Cyclotrons

Chapter 3 Cyclotron Design

- Isochronism
- Maximal energy (Bmax, R, stability)
- Simulation // tracking (numerical integration, realistic cyclo simulation)

Design Strategy for $\mathrm{K}=10 \mathrm{MeV}$ cyclo
Design Strategy for $\mathrm{K}=250 \mathrm{MeV}$ cyclo
Design Strategy for a research facility (E/A vs I)

Cyclotron Summary : without formulas

Longitudinal dynamics _particles synchronous with RF Isochronous cyclotron $=$ constant revolution frequency

$$
B z=B z(R)
$$

Radius

Transverse dynamics : vertical defocusing forces have to be compensated Azimutal (θ) Field modulation \square vertical focusing straight sectors in one magnet

Separated sectors

Cyclotron Summary : with formulas

Isochronous cyclotron = constant revolution frequency

$$
\omega_{\text {rev }}=\frac{q B_{z}(R)}{\gamma(R) m}=\text { const }
$$

field index $\mathrm{n}<0$

$$
B z \sim B o\left(r / R_{0}\right)^{-n}
$$

$$
\omega_{r e v} h=\omega_{R F}
$$

$$
E / A=K b \cdot(Q / A)^{2}
$$

$$
\langle R\rangle=\frac{B \rho}{\left\langle B_{z}\right\rangle}=\frac{\gamma m \mathrm{v}}{q\left\langle B_{z}\right\rangle}
$$

$$
B z=F(R, \theta)
$$ requires Azimuthal Field Modulation (N sectors)

$$
\ddot{z}+\left[v_{z} \omega_{\text {revolution }}\right]^{2} z=0 \quad v_{z}^{2}=\mathrm{n}+\ldots<0
$$

$$
z(t) \sim z_{0} \exp (-i \quad V z \omega t) \quad: \text { vertical tune } V z ; \text { real for stability }
$$

$$
v_{z}^{2}=\mathrm{n}+\frac{N^{2}}{N^{2}-1} F_{l}\left(1+2 \tan ^{2} \varepsilon\right)>0
$$

Cyclotron Design

1) Particle kind : proton, heavy ion? \mathbf{Q} / \mathbf{A}
2) Max Kinetic Energy of reference ions: Emax
3) Magnet (Bmax, size ,sectors, hill/valley gap) : Compute a field Map
4) Number of cavities (Ngap) : energy gain per turn

Then, let's start the SIMULATIONs
Multi_particlelcode in «realistic » magnetic field

- compute reference orbit
- simulate injection
- simulate extraction

Analytical B Field + RF Kick
Computed field map B + RF Kick
Computed field map B $+E$

IS IT OK ?, IF NOT restart at 1)

Magnet design

How to adjust $B(R):\sim R^{-n}$

- Pole Gap evolution <B (R)> : $n(R)=1-\gamma^{2}$
- Correction coils (trim coils)

Sufficient FLUTTER F for axial stability $\left(v_{z}{ }^{2}>0\right)$

- Valley // hill B field
- sector angle
- spiral angle ε

$$
v_{z}^{2}=\mathrm{n}+\frac{N^{2}}{N^{2}-1} F\left(1+2 \tan ^{2} \varepsilon\right)>0
$$

Space for injection beam line and RF

- Azimutally Varying Field or Separated Sectors : $B=B(R, \theta)$
- \quad large Number of sectors $N(4,6,8)$

Isochronism : Field $B=f(r)$

$$
\begin{array}{rr}
\mathrm{Bz}(\mathrm{R}) \text { adjusted to get } \mathrm{h} \omega \mathrm{rev}=\omega \mathrm{rf} \quad \gamma(R)=\frac{1}{\sqrt{1-\mathrm{v}^{2} / c^{2}}}=\frac{1}{\sqrt{1-\left(R \omega_{r e v}\right)^{2} / c^{2}}} \\
\omega_{r e v}=\frac{q B_{z}(R)}{\gamma(R) m} & <B_{z}(R)>=<B_{z 0}>/ \sqrt{1-\left(R \omega_{r e v}\right)^{2} / c^{2}}
\end{array}
$$

$I=f(R)$

Max Energy for Cyclotrons: $\mathrm{R} \times \mathrm{B}$

Heavy Ion
A= nucleon number $\mathrm{Q}=$ charge number
Max Kinetic Energy

$$
\begin{aligned}
(\gamma-1) \mathrm{mc}^{2} & \approx 1 / 2 \mathrm{mv}^{2} \\
& =1 / 2 \mathrm{~m} \quad(\text { Rextraction. Wrev })^{2}
\end{aligned}
$$

For ions: $m=A m 0=A .\left[1.610^{-27} \mathrm{~kg}\right] \quad q=Q e 0$

$$
\text { ex: }{ }^{12} C^{4+} \quad A=12 \quad Q=4
$$

$-[E / A]_{\max }($ MeV / nucleon $)=K_{b}\left\{\frac{Q}{A}\right\}^{2}$

$$
\text { with } K_{b} \approx 48.2\left(\langle B\rangle \cdot R_{e x t}\right)^{2}
$$

 limitation and size limitation (: Rextraction) for Emax

Cyclotron simulation :

Particle Tracking with a computer code

SIMULATION : tracking ions (M,Q,vo)
Multi-particle-code
in «realistic» magnetic field
In cylindrical coodinates

$$
\mathbf{r}=r \cdot \mathbf{e}_{r}+z \cdot \mathbf{e}_{z}
$$

Velocity : $\dot{\mathbf{r}}=\frac{d \mathbf{r}}{d t}$?
$\dot{\mathbf{r}}=\dot{r} \cdot \mathbf{e}_{r}+\dot{z} \cdot \mathbf{e}_{z}+r \cdot \dot{\mathbf{e}}_{r}+z \cdot \dot{\mathbf{e}_{z}}$

$$
\frac{d}{d t}[m \gamma \dot{\mathbf{r}}]=q \cdot(\mathbf{E}+\dot{\mathbf{r}} \times \mathbf{B})
$$

```
TRANSPORT (1rst order)
    MAD
(3rd order)
```


Cyclotron Magnets are too complex

Comoving Frame: er $=f(t)$

$$
d \mathbf{e}_{r}=\mathbf{e}_{\theta} \cdot d \theta \quad d \mathbf{e}_{z}=0 \quad d \mathbf{e}_{\theta}=-\mathbf{e}_{r} \cdot d \theta
$$

Unit vectors are evolving in time !!!

Cyclotron simulation : Particle Tracking with a computer code

SIMULATION : tracking ions (M,Q,vo) In cylindrical coodinates

Let's track one particle Start $\theta=\theta_{0} \quad$ (At $t=0$)

$$
\begin{array}{ll}
r=r 0 & p r=p r _0 \\
z=z 0 & p z=p z _0 \\
& p \theta=p \theta _0
\end{array}
$$

What is the particle position at $\theta=\theta 0+\Delta \theta$ (At $t=0+\Delta \theta[\mathrm{dt} / \mathrm{d} \theta])$
$r\left(\theta_{0}+\Delta \theta\right)=r 0+\Delta \theta$ [dr/d $\left.\theta\right] \quad$ (first order extrapolation= euler algorithm)
$z=z 0+\Delta \theta[d z / d \theta]$
pr $=$ pr_ $0+\Delta \theta[\mathrm{d} p r / \mathrm{d} \theta]$
$\mathrm{pz}=\mathrm{pz} _0+\Delta \theta[\mathrm{d} p z / \mathrm{d} \theta]$
$\mathrm{p} \theta=\mathrm{p} \theta _0+\Delta \theta[\mathrm{d} p \theta / \mathrm{d} \theta]$
$[d r / d \theta]=$

[d pr /d θ] = cylindrical equation of motion $=f[B(r, \theta z)]$

Cyclotrons simulation: cylindrical equation

$$
\begin{aligned}
\frac{d \mathbf{p}}{d t}=q \cdot(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \quad \mathbf{v} \times \mathbf{B} & =\left|\begin{array}{ccc}
\mathbf{e}_{r} & \mathbf{e}_{z} & \mathbf{e}_{\theta} \\
\dot{r} & \dot{z} & r \\
B_{r} & B_{z} & B_{\theta}
\end{array}\right|= \\
& =\left(\dot{z} \cdot B_{\theta}-r \dot{\theta} \cdot B_{z}\right) \cdot \mathbf{e}_{r}+\left(r \dot{\theta} \cdot B_{x}-\dot{r} \cdot B_{\theta}\right) \cdot \mathbf{e}_{z}+\dot{\left(r \cdot B_{z}-\dot{z} B_{r}\right) \cdot \mathbf{e}_{\theta}}
\end{aligned}
$$

Evolution in time t is not convenient, evolution in θ is better !!!

$$
\begin{aligned}
& \frac{d}{d t}=\frac{d \theta}{d t} \frac{d}{d \theta}=\dot{\theta} \frac{d}{d \boldsymbol{\theta}} \quad \quad \frac{d \mathbf{p}}{d t}=\dot{\theta} \frac{d \mathbf{p}}{d \theta}=q \cdot(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \\
& \frac{d}{d \theta}[m \gamma \dot{r}]=\frac{d}{d \theta}\left[p_{r}\right]=m \gamma \dot{\mathrm{r}}+\frac{q}{\dot{\theta}}\left(\dot{z} \cdot B_{\theta}-r \dot{\theta} \cdot B_{z}\right) \quad \frac{d r}{r d \theta}=\frac{\dot{r}}{\dot{r} \dot{\theta}}=\frac{p_{r}}{p_{\theta}} \\
& \frac{d}{d \theta}[m \gamma \dot{z}]=\frac{d}{d \theta}[p z]=\frac{q}{\dot{\theta}}\left(r \dot{\theta} \cdot B_{x}-\dot{r} \cdot B_{\theta}\right) \\
& \frac{d}{d \theta}[m \gamma r \dot{\theta}]=\frac{d}{d \theta}\left[p_{\theta}\right]=\frac{q}{\dot{\theta}} \ldots
\end{aligned}
$$

Cyclotrons simulation: trajectory in $(r, z)=f(\theta)$

The integration of particle's equation can be obtained with numerical methods The equations to be solved is a set of Ordinary Differential Equations (ODE).

START at $\theta=0\left(\mathrm{r}_{0}, \mathrm{Z} 0, \operatorname{Pr}, \operatorname{Pz}, \mathrm{P} \theta\right): \quad$ what are (r, Z) at $\theta=0+\Delta \theta$?

At first order, we can compute (r,z) and (pr,pz)

$$
\begin{array}{ll}
p_{r}\left(\theta_{0}+d \theta\right)=p_{r}\left(\theta_{0}\right)+\frac{d p_{r}\left(\theta_{0}\right)}{d \theta} d \theta+0\left(d \theta^{2}\right)+\ldots & \frac{d}{d \theta}[p r]=m \gamma \mathrm{r} \theta+\frac{q}{\dot{\theta}}\left(\dot{z} \cdot B_{\theta}-r \dot{\theta} \cdot B_{z}\right) \\
r\left(\theta=\theta_{0}+d \theta\right)=r_{0}+\frac{d r}{d \theta} d \theta+\ldots & \frac{d r}{r d \theta}=\frac{d r / d t}{r d \theta / \mathrm{dt}}=\frac{\mathrm{v}_{r}}{\mathrm{v}_{\theta}}=\frac{p_{r}}{p_{\theta}} \quad \frac{d r}{d \theta}=r \cdot \frac{p_{r}}{p_{\theta}} \\
t=t_{0}+\frac{d t}{d \theta} d \theta+\ldots & \frac{d t}{d \theta}=\frac{1}{d \theta / d t}=\frac{m \gamma r}{P_{\theta}}
\end{array}
$$

This the EULER method ! = 1rst order expansion

Cyclotrons simulation : the algorithm

Loop $j=1$, Nparticles

INITIAL position and momentum : $\theta=0 \quad \mathrm{r}, \mathrm{z} \mathrm{pr}, \mathrm{pz}, \mathrm{p} \theta$
Loop $i=1$, Nstep // step in $\Delta \theta$

\[

\]

Endloop I // end $\Delta \theta$ loop
Endloop J // Nparticle loop

Euler algorithm (second order accurate in d θ)
juas

Numerical integration of the equations of motion
Euler algorithm (second order accurate in $\Delta \theta$) is not the best !!

RK4 (runge kutta order 4) is better (4th order accurate in $\Delta \theta$) See a Numerical analysis Lecture

SPECIAL ATTENTION to FIELD INTERPOLATION between the points of the field map $B(\mathrm{ri}, \theta \mathrm{i}, \mathrm{zi})$

How to simulate a cyclotron in 4 steps

- 1) Define the basic parameters of the cyclotron
(B,R,F) : $B \rho=$ Rextraction
START The simulation in the "middle" of cycloton
With a defined magnetic structure
- 2) Find the closed orbit (1 particle) without acceleration at R=Rref
- 3) Find a matched beam in the cyclotron (multiparticles) backward tracking toward injection
- 4) Forward tracking (multiparticles) toward extraction Extraction (multiparticles) : (deflector, precession, resonance)

Iterative process

Basic parameters R, $$,Sectors,Flutter (1/4)

 Ex: cyclotron design $20 \mathrm{MeV} / \mathrm{A}$ for carbon ion 4+What is the Max energy (MeV/A) : $20 \mathrm{MeV} / \mathrm{A}$ for carbon 4+ What are the ions $(Q / A)=4+/ 12 \Rightarrow$ Bpextraction $=2$ T.m

ION (M, Q)
FINAL ENERGY

Bpextraction=2 T.m $\gamma=1.02$

Reasonnable Fied
 =1.5 T
ION (M,Q) Source Voltage (30kV -100kVolts ?)

$$
\text { Rextraction= Bpextrac } /=1.4 \mathrm{~m}
$$

Bpinjection= 0.04 T.m Rinjection $=$ Bpinjection $/ \angle B>=0.04 \mathrm{~m}$

Vertical stability
B(r, θ) Nsector , Hill//Valley gap

$$
v_{z}^{2}=n+\frac{N^{2}}{N^{2}-1} F_{l}\left(1+2 \tan ^{2} \varepsilon\right)>0
$$

$$
\text { let's take 4sectors \& gap hill =12 cm //gap valley =30 cm } / / \ldots . \varepsilon=0
$$

Find the closed orbit at $\mathrm{R}=$ Rref (2/4)

Dynamic of 1 particle in the middle of the cyclotron Without acceleration

- Choose reference particle (1 particle) (M, Q, Bpo)
- Choose a field Level $\mathrm{B}(\mathrm{r}, \theta)=\mathrm{k}$. FIELD MAP

Find the reference radius Rref?

Trajectory is a closed orbit :OK

$$
<\text { Rref }>=<B(r, \theta)>/ B \rho
$$

Find a matched beam in the cyclotron (3/4)

Around the reference trajectory, send a particle for many turns

A particle trajectory follows an ellipse
$r(t)=r o+r_{\text {max }} \cos \left(v_{r} \omega_{0} t\right)$
$r^{\prime}(t)=r^{\prime}{ }_{\text {max }} \sin \left(v_{r} \omega_{0} t\right)$

Hill-Valley is a periodic lattice

Beam matching =
Choose a beam ellipse with

$$
\Delta r^{\prime} / \Delta r=r^{\prime}{ }_{\max } d r_{\max }
$$

This ellipse occupy the minimal size in the cyclotron

Mismatched beam recall (3/4)

Because of each individual trajectory over N turn
$\left\{\begin{array}{l}r(t)=r_{0}+r_{\text {max }} \cos \left(v_{r} \omega_{0} t\right) \quad \text { (without acceleration) } \\ r^{\prime}(t)=r^{\prime}{ }_{\text {max }} \sin \left(v_{r} \omega_{0} t\right) \\ \text { it exist an optimal ellipse }\end{array}\right.$ for a given beam Emittance : $\varepsilon=\pi \Delta \mathrm{r}_{\text {max }} \cdot \Delta \mathrm{r}^{\prime}{ }_{\text {max }}$

Betatron oscillation with mismatched beam

Matched beam

Matched beam recall (3/4)

$$
\left\{\begin{array}{l}
\mathrm{r}(\mathrm{t})=\mathrm{r} 0+\mathrm{r}_{\max } \cos \left(v_{\mathrm{r}} \omega_{0} \mathrm{t}\right) \\
\mathrm{r}^{\prime}(\mathrm{t})=\mathrm{dr} / \mathrm{ds}=\mathrm{dr} / \mathrm{R} \omega_{0} \mathrm{dt}=-\left(\mathrm{r}_{\max } \nu_{\mathrm{r}} / \mathrm{R}\right) \sin \left(v_{\mathrm{r}} \omega_{0} \mathrm{t}\right)
\end{array}\right.
$$

the Matched ellipse $\quad\left|r^{\prime}{ }_{\text {max }}\right|=\left|r_{\text {max }} v_{r} / R\right|$
\Rightarrow Initial beam conditions depend of the tune $\left(v_{\mathrm{r}}\right)$ of the cyclotron at the matching point.
\Rightarrow Betatron oscillation disappears
\Rightarrow Matched beam
\Rightarrow Minimum of acceptance

backward tracking toward injection (3/4)

Central Trajectory is a closed orbit :OK

Beam matched: OK

turn on RF: backward toward injection Adjust Vrf, central field.....

Corresponding optimal beam at injection radius

backward tracking toward injection (3/4)

Start with matched beam in the cyclotron (multiparticles) at large radius Then Adjust Vrf, central field to reach injection Radius

Find the optimal beam at injection radius

Simulate the injection beam line

 to get the perfect beam at injection

Classical transport line problems :
Adjust quad to get desired beam at injection (r, r^{\prime}) ($\mathrm{z}, \mathrm{z}^{\prime}$) (t,E)

Forward tracking up to extraction (4/4)

turn on RF : Forward toward extraction tune the isochronism $<B(r)>=\gamma(r)$

Extraction

- design the extraction (deflector+..)
- turn separation (RF +precession? + magnetic bump?)
- beam losses ? Em^{m}

Cyclotron Design strategies

Radio-Isotopes production cost \& reliability

Medical applications: Cancer treatment cost \& reliability

Nuclear physics\& Research facility performance , intensity,..

Strategy for Radio-Isotopes production medical applications

10 MeV Protons/5 MeV Deutons : @ low cost
Bpmax $=0.458$ T.m $=$ Rextraction
Rextract $=0.34 \mathrm{~m}$

$$
<\mathrm{B}>=1.35 \text { Tesla } \quad[\text { hill }=1.8 \mathrm{~T} / / \text { valley }=0.5 \mathrm{~T}]
$$

AVF with 4 straight sectors (sufficient z-focusing)

$$
\text { Ibeam~ } 0.1-0.05 \mathrm{~mA}
$$

Rf Dees : 2 (so 4 gaps)
2 possibilities for extraction
Extraction By strippingNo Extractionexternal target (18 F , radiotracer)

A «low energy » industrial Cyclotron Cyclone 10/5: 2 particles: ${ }^{1} \mathrm{H}$ \& ${ }^{2} \mathrm{D}$

$\mathrm{Kb}=10 \mathrm{MeV}$

Fixed energy ; 4 straight sectors 50° fixed Frf $=42 \mathrm{Mhz}$
 =1.35 Tesla

Harmonic $\quad h=2(p), 4(D)$
Internal source
Rextraction $=0.33 \mathrm{~m}$
Bpmax=0.33x 1.35=0.45 T.m

$$
\left[\frac{E}{A}\right]_{\max }(\text { MeV } / \text { nucleon })=K_{b}\left\{\frac{Q}{A}\right\}^{2}
$$

EDeutons $=5 \mathrm{MeV}$ ($\mathrm{E} / \mathrm{A}=K b^{*} 0.5^{2}=2.5 \mathrm{MeV} / \mathrm{A}$)
RF Harmonic =4

Strategy for cancer treatment proton therapy (>80 facilities in the world)

-250 MeV Protons
Accel VARIAN Isochronous cyclo Superconducting = 2.2 Tesla

Rextrac~1.2m

-230 MeV Protons
IBA Synchro cyclotron
Superconducting =5. Tesla
Rextract ~ 0.6 m
Very compact
Hill/valley not needed

Strategy for a Cyclotron in a research facility

High energy

$\mathrm{E} / \mathrm{Amax}=\mathrm{Kb} .(\mathrm{Q} / \mathrm{A})^{2}$

High Kb~ (R.B) ${ }^{2}$

High Bz
R
(superconducting)
Large magnet
(Radius)

Vertical stability Increase «Flutter» Separated sectors

High ion charge
Q
«external » ECR source

Ion stripping at high energy « 2 Stages accelerators »

Strategy for a Cyclotron in a research facility

RIBF (Japan) : SRC ($\mathrm{K}=2600 \mathrm{MeV}$) -the bigest cyclo Uranium beam ${ }^{238} \mathrm{U}^{88+} @ 345 \mathrm{MeV} / \mathrm{Acw}$

Mode (1): RILAC + RRC + (stripper2) + fRC + (stripper3) + IRC + SRC

Ion Stripping at high energy

Heavy ions are not fully stripped by ion sources:
Incoming lons
 Stripping some of
residual electrons

Magnetic

$$
\begin{aligned}
& Q_{2}>Q_{1} \\
& B \rho_{2}<B_{\rho 1}
\end{aligned}
$$

$$
B \rho=\frac{P}{q}=\frac{\gamma m \cdot v}{q}
$$

Ion Stripping help to increase the maximal energy of a given cyclotron....

$$
[E / A] \max =K b\left[\frac{Q}{A}\right]^{2}
$$

- End Chapter 3

important facts for cyclotron :

1)Simulations are done with realistic magnetic field (not transport matrices)
2) Magnetic structure should provide the vertical stability (field index n compensated by sectors)
3) The Beam matching at injection for better transverse acceptance

Additive slides

Diagram for
The variable energy cyclotrons

$$
F_{r e v} \propto \frac{Q \cdot B_{c y c l o}}{A} \propto h \cdot F_{R F}
$$

$$
\omega_{\text {rev }}=\frac{q B}{\gamma m}
$$

2) Compute

For a given
(Q,A)

B ρ \# Rextract

$$
\mathrm{h}=2
$$

$\mathrm{E} / \mathrm{A}(\mathrm{MeV} / \mathrm{A})$ \# $\mathrm{K}(\mathrm{Q} / \mathrm{A})^{2}$

Coupling of 2 Cyclotrons : velocity matching

Two cyclotrons can be used to reach higher energy :

- Harmonic\&Radius of the 2 cyclotrons have to be matched

$$
\frac{\mathrm{v}}{2 \pi}=\left[\frac{F_{H F .} R_{\text {ejec }}}{h}\right]_{\text {cycloA }}=\left[\frac{F_{H F .} R_{i n j}}{h}\right]_{c y c l o B}
$$

The velocity of extraction CycloA
= velocity of injection CycloB

- Ion stripping can be used, to increase Q before injection into the second cyclo large $Q \Rightarrow$ large Emax

$$
\left[\frac{E}{A}\right]_{\max }=K_{b}\left\{\frac{Q}{A}\right\}^{2}
$$

