Measurement of transverse Emittance

The emittance characterizes the whole beam quality, assuming linear behavior as described by second order differential equation.
It is defined within the phase space as: $\varepsilon_{x}=\frac{1}{\pi} \int_{A} d x d x^{\prime}$
The measurement is based on determination of:
either profile width σ_{x} and angular width $\sigma_{x}{ }^{\prime}$ at one location or σ_{x} at different locations and linear transformations.
Different devices are used at transfer lines:
> Lower energies $\boldsymbol{E}_{\boldsymbol{k} \boldsymbol{k}}<100 \mathrm{MeV} / \mathrm{u}$: slit-grid device, pepper-pot (suited in case of non-linear forces).
> All beams: Quadrupole variation \& 'three grid' method using linear transformations (not well suited in the presence of non-linear forces)

Synchrotron: lattice functions results in stability criterion
\Rightarrow beam width delivers emittance: $\varepsilon_{x}=\frac{1}{\beta_{x}(s)}\left[\sigma_{x}^{2}-\left(D(s) \frac{\Delta p}{p}\right)\right]$ and $\varepsilon_{y}=\frac{\sigma_{y}^{2}}{\beta_{y}(s)}$

Outline:

$>$ Definition and some properties of transverse emittance
$>$ Slit-Grid device: scanning method
$>$ Quadrupole strength variation and position measurement
$>$ Summary

Excurse: Particle Trajectory and Characterization of many Particles

single $>$ single particle trajectories

Excurse: Definition of Offset and Divergence

Horizontal and vertical coordinates at $\boldsymbol{s}=\mathbf{0}$:
$>x$: Offset from reference orbit in [mm]
> x^{\prime} : Angle of trajectory in unit [mrad]

$$
x^{\prime}=d x / d s
$$

Assumption: par-axial beams:

\boldsymbol{x} is small compared to $\boldsymbol{\rho}_{\boldsymbol{o}}$
$>$ Small angle with $p_{x} / p_{s} \ll 1$
Longitudinal coordinate:
$>$ Longitudinal orbit difference: $\left.\boldsymbol{I}=-\boldsymbol{v}_{\boldsymbol{0}} \cdot \boldsymbol{(\boldsymbol { t }}-\boldsymbol{t}_{\boldsymbol{0}}\right)$ in unit [mm]
$>$ Momentum deviation: $\boldsymbol{\delta}=\left(\boldsymbol{p}-\boldsymbol{p}_{\boldsymbol{0}}\right) / \boldsymbol{p}_{\boldsymbol{0}}$ sometimes in unit [mrad] $=[\%]$
For continuous beam: I has no meaning \Rightarrow set $I \equiv 0$!
Reference particle: No offset $\boldsymbol{x} \equiv \boldsymbol{y} \equiv \boldsymbol{I} \equiv 0$ \& no 'angle' $\boldsymbol{x}^{\prime} \equiv \boldsymbol{y}^{\prime} \equiv \boldsymbol{\delta} \equiv 0$ for all \boldsymbol{s}

Excurse: Definition of Coordinates and Properties of the Transfer Matrix juas

The basic vector is 6 dimensional: $\quad \vec{x}(s)=\left(\begin{array}{c}x \\ x^{\prime} \\ y \\ y^{\prime} \\ l \\ \delta\end{array}\right)=\left(\begin{array}{c}\text { hori. spatial deviation } \\ \text { horizontal divergence } \\ \text { vert. spatial deviation } \\ \text { vertical divergence } \\ \text { longitudinal deviation } \\ \text { momentum deviation }\end{array}\right)=\left(\begin{array}{c}{[\mathrm{mm}]} \\ {[\mathrm{mrad}]} \\ {[\mathrm{mm}]} \\ {[\mathrm{mrad}]} \\ {[\mathrm{mm}]} \\ {[\% \mathrm{om}]}\end{array}\right)$
The transformation of a single particle from a location s_{0} to s_{1} is given by the Transfer Matrix R:

$$
\vec{x}\left(s_{1}\right)=\mathrm{R}(\mathrm{~s}) \cdot \vec{x}\left(s_{0}\right)
$$

$>$ Matrix elements: coupling between components $\left.R_{11}=(x \mid x), R_{12}=(x \mid x)\right), R_{13}=(x \mid y) \ldots$
$>\underline{\text { fall forces are symmetric along }}$ the reference orbit than the horizontal and vertical plane are decoupled:
\Rightarrow sub-matrix is sufficient
\Rightarrow Sub-matrix
here shown for drift L :

Excurse: Some Examples for linear Transformations

The 2-dim sub-space ($\boldsymbol{x}, \boldsymbol{x}^{\prime}$) can be used in case there is coupling like dispersion $\boldsymbol{R}_{16}=(\boldsymbol{x} \mid \boldsymbol{\delta})=\mathbf{0}$ Important examples are:
$>$ Drift with length $L: \mathbf{R}_{\text {drift }}=\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$
$>$ Horizontal focusing with quadrupole constant \boldsymbol{k} end effective length I :

$$
\mathbf{R}_{\text {focus }}=\left(\begin{array}{cc}
\cos \sqrt{k} l & \frac{1}{\sqrt{k}} \sin \sqrt{k} l \\
-\sqrt{k} \cdot \sin \sqrt{k} l & \cos \sqrt{k} l
\end{array}\right) \quad \Rightarrow \mathrm{R}_{\text {focus }}^{\text {thin lens }}=\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)
$$

$>$ Horizontal de-focusing with quadrupole constant \boldsymbol{k} end effective length \boldsymbol{I} :

$$
\begin{aligned}
& \quad \mathbf{R}_{\text {de-focus }}=\left(\begin{array}{cc}
\cosh \sqrt{k} l & \frac{1}{\sqrt{k}} \sinh \sqrt{k} l \\
\sqrt{k \cdot} \sinh \sqrt{k} l & \cosh \sqrt{k} l
\end{array}\right) \\
& \text { Ideal quad.: field gradient } \boldsymbol{g}=\boldsymbol{B}_{\text {pole }} / \boldsymbol{a}, \boldsymbol{B}_{\text {pole }} \text { field at poles, } \boldsymbol{a} \\
& \text { aperture } \\
& \begin{array}{l}
\rightarrow \text { quadrupole constant } \boldsymbol{k}=\mid \boldsymbol{g} / /(\boldsymbol{B} \rho)_{0}
\end{array}
\end{aligned} \quad \Rightarrow \mathrm{R}_{\text {de-focus }}^{\text {thin lens }}=\left(\begin{array}{cc}
1 & 0 \\
1 / f & 1
\end{array}\right)
$$

\Rightarrow simple transfer matrix (math. proof by $1^{\text {st }}$ order Taylor expansion)

Excurse: Definition of Beam Matrix

The basic vector is 6 dimensional: $\quad \vec{x}(s)=\left(\begin{array}{c}x \\ x^{\prime} \\ y \\ y^{\prime} \\ l \\ \delta\end{array}\right)=\left(\begin{array}{c}\text { hori. spatial deviation } \\ \text { horizontal divergence } \\ \text { vert. spatial deviation } \\ \text { vertical divergence } \\ \text { longitudinal deviation } \\ \text { momentum deviation }\end{array}\right)=\left(\begin{array}{c}{[\mathrm{mm}]} \\ {[\mathrm{mrad}]} \\ {[\mathrm{mm}]} \\ {[\mathrm{mrad}]} \\ {[\mathrm{mm}]} \\ {[\% \mathrm{~m}]}\end{array}\right)$
The transformation of a single particle from a location s_{0} to s_{1} is given by the Transfer Matrix R:

$$
\vec{x}\left(s_{1}\right)=\mathrm{R}(\mathrm{~s}) \cdot \vec{x}\left(s_{0}\right)
$$

The transformation of a the envelope from a location s_{0} to s_{1} is given by the Beam Matrix $\sigma: \quad \sigma\left(s_{1}\right)=\mathrm{R}(\mathrm{s}) \cdot \sigma\left(s_{0}\right) \cdot \mathrm{R}^{\mathrm{T}}(\mathrm{s})$
6-dim Beam Matrix with decoupled hor. \& vert. plane: Beam width for

Excurse: Geometrical Parameters of Phase Space Ellipsoid

$$
x_{\max }^{\prime}=\sqrt{\sigma_{22}}=\sqrt{\varepsilon \gamma}
$$

The determinate is preserved:

$$
\begin{aligned}
& \varepsilon=\sqrt{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}} \Leftrightarrow 1=\beta \gamma-\alpha^{2} \\
& \text { Proof: } \sigma\left(s_{1}\right)=R \cdot \sigma\left(s_{0}\right) \cdot R^{T} \\
& \Rightarrow \operatorname{det}\left(\sigma\left(s_{1}\right)\right)=\operatorname{det}(\mathrm{R}) \cdot \operatorname{det}\left(\sigma\left(s_{0}\right)\right) \cdot \operatorname{det}\left(\mathrm{R}^{\mathrm{T}}\right) \\
& \\
& =\operatorname{det}\left(\sigma\left(s_{0}\right)\right)
\end{aligned}
$$

Excurse: The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:
$>$ beams behind ion source
$>$ space charged dominated beams at LINAC \& synchrotron
$>$ cooled beams in storage rings
General description of emittance using terms of 2-dim distribution:

It describes the value for 1 standard derivation

$$
\varepsilon_{r m s}=\sqrt{\underbrace{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle}_{\text {Variances }}-\underbrace{\left\langle x x^{\prime}\right\rangle^{2}}_{\text {Covariance }}}
$$

i.e. correlation

For discrete distribution:

$$
\begin{aligned}
&\langle x\rangle \equiv \mu=\frac{\iint x \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}} \quad\left\langle x^{\prime}\right\rangle \equiv \mu^{\prime}=\frac{\iint x^{\prime} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}} \quad \\
&\left\langle x^{n}\right\rangle=\frac{\iint(x-\mu)^{n} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}} \quad\left\langle x^{\prime n}\right\rangle=\frac{\iint\left(x^{\prime}-\mu^{\prime}\right)^{n} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}}\langle x\rangle=\frac{\sum_{i, j} \rho(i, j) \cdot x_{i} x^{\prime} j}{\sum_{i, j} \rho(i, j)} \\
& \text { covariance }:\left\langle x x^{\prime}\right\rangle=\frac{\iint(x-\mu)\left(x^{\prime}-\mu^{\prime}\right) \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}} \quad \begin{array}{l}
\text { and correspondingly for all } \\
\text { other moments }
\end{array}
\end{aligned}
$$

Definition of transverse Emittance

The emittance characterizes the whole beam quality: $\varepsilon_{x}=\frac{1}{\pi} \int_{A} d x d x^{\prime}$ Ansatz:
Beam matrix at one location: $\boldsymbol{\sigma}=\left(\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22}\end{array}\right)=\varepsilon \cdot\left(\begin{array}{cc}\beta & -\alpha \\ -\alpha & \gamma\end{array}\right)$ with $\overrightarrow{\mathrm{x}}=\binom{x}{x^{\prime}}$ It describes a 2-dim probability distr.

The value of emittance is:

$$
\varepsilon_{x}=\sqrt{\operatorname{det} \boldsymbol{\sigma}}=\sqrt{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}}
$$

For the profile and angular measurement:

$$
\begin{aligned}
& x_{\sigma}=\sqrt{\sigma_{11}}=\sqrt{\varepsilon \beta} \\
& x_{\sigma}^{\prime}=\sqrt{\sigma_{22}}=\sqrt{\varepsilon \gamma}
\end{aligned}
$$

Geometrical interpretation:
All points \boldsymbol{X} fulfilling $\boldsymbol{x}^{\boldsymbol{t}} \cdot \boldsymbol{\sigma}^{-1} \cdot \boldsymbol{x}=\mathbf{1}$ are located on a ellipse

$$
\sigma_{22} x^{2}-2 \sigma_{12} x x^{\prime}+\sigma_{11} x^{2}=\operatorname{det} \sigma=\varepsilon_{x}^{2}
$$

The Emittance for Gaussian Beams

The density function for a 2-dim Gaussian distribution is:

$$
\begin{aligned}
& \rho\left(x, x^{\prime}\right)=\frac{1}{2 \pi \epsilon} \exp \left[-\frac{1}{2} \vec{x}^{T} \sigma^{-1} \vec{x}\right] \\
& =\frac{1}{2 \pi \epsilon} \exp \left[\frac{-1}{2 \operatorname{det} \sigma}\left(\sigma_{22} x^{2}-2 \sigma_{12} x x^{\prime}+\sigma_{11} x^{\prime 2}\right)\right]
\end{aligned}
$$

It describes an ellipse with the characteristics profile and angle Gaussian distribution of width

$$
\begin{aligned}
& x_{\sigma} \equiv \sqrt{\left\langle x^{2}\right\rangle}=\sqrt{\sigma_{11}} \text { and } \\
& x_{\sigma}^{\prime} \equiv \sqrt{\left\langle x^{\prime 2}\right\rangle}=\sqrt{\sigma_{22}}
\end{aligned}
$$

and the correlation or covariance

$$
\operatorname{cov} \equiv \sqrt{\left\langle x x^{\prime}\right\rangle}=\sqrt{\sigma_{12}}
$$

For $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ it is $\mathbf{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
assuming $\operatorname{det}(\mathbf{A})=a d-b c \neq 0 \Leftrightarrow$ matrix invertible

The beam distribution can be non-Gaussian, e.g. at:
$>$ beams behind ion source
$>$ space charged dominated beams at LINAC \& synchrotron
$>$ cooled beams in storage rings
General description of emittance using terms of 2-dim distribution:

It describes the value for 1 standard derivation

$$
\varepsilon_{r m s}=\sqrt{\underbrace{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle}_{\text {Variances }}-\underbrace{\left\langle x x^{\prime}\right\rangle^{2}}_{\text {Covarian }}}
$$

For Gaussian beams only: $\boldsymbol{\varepsilon}_{\boldsymbol{r m s}} \leftrightarrow$ interpreted as area containing a fraction \boldsymbol{f} of ions:
$\varepsilon(f)=-2 \pi \varepsilon_{r m s} \cdot \ln (1-f)$

Care:

No common definition of emittance concerning the fraction f

Emittance $\varepsilon(\mathrm{f}) \quad$ Fraction f

$1 \cdot \varepsilon_{r m s}$	15%
$\pi \cdot \varepsilon_{r m s}$	39%
$2 \pi \cdot \varepsilon_{r m s}$	63%
$4 \pi \cdot \varepsilon_{r m s}$	86%
$8 \pi \cdot \varepsilon_{r m s}$	98%

Outline:

$>$ Definition and some properties of transverse emittance
> Slit-Grid device: scanning method scanning slit \rightarrow beam position \& grid \rightarrow angular distribution
$>$ Quadrupole strength variation and position measurement
$>$ Summary

The Slit-Grid Measurement Device

Slit-Grid: Direct determination of position and angle distribution.
Used for protons with $E_{\text {kin }}<100 \mathrm{MeV} / \mathrm{u} \Rightarrow$ range $R<1 \mathrm{~cm}$.

Hardware

Analysis

phase space

Slit: position $P(x)$ with typical width: 0.1 to 0.5 mm
Distance: typ. 0.5 to 5 m (depending on beam energy 0.1 ... 100 MeV) SEM-Grid: angle distribution $P\left(x^{\prime}\right)$

Slit \& SEM-Grid

Slit with e.g. 0.1 mm thickness
\rightarrow Transmission only from $\Delta \boldsymbol{x}$.
Example: Slit of width 0.1 mm (defect)
Moved by stepping motor, 0.1 mm resolution

Beam surface interaction: e^{-}emission
\rightarrow measurement of current.
Example: 15 wire spaced by 1.5 mm :

Each wire is equipped with one I/U converter different ranges settings by $\boldsymbol{R}_{\boldsymbol{i}}$
\rightarrow very large dynamic range up to 10^{6}.

Display of Measurement Results

The distribution of the ions is depicted as a function of
$>$ Position [mm]
$>$ Angle [mrad]
The distribution can be visualized by
$>$ Mountain plot
$>$ Contour plot
Calc. of $2^{\text {nd }}$ moments $\left\langle x^{2}\right\rangle,\left\langle x^{\prime 2}\right\rangle \&\left\langle x x^{\prime}\right\rangle$
Emittance value $\boldsymbol{\varepsilon}_{r m s}$ from

$$
\varepsilon_{r m s}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

Problems:

$>$ Finite binning results in limited resolution

Beam: Ar ${ }^{4+}, 60 \mathrm{KeV}, 15 \mu \mathrm{~A}$ at Spiral2 Phoenix ECR source. Plot from P. Ausset, DIPAC 2009

The Resolution of a Slit-Grid Device

The width of the slit $d_{\text {slit }}$ gives the resolution in space $\Delta x=d_{\text {slit }}$.
The angle resolution is $\Delta x^{\prime}=\left(d_{\text {wire }}+2 r_{\text {wire }}\right) / d$
\Rightarrow discretization element $\Delta \boldsymbol{x} \boldsymbol{\Delta x} \boldsymbol{x}^{\prime}$.
By scanning the SEM-grid the angle resolution can be improved.
Problems for small beam sizes or parallel beams.
Hardware

Analysis

For pulsed LINACs: Only one measurement each pulse \rightarrow long measuring time required.

Result of an Slit-Grid Emittance Measurement

Result for a beam behind ion source: $>$ here aberration in quadrupoles due to large beam size

$>$ different evaluation and plots possible
$>$ can monitor any distribution

Low energy ion beam:
\rightarrow well suited for emittance showing space-charge effects or aberrations.

Outline:

$>$ Definition and some properties of transverse emittance
$>$ Slit-Grid device: scanning method scanning slit \rightarrow beam position \& grid \rightarrow angular distribution
$>$ Quadrupole strength variation and position measurement
emittance from several profile measurement and beam optical calculation
> Summary

Excurse: Particle Trajectory and Characterization of many Particles

Excurse: Conservation of Emittance

Liouville's Theorem:

The phase space density can not changes with conservative e.g. linear forces.
The beam distribution at one location s_{0} is described by the beam matrix $\sigma\left(s_{0}\right)$
This beam matrix is transported from location s_{0} to s_{1} via the transfer matrix

$$
\sigma\left(s_{1}\right)=R \cdot \sigma\left(s_{0}\right) \cdot R^{T}
$$

6-dim beam matrix with decoupled horizontal, vertical and longitudinal plane:

	σ_{11}	σ_{12}	0	0	0		Horizontal	Beam width fo the three
	σ_{12}	σ_{22}	0	0	0	0	beam matrix:	coordinates:
	0	0	σ_{33}	σ_{34}	0	0	$\sigma_{11}=\left\langle x^{2}\right\rangle$	$x_{r m s}=\sqrt{\sigma}$
	0	0	σ_{34}	σ_{44}	0	0	${ }_{12}=\left\langle x x^{\prime}\right\rangle$	$y_{r m s}=\sqrt{\sigma}$
	0	0	0	0	${ }^{\sigma_{55}}$	σ_{56} σ_{66}	$\sigma_{22}=\left\langle x^{\prime 2}\right\rangle$	$l_{r m s}=\sqrt{\sigma_{55}}$

Emittance Measurement by Quadrupole Variation

From a profile determination, the emittance can be calculated via linear transformation, if a well known and constant distribution (e.g. Gaussian) is assumed.

> Measurement of beam width

$$
x^{2}{ }_{\text {max }}=\sigma_{11}(1, k)
$$

matrix $\mathbf{R}(\boldsymbol{k})$ describes the focusing.
$>$ With the drift matrix the transfer is

$$
\mathbf{R}\left(k_{i}\right)=\mathbf{R}_{\mathrm{drift}} \cdot \mathbf{R}_{\mathrm{focus}}\left(k_{i}\right)
$$

> Transformation of the beam matrix

$$
\sigma\left(1, k_{i}\right)=\mathbf{R}\left(k_{i}\right) \cdot \sigma(0) \cdot \mathbf{R}^{\boldsymbol{\top}}\left(k_{i}\right)
$$

Task: Calculation of $\sigma(0)$
at entrance s_{o} i.e. all three elements measurement:
$\mathbf{x}^{2}(\mathbf{k})=\sigma_{11}(1, \mathbf{k})$

Measurement of transverse Emittance

$>$ The beam width $\boldsymbol{x}_{\text {max }}\left(\boldsymbol{s}_{1}\right)$ at $\boldsymbol{s}_{\mathbf{1}}$ is measured \Leftrightarrow matrix element $\boldsymbol{\sigma}_{\mathbf{1 1}}\left(\mathbf{1}, \boldsymbol{k}_{\boldsymbol{i}}\right)=\boldsymbol{x}^{\mathbf{2}}{ }_{\text {max }}\left(\boldsymbol{k}_{\boldsymbol{i}}\right)$
$>$ Different focusing of quadrupoles $\boldsymbol{k}_{\mathbf{1}}, \boldsymbol{k}_{\mathbf{2}} \ldots \boldsymbol{k}_{\boldsymbol{n}}$ are used $\Rightarrow \boldsymbol{R}_{\text {focus }}\left(\boldsymbol{k}_{i}\right)$
$>$ After the drift the transfer matrix is $\mathbf{R}\left(\boldsymbol{k}_{i}\right)=\mathbf{R}_{\text {drift }} \cdot \mathbf{R}_{\text {focus }}\left(\boldsymbol{k}_{i}\right)$
$>$ Task: Calculation of beam matrix $\sigma(0)$ at entrance s_{0} (matrix elements give orientation)
$>$ The transformation of the beam matrix is: $\sigma\left(\mathbf{1}, \boldsymbol{k}_{\boldsymbol{i}}\right)=\mathbf{R}\left(\boldsymbol{k}_{\boldsymbol{i}}\right) \cdot \sigma(0) \cdot \mathbf{R}^{\boldsymbol{\top}}\left(\boldsymbol{k}_{\boldsymbol{i}}\right)$
\Rightarrow Result: Redundant system of linear equations for matrix elements $\sigma_{\mathrm{ij}}(0)$
$\sigma_{11}\left(1, k_{1}\right)=R_{11}^{2}\left(k_{1}\right) \cdot \sigma_{11}(0)+2 R_{11}\left(k_{1}\right) R_{12}\left(k_{1}\right) \cdot \sigma_{12}(0)+\boldsymbol{R}_{12}^{2}\left(k_{1}\right) \cdot \sigma_{22}(0)$ focusing \boldsymbol{k}_{1}
$\sigma_{11}\left(1, k_{n}\right)=R_{11}^{2}\left(k_{n}\right) \cdot \sigma_{11}(0)+2 R_{11}\left(k_{n}\right) R_{12}\left(k_{n}\right) \cdot \sigma_{12}(0)+R_{12}^{2}\left(\boldsymbol{k}_{n}\right) \cdot \sigma_{22}(0)$ focusing \boldsymbol{k}_{n}
$>$ To have an error estimation at least three measurements must be done
Assumptions: >Constant emittance, in particular no space-charge broadening
$>$ Only elliptical shaped beam distribution is considered
$>$ No misalignment, i.e. beam center equals center of the quadrupoles
> If not valid: A self-consistent algorithm can be used .

Measurement of transverse Emittance

Using the 'thin lens approximation' i.e. the quadrupole has a focal length of f :
$\mathrm{R}_{\text {focus }}(\boldsymbol{K})=\left(\begin{array}{cc}\mathbf{1} & \mathbf{0} \\ -\mathbf{1} / \boldsymbol{f} & \mathbf{1}\end{array}\right) \equiv\left(\begin{array}{cc}\mathbf{1} & \mathbf{0} \\ \boldsymbol{K} & \mathbf{1}\end{array}\right) \Rightarrow \mathrm{R}(\boldsymbol{L}, \boldsymbol{K})=\mathrm{R}_{\text {drift }}(\boldsymbol{L}) \cdot \mathrm{R}_{\text {focus }}(\boldsymbol{K})=\left(\begin{array}{cc}\mathbf{1}+\boldsymbol{L} \boldsymbol{K} & \boldsymbol{L} \\ \boldsymbol{K} & \mathbf{1}\end{array}\right)$
Measurement of the matrix-element $\sigma_{11}(1, K)$ from $\sigma(1, K)=R(K) \cdot \sigma(0) \cdot R^{\top}(K)$

Example: Square of the beam width at
ELETTRA $100 \mathrm{MeV} \mathrm{e}^{-}$Linac, YAG:Ce:

G. Penco (ELETTRA) et al., EPAC'08

For completeness: The relevant formulas

$$
\begin{aligned}
\sigma_{11}(1, K)= & L^{2} \sigma_{11}(\mathbf{0}) \cdot K^{2} \\
& +2 \cdot\left(L \sigma_{11}(\mathbf{0})+L^{2} \sigma_{12}(0)\right) \cdot K \\
& +L^{2} \sigma_{22}(\mathbf{0})+\sigma_{11}(\mathbf{0}) \\
\equiv & a \cdot K^{2}-2 a b \cdot K+a b^{2}+c \\
= & a \cdot(K-b)^{2}+c
\end{aligned}
$$

The three matrix elements at the quadrupole:

$$
\begin{aligned}
& \sigma_{11}(0)=\frac{a}{L^{2}} \\
& \sigma_{12}(0)=-\frac{a}{L^{2}}\left(\frac{1}{L}+b\right) \\
& \sigma_{22}(0)=\frac{1}{L^{2}}\left(a b^{2}+c+\frac{2 a b}{L}+\frac{a}{L^{2}}\right) \\
& \varepsilon_{r m s} \equiv \sqrt{\operatorname{det} \sigma(0)}=\sqrt{\sigma_{11}(0) \cdot \sigma_{22}(0)-\sigma_{12}^{2}(0)}=\sqrt{a c} / L^{2}
\end{aligned}
$$

The 'Three Grid Method' for Emittance Measurement

Instead of quadrupole variation, the beam width is measured at different locations:

The procedure is:

$>$ Beam width $x(i)$ measured at the locations $\boldsymbol{s}_{\boldsymbol{i}}$
\Rightarrow beam matrix element

$$
x^{2}(i)=\sigma_{11}(i) .
$$

$>$ The transfer matrix $\mathbf{R}(\boldsymbol{i})$ is known. (without dipole a 3×3 matrix.)
$>$ The transformations are:

$$
\sigma(i)=R(i) \cdot \sigma(0) \cdot R^{\top}(i)
$$

\Rightarrow redundant equations:

coordinate x beam matrix: (Twiss parameters) $\sigma_{11}(0), \sigma_{12}(0), \sigma_{22}(0)$ to be determined
\Rightarrow Result: at least equations for elements $\sigma_{\mathrm{ij}}(0)$
$\sigma_{11}(1)=R_{11}^{2}(1) \cdot \sigma_{11}(0)+2 R_{11}(1) R_{12}(1) \cdot \sigma_{12}(0)+R_{12}^{2}(1) \cdot \sigma_{22}(0)$ for $R(1): s_{0} \rightarrow s_{1}$
$\sigma_{11}(n)=R_{11}^{2}(n) \cdot \sigma_{11}(0)+2 R_{11}(n) R_{12}(n) \cdot \sigma_{12}(0)+R_{12}^{2}(n) \cdot \sigma_{22}(0)$ for $R(n): s_{0} \rightarrow s_{n}$

Results of a 'Three Grid Method' Measurement

Solution: Solving the linear equations like for quadrupole variation or fitting the profiles with linear optics code (e.g. MADX, TRANSPORT, WinAgile).

Example: The hor. and vert. beam envelope and the beam width at a transfer line:

Assumptions: $>$ constant emittance, in particular no space-charge broadening >100 \% transmission i.e. no loss due to vacuum pipe scraping
$>$ no misalignment, i.e. beam center equals center of the quadrupoles.

Summary for transverse Emittance Measurement

Emittance measurements are very important for comparison to theory.
It includes size (value of $\boldsymbol{\varepsilon}$) and orientation in phase space ($\sigma_{i j}$ or $\boldsymbol{\alpha}, \boldsymbol{B}$ and $\boldsymbol{\gamma}$)
i.e three independent values $\varepsilon_{r m s}=\sqrt{\sigma_{11} \cdot \sigma_{22}-\sigma_{12}}=\sqrt{\left.\left.\left\langle x^{2}\right\rangle \cdot<x^{\prime 2}\right\rangle-<x x^{\prime}\right\rangle^{2}}$

Low energy beams \rightarrow direct measurement of x - and x^{\prime}-distribution
$>$ Slit-grid: movable slit $\rightarrow x$-profile, grid $\rightarrow x^{\prime}$-profile
$>$ Variances exists: slit-slit, slit-kick, pepperpot method
All beams \rightarrow profile measurement + linear transformation:
$>$ Quadrupole variation: one location, different setting of a quadrupole
$>$ 'Three grid method': different locations
$>$ Assumptions: $>$ well aligned beam, no steering
$>$ no emittance blow-up due to space charge.
Important remark: For a synchrotron with a stable beam storage, width measurement is sufficient using $x_{r m s}=\sqrt{\varepsilon_{r m s} \cdot \beta}$

Appendix GSI Ion LINAC: Emittance Measurement Devices

Slit Grid Emittance: Standard device, total 9 device

Pepper-pot Emittance: Special device, total 1 device
Transfer to
Synchrotron

All ions, high current, 5 ms@50 Hz, 36\&108 MHz

Backup slides

The Noise Influence for Emittance Determination

A real measurement of beamlets contains:
$>$ Noise i.e. fluctuation of the output
$>$ Bias i.e. electrical offset from amplifier

\rightarrow Strong influence of noise reduction to
numerical values of $\langle x\rangle,\left\langle x^{\prime 2}\right\rangle$ and $\left\langle x x^{\prime}\right\rangle$ and on $\varepsilon_{r m s}$ \Rightarrow Algorithm \& cut-level must be given for evaluation General: Typical error $\Delta \varepsilon / \varepsilon>10 \%$

Example: Dependence of $\boldsymbol{\varepsilon}_{r m s}$ on threshold

Threshold level of max. [\%]

$$
\begin{aligned}
\left\langle x^{\prime 2}\right\rangle & =\frac{\int x^{\prime 2} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\int \rho\left(x, x^{\prime}\right) d x d x^{\prime}} \text { for continous values } \\
& =\frac{\sum_{i, j} x_{i j}^{\prime} 2 \cdot P\left(x_{i j}, x_{i j}^{\prime}\right)}{\sum_{i, j} P\left(x_{i j}, x_{i j}^{\prime}\right)} \text { for discrete values } \\
\varepsilon_{r m s} & =\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
\end{aligned}
$$

- For pulsed LINAC: Measurement within one pulse is an advantage
$>$ If horizontal and vertical direction coupled $\rightarrow 2$-dim evaluation required

Example GSI-LINAC 0.12 to $11 \mathrm{MeV} / \mathrm{u}$:
PPepper-pot: 15×15 holes with $\emptyset 0.1 \mathrm{~mm}$
on a $50 \times 50 \mathrm{~mm}^{2}$ copper plate
\rightarrow Distance: pepper-pot-screen: 25 cm
$>$ Screen: $\mathrm{Al}_{2} \mathrm{O}_{3}, \emptyset 50 \mathrm{~mm}$
CCD camera

Good spatial resolution if many holes are illuminated. Good angle resolution only if spots do not overlap.
$>$ Data acquisition: high resolution CCD

Result of a Pepperpot Emittance Measurement

Example: Ar^{1+} ion beam at $1.4 \mathrm{MeV} / \mathrm{u}$, screen image from single shot at GSI:

Data analysis:
Projection on horizontal and vertical plane
\rightarrow analog to slit-grid.

The Artist View of a Pepperpot Emittance Device

Excurse: Some Properties of the Transfer Matrix

> The transformation can be done successive: with
with $\mathrm{R}_{1}=\mathrm{R}\left(s_{0} \rightarrow s_{1}\right), \ldots, \mathrm{R}_{n}=\mathrm{R}\left(s_{n-1} \rightarrow s_{n}\right)$
It is $\mathbf{R}=\mathbf{R}_{\boldsymbol{n}} \cdot \mathbf{R}_{n-1} \cdot \ldots \cdot \mathbf{R}_{\mathbf{1}}$
$>$ The elements describe the coupling between the components
$R_{11}=(x \mid x), R_{12}=\left(x \mid x^{\prime}\right), R_{13}=(x \mid y), R_{14}=(x \mid y \prime), R_{15}=(x \mid I), R_{16}=(x \mid \delta) \ldots$.
$>$ If all forces are symmetric along the reference orbit than the horizontal and vertical plane are decoupled:
\Rightarrow sub-matrix is sufficient
$>$ It is $\operatorname{det}(\mathbf{R})=\mathbf{1}$ (Liouville's Theorem)

$(x \mid x)$	$\left(x \mid x^{\prime}\right)$				
$\left(x^{\prime} \mid x\right)$	$\left(x^{\prime} \mid x^{\prime}\right)$	0	0	0	$(x \mid \delta)$
0	0	$(y \mid y)$	$\left(y \mid y^{\prime}\right)$	0	0
0	0	$\left(y^{\prime} \mid y\right)$	$\left(y^{\prime} \mid y^{\prime}\right)$	0	0
$(l \mid x)$	$\left(l \mid x^{\prime}\right)$	0	0	1	$(l \mid l)$
0	0	0	0	0	1

i.e. \mathbf{R} is invertible
$>$ Sub-matrix here shown for drift \boldsymbol{L} :

$$
\mathbf{R}_{x}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right) \mathrm{R}_{y}=\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right) \quad \begin{aligned}
& \boldsymbol{I} \\
& \mathbf{I}
\end{aligned} \mathrm{R}_{s}=\left(\begin{array}{cc}
1 & L / \gamma^{2} \\
0 & 1
\end{array}\right) \mathbf{I}
$$

