{s}} \frac{d \Delta \phi}{d t}\right)-\frac{e \hat{V}_{R F} \omega_{s}}{2 \pi} \cos \phi_{s} \Delta \phi=0$
where in general β_{s}, E_{s}, η and ω_{s} depend on time

- Until now we assumed that these parameters were slowly moving => Adiabatic theory
- However, close to transition the particle will not be able to catch up with the rapid modification of the bucket shape and a nonadiabatic theory is needed

Nonadiabatic theory needed "close" to transition

- Neglecting the slow time variations of all the parameters except $\frac{\eta}{E_{s}}$,
one has to solve

$$
\frac{d}{d t}\left(\frac{E_{s}}{\eta} \frac{d \Delta \phi}{d t}\right)-\frac{h e \hat{V}_{R F} \omega_{s}^{2} \cos \phi_{s}}{2 \pi \beta_{s}^{2}} \Delta \phi=0
$$

Assuming then that $\gamma=\gamma_{t}+\dot{\gamma} t$, with $t=0$ at transition,

$$
\begin{gathered}
-\eta=\frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}} \approx \frac{2 \dot{\gamma} t}{\gamma_{t}^{3}} \quad E_{s}=\gamma E_{0} \approx \gamma_{t} E_{0} \\
\frac{\eta}{E_{s}} \approx-\frac{2 \dot{\gamma} t}{\gamma_{t}^{4} E_{0}}
\end{gathered}
$$

Nonadiabatic theory needed "close" to transition

- The (small amplitude) equation which needs to be solved close to transition is

$$
\frac{d}{d t}\left(\frac{T_{c}^{3}}{|t|} \frac{d \Delta \phi}{d t}\right)+\Delta \phi=0
$$

with T_{c} a nonadiabatic time defined by (with E_{0} in eV)

$$
T_{c}=\left(\frac{\beta_{s}^{2} E_{0} \gamma_{t}^{4}}{4 \pi f_{s}^{2} \dot{\gamma} h \hat{V}_{R F}\left|\cos \phi_{s}\right|}\right)^{1 / 3}
$$

Nonadiabatic theory needed "close" to transition

- This equation can be solved but the detailed computation is beyond the scope of this course => See for instance (for those interested)
- K.Y. Ng, "Physics of Intensity Dependent Beam Instabilities", World Scientific (2006), p. 691
- E. Métral, USPAS 2009 course, Albuquerque, USA:

Nonadiabatic theory needed "close" to transition

- Numerical (analytical) result for the case of the nTOF bunch in the CERN PS

Double RF systems

- Show that the motion of the particles can be tracked turn by turn using the recurrence relation (between turn n and turn $n+1$)

\qquad Double RF systems $\quad \frac{h_{2}}{h}=2 \quad \phi_{s}=\phi_{s 2}=0$

LESSON V

Measurement of the longitudinal bunch profile and Tomography

The pyHEADTAIL simulation code (by Benoit Salvant)

Measurement of the longitudinal bunch profile

=> WALL CURRENT MONITOR = Device used to measure the instantaneous value of the beam current

J. Belleman

A Wall Current Monitor

Tomography

TOMOSCOPE (developed by S. Hancock, CERN/BE/RF)

The aim of TOMOGRAPHY is to estimate an unknown distribution (here the 2D longitudinal distribution) using only the information in the

See Tutorial by Benoit Salvant

