Cyclotrons $Bz = f(R, \theta)$

$$Bz = B(R)$$

$$\omega_{rev} = \frac{qB_z(R)}{\gamma(R) m}$$

Bz should increase with Radius (B ~ r^{-n} with n<0)

Unstable Vertical oscillations (Br defocus in z plane)

Additive Vertical focusing is needed

$$\mathbf{v} \times \mathbf{B} = \begin{vmatrix} \mathbf{e}_r & \mathbf{e}_z & \mathbf{e}_\theta \\ \vdots & \vdots & \vdots \\ r & z & r\theta \end{vmatrix}$$

$$B_r B_z B_\theta$$

Be component needed (Fz =-q $Vr B\theta$): « AVF » Cyclo

Azimuthally varying Field (AVF) $Bz = f(R, \theta)$ an additive focusing vertical force v_r . B_o

B_A created by:

N=4

sectors

- Succession of high field & low field regions: $Bz = f(R, \theta)$
 - Valley: large gap, weak field
 - Hill: small gap, strong field

FLUTTER function (definition)

$$F_{l} = \frac{\langle (B - \langle B \rangle)^{2} \rangle}{\langle B \rangle^{2}}$$
1 turn

$$F_l = \frac{\sigma_B^2}{\langle B \rangle^2}$$

$$B_z(r,\theta) = B_0 \cdot \left[1 + f\cos(N\theta)\right] \qquad \qquad F_1 = f^2/2$$

Azimuthally varying Field (AVF) cyclo

Vertical focusing $\langle F_z \rangle \propto V_r \cdot B_\theta$

 $V_r = \frac{dr}{dt} \overrightarrow{er}$ created by :

- Valley: weak field, large trajectory curvature
- Hill: strong field, small trajectory curvature

Trajectory is not a circle ()

valley

Orbit not perpendicular to hill-valley edge

valley

Vertical focusing with sectors

Compact cyclo: pole oscillation in θ

Bz=
$$<$$
B₀ $> [1+ f. cos (N θ)]$

$$f < 1$$
 $f = 0.5$. (Bhill- Bvalley)/ $< B_0 >$

FLUTTER function (definition)

$$F_l = \frac{\langle (B - \langle B \rangle)^2 \rangle}{\langle B \rangle^2}$$
 <1turn>

Separated magnets generate field oscillation in θ

$$Bz = \langle B0 \rangle [1 + \cos(N \theta)]$$

Separated sector cyclotron

The FLUTTER is larger

Larger vertical focusing

Tutorial 1:

Give the Lorentz force in a cyclotron

and explain the focusing and defocusing effect in Vertical plane of the Br (radial) and $B\theta$ (azimuthal) components

$$m\gamma \frac{d^2\mathbf{r}}{dt^2} = m\gamma \frac{d^2(r\mathbf{e_r} + z\mathbf{e_z})}{dt^2} = q(\mathbf{v} \times B) = ?$$

$$B_z = B_{0z} R^{-n}$$

$$m\gamma \frac{d^2z}{dt^2} = F_z = ?$$

$$B_r = ?$$

Tutorial 1: Give the Lorentz force in a cyclotron and explain the focusing and defocusing effect of the Br (radial) and B θ (azimuthal) components

$$m\gamma \frac{d^{2}z}{dt^{2}} = F_{z} = q(\mathbf{v} \times B)_{z} = -q(\mathbf{v}_{r}B_{\theta} - \mathbf{v}_{\theta}B_{r}) \qquad \mathbf{v} \times \mathbf{B} = \begin{vmatrix} \mathbf{e}_{r} & \mathbf{e}_{z} & \mathbf{e}_{\theta} \\ \mathbf{v}_{r} & \mathbf{v}_{z} & \mathbf{v}_{\theta} \\ B_{r} & B_{z} & B_{\theta} \end{vmatrix}$$
$$\frac{d^{2}z}{dt^{2}} + \frac{q}{m\gamma}(\mathbf{v}_{r}B_{\theta} + R\omega_{rev}n.\frac{B_{z}}{R}z) = 0 \qquad \mathbf{v}_{r} = \frac{dr}{dt} \quad \mathbf{v}_{\theta} = R\frac{d\theta}{dt} = R\omega_{rev}$$

Isochronous cyclotron n <0 Bz (R) increases

$$Bz = f(R,\theta)$$
 and « Curl $B = 0$ »
 $Br = h(R,\theta) = -z.n Bz/R. er$

n<0 Br : <u>Defocusing in vertical plan</u>

$$B_{\theta} = g(R, \theta)$$
. $e\theta$

Induced by Sectors (AVF)

Focusing in vertical plan

it Compensates n<0

Tutorial 2: Flutter F in AVF cyclo

The field of a cyclotron is $Bz(r,\theta)=B_0(r)$ [1+ f. cos (4 θ)]

A: How many hills and valleys have such a cyclotron

B: Compute Be With Curl B=0

$$\nabla \times \mathbf{B} = \left[\mathbf{e}_r \frac{\partial}{r \partial \mathbf{r}} + \mathbf{e}_z \frac{\partial}{\partial z} + \mathbf{e}_\theta \frac{\partial}{r \partial \theta} \right] \times \left[B_r \mathbf{e}_r + B_z \mathbf{e}_z + B_\theta \mathbf{e}_\theta \right]$$

C: Compute the flutter function « Fl »

Tutorial 2: Flutter F in AVF cyclo

if the field of a cyclotron is $Bz(r,\theta) = B_0(r) [1 + f. \cos(4 \theta)]$

Bhill = B₀(r) [1+f] Bvalley = B₀(r) [1-f]
$$<$$
B>= B₀

$$\nabla \times \mathbf{B} = \left[\mathbf{e}_r \frac{\partial}{\partial \mathbf{r}} + \mathbf{e}_z \frac{\partial}{\partial \mathbf{z}} + \mathbf{e}_\theta \frac{\partial}{r \partial \theta} \right] \times \left[B_r \mathbf{e}_r + B_z \mathbf{e}_z + B_\theta \mathbf{e}_\theta \right]$$

$$\frac{\partial B_{\theta}}{\partial z} - \frac{\partial B_{z}}{r \partial \theta} = 0$$

C:
$$(B - \langle B \rangle)^2 >= \frac{1}{2\pi} \int_0^2 B_0^2 [f \cos(4\theta)]^2 d\theta$$
 $F_l = \frac{\langle (B - \langle B \rangle)^2 \rangle}{\langle B \rangle^2}$

$$F_l = \frac{\langle (B - \langle B \rangle)^2 \rangle}{\langle B \rangle^2}$$

Flutter function
$$F_1 = B_0^2 (f_1)^2 / 2B_0^2 = f^2 / 2$$

Separated Sectors(ring) Cyclotron

Focusing condition limit: (n<0)

$$v_z^2 = n + \frac{N^2}{N^2 - 1} F_l + \dots > 0$$

Increase the flutter F_I , using separated sectors where $B_{vallev} = 0$

$$F_l = \frac{\langle (B - \langle B \rangle)^2 \rangle}{\langle B \rangle^2}$$

PSI= 590 MeV proton γ =1.63

Separated sectors cyclotron needed at "High energies" $(n(R) = 1-\gamma^2 << 0)$

Vertical focusing and isochronism

2 conditions to fulfill

- Increase the vertical focusing force strength:
- $v_z^2 = n + \frac{N^2}{N^2 1} F_l + \dots > 0$
- Keep the isochronism condition true: n<0

$$n = -\frac{R}{B_{0z}} \frac{\partial B_z}{\partial R} = 1 - \gamma^2 < 0$$

So we should have:

$$\frac{N^2}{N^2 - 1} F_l > \gamma^2 - 1$$

For High Energy cyclotron: 2 solutions for vertical stability

- 1) Larger Flutter (separated sectors) Fl
 - 2) Other idea ??? Yes (spiralled sectors)

Better vertical focusing: Spiralled sectors

AVF with straight sectors

ε Inclination angle pole edge AND Trajectory

AVF cyclo with spiralled sectors

Larger vertical focusing

Bz=
$$<$$
B0>(1+ f(r).g (r, θ))

Spiral eq. $r = A.(\theta + 2\pi j/2N)$

 $\tan \varepsilon = 2r/A$

Additive vertical focusing : + FLUTTER .(1+ 2 $tan^2 \epsilon$)

$$v_z^2 = n + \frac{N^2}{N^2 - 1} F_l (1 + 2 \tan^2 \varepsilon)$$

Spiralled sectors

By tilting the edges (ϵ angle):

- The valley-hill transition became more focusing
- •The hill-valley transition became less focusing

But by the strong focusing principle (larger betatron amplitude in focusing, smaller in defocusing), the net effect is focusing (cf F+D quadrupole).

$$v_z^2 = n + \frac{N^2}{N^2 - 1} F_l (1 + 2 \tan^2 \varepsilon)$$
 $n < 0$

FI > 0

Exemple: 235 MeV compact proton cyclo 4 spiralled sectors

C235 poles and valleys

-2 RF cavities (Dees)
Inserted in the valleys

4 Spiralled sectors:

Higher energy=
Higher axial focusing required

Exemple: 235 MeV compact proton cyclo

C235 lower part

Without RF

4 Spiralled sectors:

Valley gap =60cm Hill gap =10cm-1cm

BHill~ 2-3 Teslas Bvalley~1 Tesla

 ~ 1.7 T in center

 ~ 2.1T extraction ₁₄

Beam dynamics in the ISOCHRONOUS cyclotrons

B=Constant #Isochronism condition
A STRONG LIMITIATION in energy γ=1
to get the ions synchrone With RF

$$\omega_{rev} = \frac{qB_z(R)}{\gamma(R) m}$$

$$Bz = B0. g(R)$$

Bz increase with R (field index n < 0)

Unstable Vertical oscillations strong limitation in transmission

Additive Vertical focusing is needed: -N sectors (Hills//valleys)

-separated straight sectors

-spiralled sectors

-separated spiralled sectors

4 techniques

One other possibility SYNCHRO CYCLOTRON (NOT ISOCHRONOUS)

Acceleration condition with Bz uniform or decreasing (n ≥ 0)

wrev =not constant

Not isochronous!!

But no vertical instabilities

 $v_z^2 = n \ge 0$ stable oscillation Revolution frequency evolves Frev(t)= Frev(Radius) beam has to be synchrone With RF:

 ω rev /h = ω RF synchronous

But ω rev /h = ω RF = f(time) = f(Radius) NOT constant

Revolution frequency is evolving during acceleration FRF(t) (like a synchrotron)

Pulsed Machine WRF (t): SYNCHRO CYCLOTRON

Synchro-cyclotrons: RF cycled, but stable in z

Pulsed beam

Accelerated bunches

FRF =h Frev

Not accelerated

Less intensity (pulsed) avalaible (not cw)

Exemple: medical aplication Superconducting synchrocyclo.

ProteusOne® (IBA): 250 MeV proton

Bz = 5.7 - 5.0 Tesla (very compact)

Rextraction =0.6 m / harmonics=1

FRF= 93 MHz -63 MHz (Rextraction)

Beam pulse: Every 1 ms

Few other slides for questions

Summary N° 2: without equations

Isochronous Cyclotron : $Bz = f(R, \theta)$ complex magnet Frf = constant

Isochronism: ω RF = H ω rev = constant (particle are synchronous with RF : FRF = const.) with <Bz > = f(Radius) ~ γ (Radius). B₀

Defocusing Vertical force : Bz # γ (r). B₀ => Fz = V θ Br ez

unstable oscillation

Compensation with focusing force with θ field oscillations

Vertical stability can be obtained with azimutal field variations $Bz = f(r, \theta)$

cyclotron pole valley and hill

Summary N° 3: without equations

Synchro-Cyclotron: Bz # constant (uniform) = simpler magnet Frf = Not constant = Not CW

-Not Isochron: $\omega rev = NOT constant$ $\omega rev = q Bz / m \gamma (R)$

NO Defocusing Vertical force Br = 0

- Synchronicity with RF: $\omega_{rev} = q Bz / m\gamma = f(Radius) = \omega_{rev}(t)$

For longitudinal stability ! (RF to be varied)

CYCLOTRONS The Family

 $\omega_{rev} = \frac{qB_z}{\gamma.m}$

1

Conventional cyclotrons

Bz = uniform

Frev = evolves with γ !!!

FRF = constant

NOT USED anymore Limited in energy :EK<1MeV

2: isochronous

Compact cyclotrons

1 magnet with modulation

Bz = NOT uniform = f(radius)

Frevolution = Constant

FRF = constant

Isochronous

$$\omega_{rev} / h = \omega_{RF}$$

Separated sectors

Vertical focusing with

$$Bz = f(r,\theta)$$

3 : non isochronous

Synchro-cyclotrons

Frev = NOT Constant

FRF = NOT Constant = beam pulsed

Not Isochronous

$$\omega_{rev}(R)/h = \omega_{RF}(t)$$

Tutorial 3: What is the field index n(R)?

n(R): it gives the radial evolution of Bz

$$n = -\frac{R}{B_0} \frac{\partial B_z}{\partial R}$$

Equivalent definition

$$Bz \sim Bo (r /R_o)^{-n}$$

The field index is not constant in a cyclotron n = n (radius)

Isochronous cyclotron $n(r) < 0 : <Bz(r,\theta)>_{turn} increases with R$

$$Bz(R) = \gamma(r) B_0$$
$$= k r^{-n}$$

$$\gamma = \frac{1.}{\sqrt{1 - [v/c]^2}} = \frac{1.}{\sqrt{1 - [R\omega/c]^2}}$$

$$< B_z(R) > = \frac{B_0}{\sqrt{1 - [R \omega/c]^2}} = B_0.R^{-n(R)}$$

Dynamics in cyclotron

summary

 $Qe_0 \stackrel{\wedge}{V} \cos \phi. N_{gap}$

Energy gain per turn

 $\phi_0 \approx 0^\circ$

Central RF phase, lon bunches are centered at 0°

 $\omega_{RF} = h\omega_{rev} = const$

RF synchronism = *Isochronism*

(h - harmonic number)

$$R = R(t) = R(N^{\circ}turn)$$

Orbit evolving

$$\omega_{rev} = \frac{qB_z(R)}{\gamma(R) m} = const$$

$$B\rho(t) = P/q \Rightarrow < B> = B\rho/R$$

Average Magnetic field

Harmonic number h=FRF/ Frev

h=integer
$$\omega_{RF} = \mathbf{h} \ \omega_{rev}$$

h = 1,2,3 Number RF oscillations per revolution

h *bunches by turn* $\omega_{rf} = \mathbf{h} \ \omega_{rev}$

Synchro-cyclotrons: pulsed acclerator

Less intensity (pulsed) avalaible (since not cw)

$$\omega_{rev} = \frac{\omega_{RF}}{h} = \frac{qB_z}{\gamma(R) m}$$

$$\omega RF(injection) = h \frac{qB}{\gamma m} \approx h \frac{qB}{m}$$

$$\omega RF(extraction) = h \frac{qB_0}{\gamma(R).m}$$

2-3 bunches are synchronized with RF
Other bunches are lost (not accelerated properly)

Edge focusing in dipole magnet recap

non perpendicular edges in dipole magnet can generate horizontal defocusing + vertical focusing

Defocusing in Horizontal plan

Non perpendicular edge in dipole magnet can provide

1) additive focusing in vertical + 2) defocusing in horizontal plane

The optical Transfer Matrix M is

$$Mz_{edge} \begin{bmatrix} z \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{\tan \psi}{R} & 1 \end{bmatrix} \begin{bmatrix} z_0 \\ z_0' \end{bmatrix}$$