

Cyclotrons

Chapter 4: theory versus reality

- Cyclotron versus synchrotron or linac
- superconducting Kf limitation (focusing limitation)
- Isochronism and Phase measurement
- Isochronism 2nd approach
- Resonances and tunes in a cyclotron

- Research applications
- Medical applications

Cyclotron vs other RFaccelerators

Cyclotrons	Radius not constant	Frf constant :CW (isochronous)	Particles lons limit γ<2
Synchro-cyclotrons	not constant	not constant pulsed, Frf (t)	lons
Synchrotrons	constant	not constant pulsed Frf (t)	lons, electrons no limits for γ, limit €
Linacs	constant ∞	constant	lons, electrons limit €

LINAC VERSUS CYCLOTRON

Proton Source

LEBT

RFQ

MEBT

DTL

Drift Tube Linac

~20 m total

I cw ~ up to 1-5 mA LINAC Cost ~ up to 10 Meuros + building (~ 300m2)

- Not Compact (beam lines+linac)
- specific design € € € € € €

to get ~20 MeV protons

Internal source
H- with stripping extraction

Rextraction ~0.4 m Total size < 2m

I cw ~ 0.05 up to 0.3 mA in H-CYCLO Cost ~ 1.5- 3 Meuros

Several industrial manufacturers

Compact

Standard design (300 cyclo in the world) Operation easy

Max Energy for Superconducting Cyclotrons

not limited by (B x Rextraction)

We can demonstrate that isochronism imply $n(R) = (1 - \gamma^2) < 0$

$$n(R) = (1 - \gamma^2) < 0$$

Stability: isochronous field condition compensated by Flutter ($B(R,\theta)$)

$$v_z^2 = \left[1 - \gamma^2\right] + \frac{N^2}{N^2 - 1} F \left(1 + 2 \tan^2 \varepsilon\right) > 0$$

At high energy $\left[1-\gamma^2\right] << 0$ compensation not possible

the max energy is not given by $Kb \sim 48 (B.Rextraction)^2$

but K, the so-called "focusing factor":

$$\left[\frac{E}{A}\right]_{\text{max}} = Kf \cdot \left\{\frac{Q}{A}\right\}^2 < Kb \cdot \left\{\frac{Q}{A}\right\}^2$$

Kb~48 (B.Rextract)²

Kf~ f(FLUTTER)

Tutorial : $n(R)=1-\gamma^2$

demonstrate that isochronism imply

$$n(R) = (1 - \gamma^2) < 0$$

Answer: we have
$$dB_z/dr = B_0 d\gamma/dr$$

And $\gamma(R) = 1/(1 - (R\omega/c)^2)^{1/2}$

The field index definition $\text{Correspond to } Bz(r) = B_0 \ r^{-n}$

$$dB_z/dr = d [B_0 r^{-n}]/dr$$

= -n $B_0 r^{-n-1}$
= -n B_z / r

$$dB_z/dr = -n B_z/r$$
 [1]

 $dB_z/dr = B_0 d\gamma/dr$

$$B_0 \, d\gamma / dr = B_0 \, d \, (1 - (r \, \omega / c)^2)^{-1/2} / dr$$

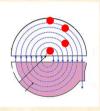
$$= B_0 \, x - 2r (\omega / c)^2 \, x 1 / 2 \, x \, (1 - (r \omega / c)^2)^{-3/2}$$

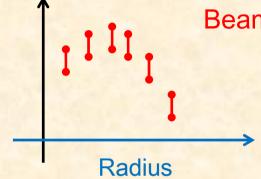
$$= B_0 \, x - (\beta^2) / r \, x \, (1 - (r \omega_p / c)^2)^{-3/2}$$

$$= B_0 / r \, \beta^2 x \, \gamma^3$$

$$= B_0 \, \gamma \, / r \, x \, \beta^2 x \, \gamma^2$$

Remember
$$\gamma^2 = 1/(1-\beta^2) = \beta^2 \gamma^2 = -1+\gamma^2$$

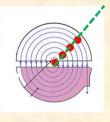

$$dB_z/dr = -B_z/r \times (1-\gamma^2) \quad [2]$$

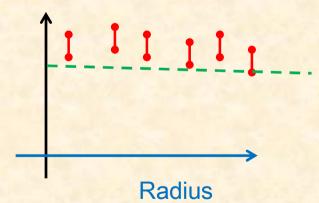

$$B_z / r \times (1-\gamma^2) = -n B_z / r$$

So
$$n(R)=1-\gamma^2$$

Phase measurement: n(R) check and field correction: \triangle B

Relative phase Beam vs RF



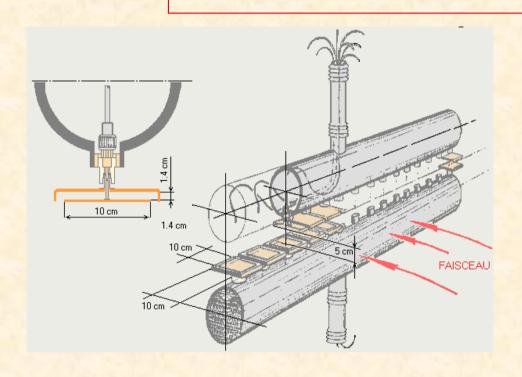

Beam not in phase with RF: B field not OK

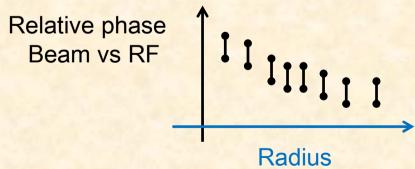
$$B_z(R) \neq B_{z0} / \sqrt{1 - (R\omega_{rev})^2 / c^2}$$

Bz(R) not correct

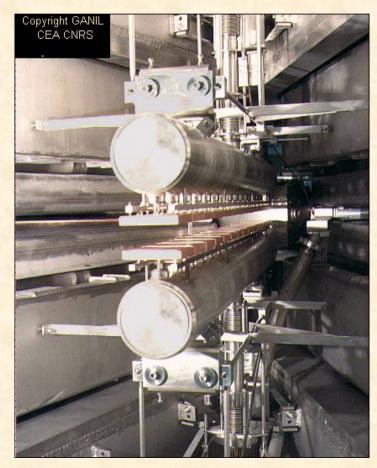
Relative phase Beam vs RF

Bz(R) correct: Beam in phase with RF

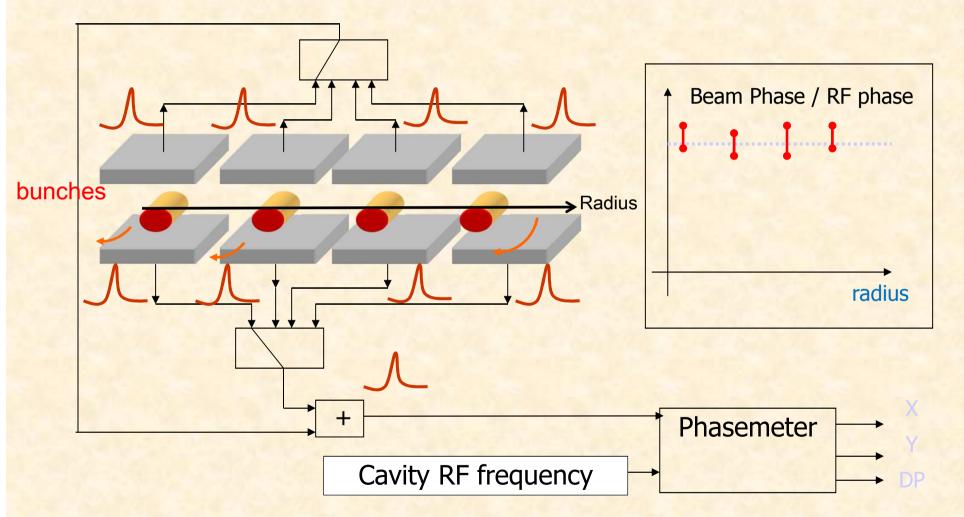

Correction of B : $B(I + \Delta I)$


$$Bz(R) + \Delta Bz$$

Correction trim coils, AGOR

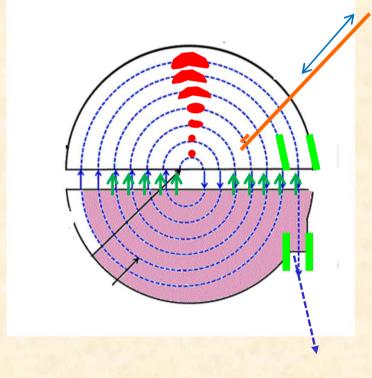


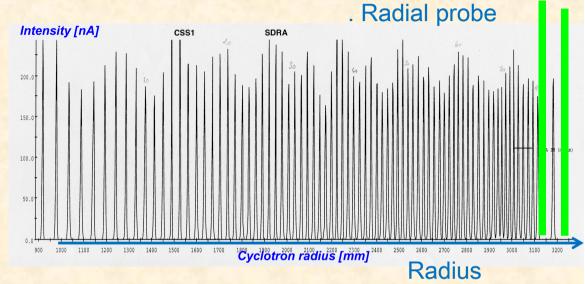
Phase measurement: Isochronism



Ganil, Caen (Fr): CSS1

Isochronism & Phase measurement

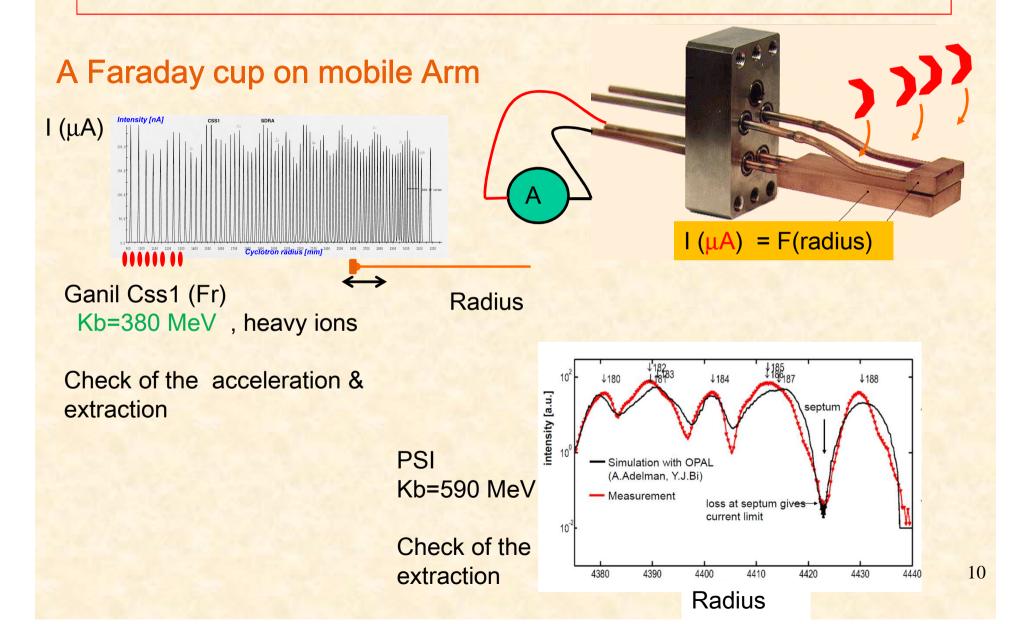

Measuring B(R) or n(R) is difficult, While the Φ (R) is more sensitive



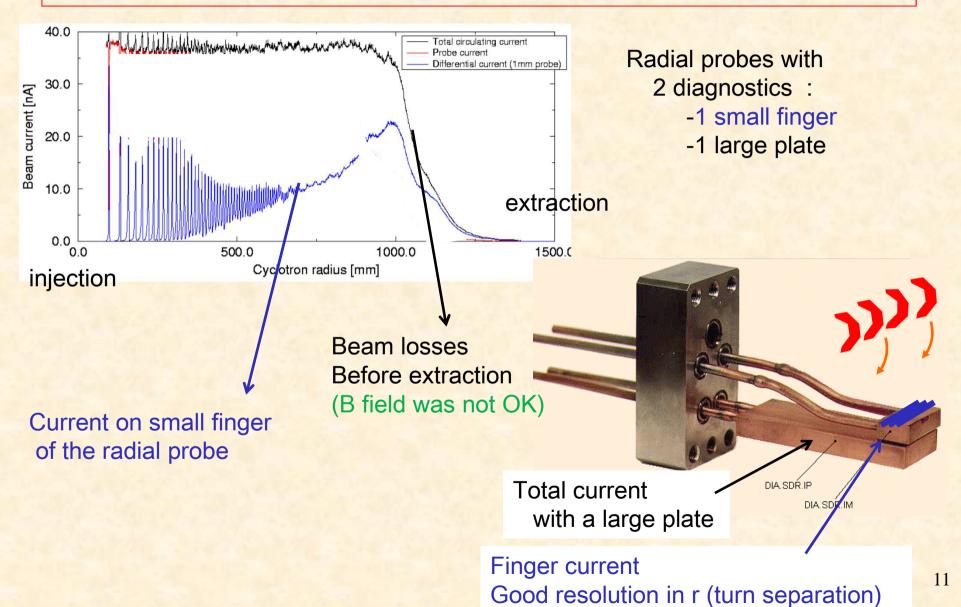
Radial probes

usefull tool for acceleration, precession study

Monitoring turns with a Radial Probe


Radial probe : I = F(Radius)

Turn separation : $\delta r = R(turn N) - R(turn N-1)$


 $\delta r = Acceleration + Oscillation$

 $\delta r \sim \alpha VRF \cos (\phi) + Oscillation$

Current measurement Ibeam=F(R): Radial probe

Current measurement with a Radial probe A full check of the dynamics

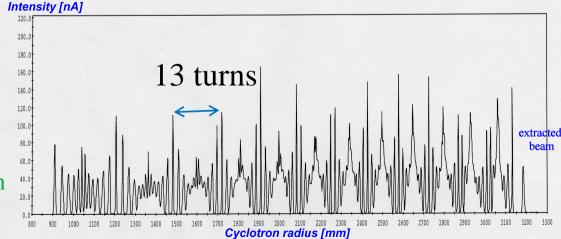
Tune v_r measurement with radial probes

Turn separation δr gives v_r :

$$r(t) = \langle R(t) \rangle + X_0 \cos(v_r \omega_0 t)$$

$$\omega_0 t = PHASE = \theta$$

$$v_r = \sqrt{1 - n} + \dots$$


$$\omega_0 \Delta t = 360^\circ = 1 \text{ turn}$$

Precession: $\delta r = \delta r$ acceleration + $X_0 \cos(v_r \omega_0 t)$

Centering error At injection

Large X₀

Large Oscillation

1 period for

13 turns; so ⇒

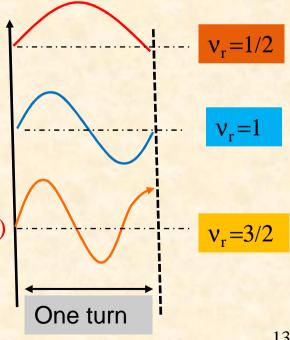
$$V_r = 1/13 = 0.08$$

Back to dynamics and resonances at high energy

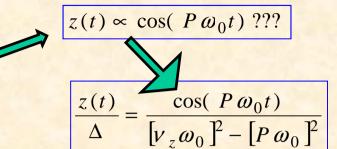
During the acceleration, V_r and V_z change because $V_{rz} \propto B(r)$

The plot of V_r vs V_7 is called the working point diagram.

Like any oscillatory phenomenon, the amplitude of a betatronic motion can grow uncontrolled whenever an external source excites it with its own frequency.


$$\ddot{x} + v_r^2 \omega_{rev}^2 x = 0$$

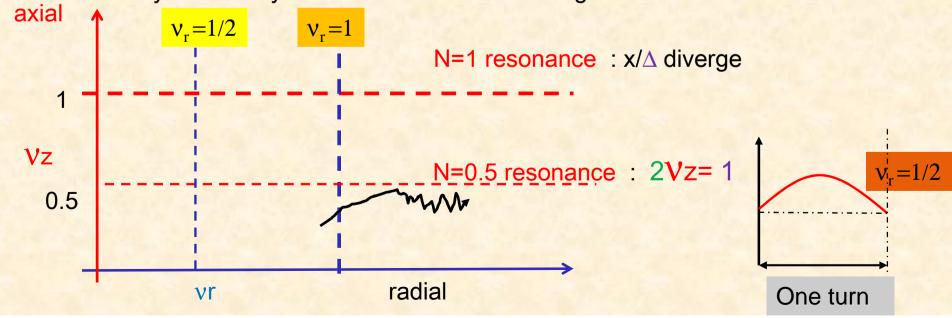
Several kind of radial resonances


$$X(t) = X_0 \cos(v_r \omega_0 t) = X_0 \cos(v_r 2\pi Nturn)$$

can be excited with field defects, injection angle (unwanted)

with field bump, injection angle (desired)

What happens with P field perturbations on 1 turn


<u>z/∆ diverge</u> at vz=P (integer)

z(t) is very sensitive to any perturbation Δ

With P field perturbations on L turns

 z/Δ diverge at L.Vz=P (integer)

The Cyclotrons try to avoid resonance crossing

Resonances

Systematic resonances: This resonance occurs as the betatronic frequency is a multiple of the "geometrical frequency" of the cyclotron. In this case, any kick given to the particle because of its particular position will be experienced again and again.

$$(\mathbf{K}.\mathbf{v_r} = \mathbf{P})$$
 // $(\mathbf{L}.\mathbf{v_z} = \mathbf{P})$

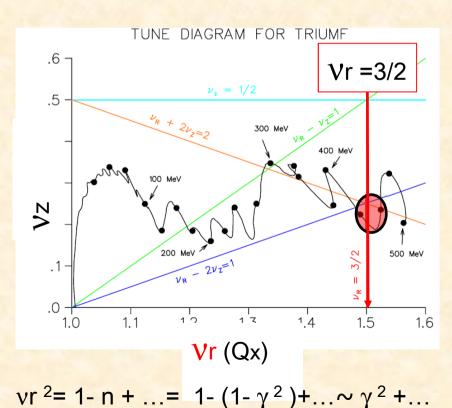
Coupling resonances

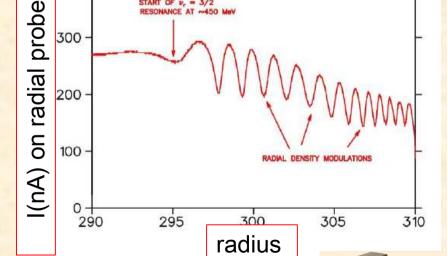
Under proper circumstances and frequency ratios, the 2 oscillators can be coupled and the energy stored in one motion, transferred to the other. These are coupling resonances ($\mathbf{K}.\mathbf{v}_r + \mathbf{L}.\mathbf{v}_z = \mathbf{P}$).

$$\mathbf{K.v_r} + \mathbf{L.v_z} = \mathbf{P}$$
 K, L and P integer

The particle's working point curve should avoid or cross as fast as possible those lines.

Tunes and resonances at Triumf (Canada)


(H⁻ cyclo, Kb=520 MeV, 6 sectors)


$$\mathbf{K.v_r} + \mathbf{L.v_z} = \mathbf{P}$$

 $|\mathbf{K}| + |\mathbf{L}|$ is called the resonance order (1, 2, 3 ...)

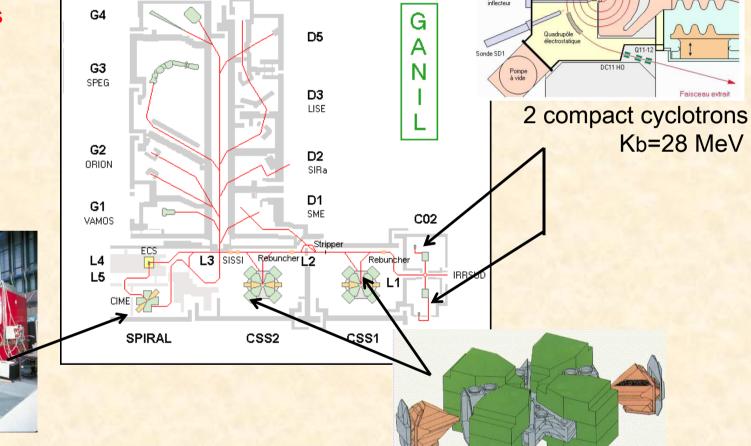
300

Effect on the crossing of the resonance $2.V_r = 3$ (order 2)

Radial Oscillations : $2.v_r = 3$

Cyclotrons in the world

Some research laboratories with Cyclotron(s)

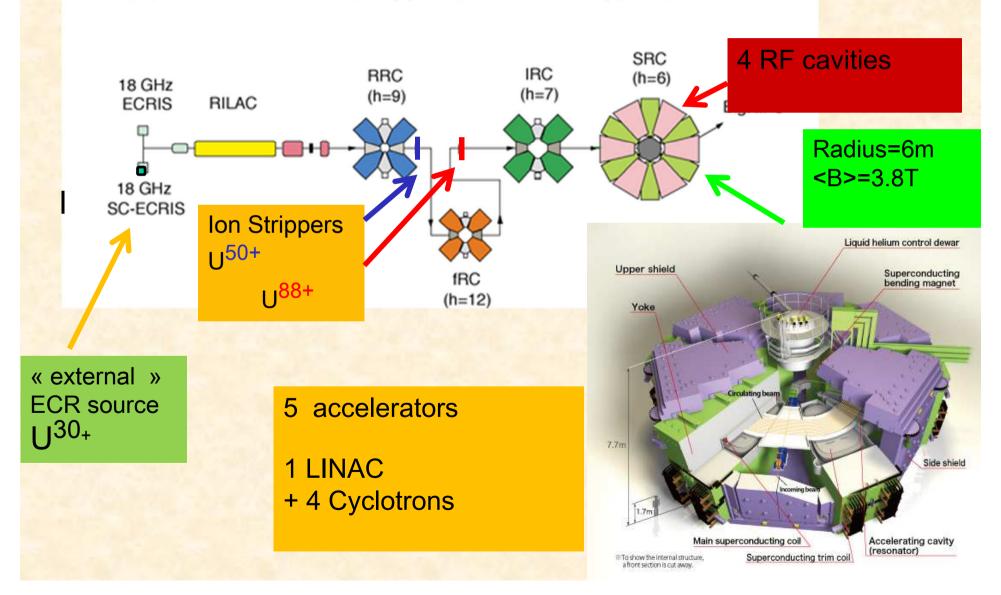


Some of the Research Facility in the world using cyclotrons

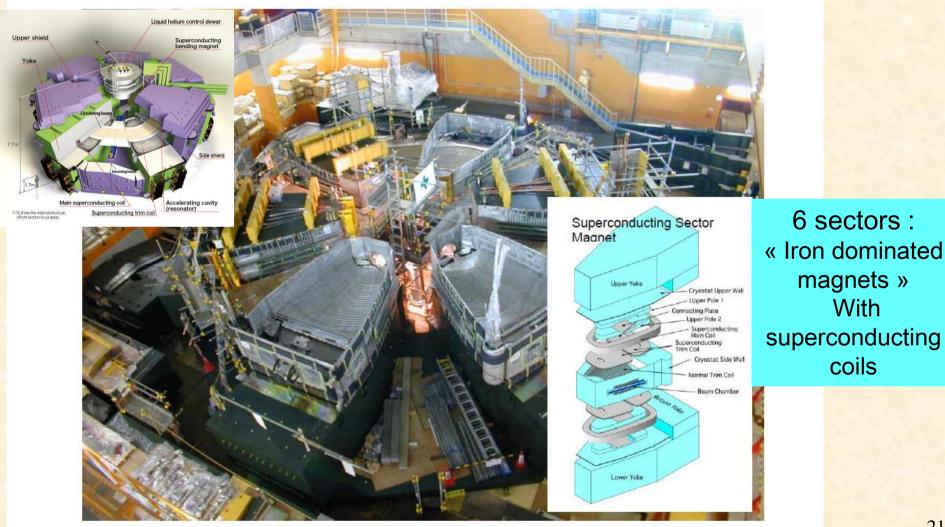
GANIL Facility (Caen, Fr) 5 cyclotrons + a new Linac

Fishbone

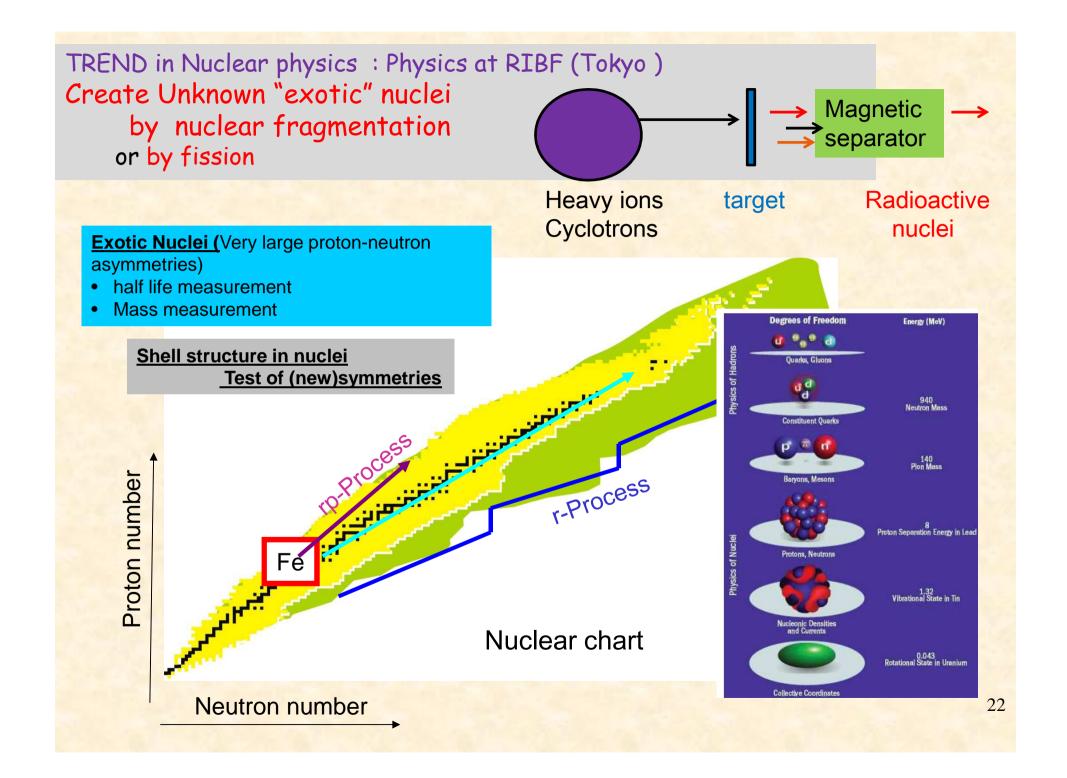
- -Nuclear physics
- -Atomic physics
- -Solid state
- -Radiobiology
- Irradiation for industry


1 compact cyclo Kb = 265 For radioactive ions

2 Separated Sectors cyclotrons Kb =380 MeV


Canne support

RIBF (Tokyo, Japan): Uranium beam ²³⁸U⁸⁸⁺ @345 MeV/A cw


Mode (1): RILAC + RRC + (stripper2) + fRC + (stripper3) + IRC + SRC

RIBF (Japan): SRC (K=2600 MeV) the largest cyclotron in the world **Superconducting Ring Cyclo**

Completed November 2005 - the 140-ton cold mass cooled to 4.5K.

870 keV

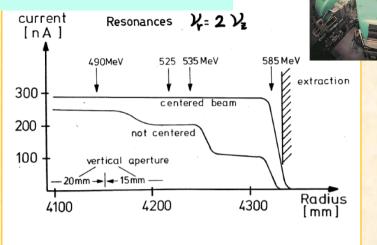
PSI 590Mev proton (Ch)


Cokcroft-Walton>

kb=72 MeV (injector 2)

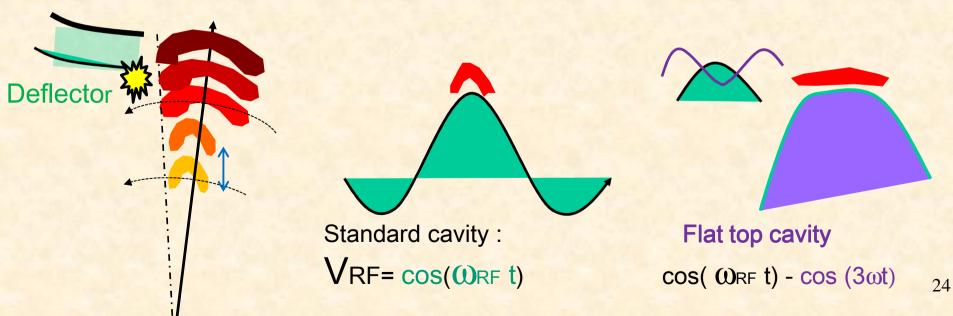
Coupling of 2 cyclotrons:

$$\left[\frac{F_{HF.}R_{extrac}}{h}\right]_{cycloA} = \left[\frac{F_{HF.}R_{injection}}{h}\right]_{cycloB}$$


Injector II

Rinacvclotron

PSI:K= 590 MeV ring cyclotron Pbeam= 1Mwatt


1) Injection centering:

Watch the resonance $2.v_z + v_r = 2$

2) Extraction: Watch the beam losses!

A Flat top RF cavity has been added to reduce losses: $VRF = Cos(\omega t) - \alpha.cos(3\omega t)$

Some Commercial Cyclotrons: manufacturers

IBA (Belgium)

Cyclone 5/10 proton/D Cyclone 9/18 H-/D-

Cyclone 30 H-/D-

ProteusOne 250 MeV p synchro-cyclo superconducting

C70 p/D or H-/D-

Sumitomo HI (Japan)

HM-12 p

EBCO (Canada)

TR 9/ 18 H-/D-TR 15/ 30 H-/D- Cost estimate 2008

1 Meuros

1.5 Meuros

. . . .

>300 commercial cyclotrons in the World

- (10-20MeV) protons

- (230MeV) protons :develloping market

GE-Scanditronix (USA-Sweden)

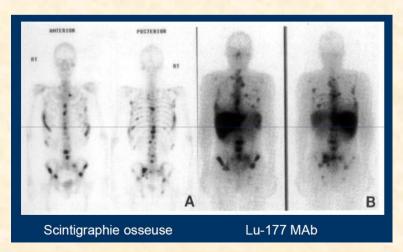
MINI TRACE 9/18

Accel // VARIAN

250 MeV proton

cyclo superconducting

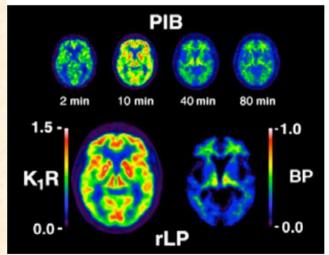
Commercial Cyclotron


Radioisotope production (5-20 MeV)

Radiotracer ¹⁸F*: « Beta+ » emitter Fluorine 18

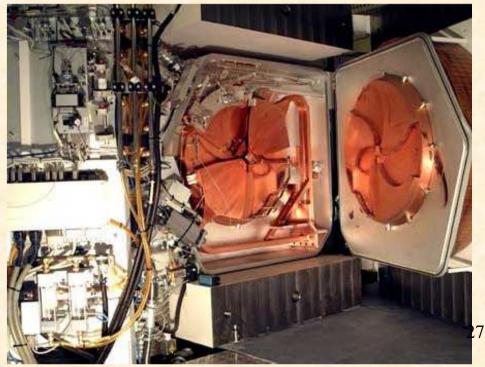
$$T_{1/2}$$
 = 109.7 min

$$\downarrow \gamma + \gamma$$


Production With cyclotrons

Injection of ¹⁸F*
TEP camera

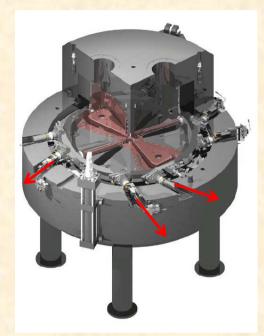
Reconstruction of the emitter position



Cyclone 10/5 MeV

= 10 MeV proton (Kb=10MeV)

= 5 MeV Deuteron


cyclone 3D ("vertical implantation")

CYCLONE 18/9 (IBA) : H- 18 MeV

Designed for medical applications (radiotracers production)

Internal PIG source, H- stripping extraction

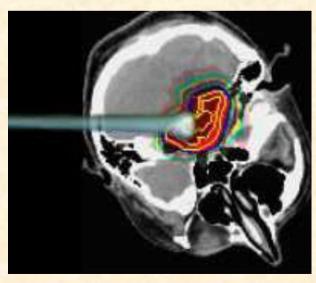
Kb=18 MeV

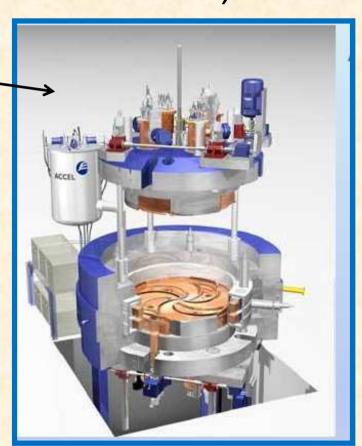
Fixed energy;
4 straight sector 50°
 =1.35 Tesla

Hill //valley gap 3cm// 67cm fixed Frf =42Mhz

2 Dee = 30° , 32 kVHarmonic h=2(p),4 (D) Internal source Rextraction=0.46 m

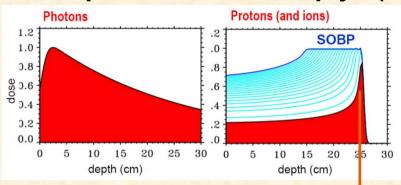
Bρmax=0.46x 1.35=0.62 T.m


Commercial Cyclotron: proton therapy (230-250 MeV)


Superconducting cyclotron

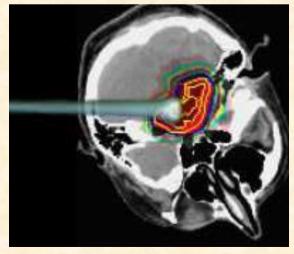
or

Superconducting Synchro-cyclotron


Brain tumor treatment with protons

Commercial Cyclotron: For proton therapy (230 MeV)

Photon:
(Radiotherapy)
A Dose in the whole body



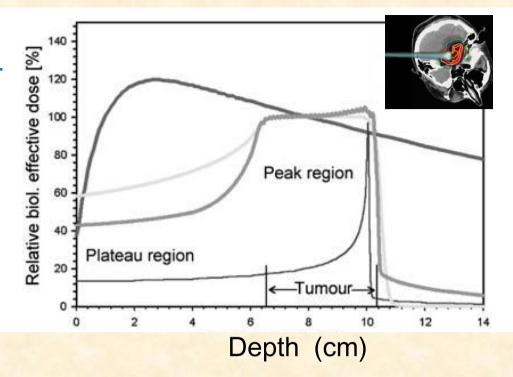
Protons :
Better than
Radiotherapy (photons)

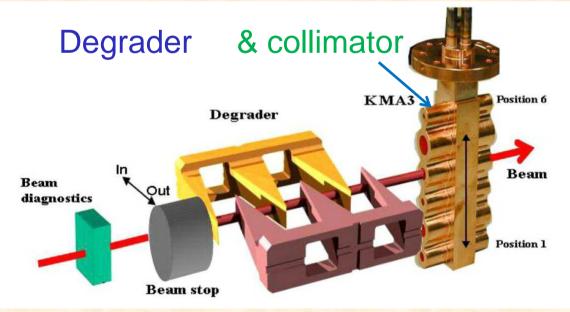
Dose inside the tumor

Bragg Peak

Brain tumor treatment with protons

Eyes tumor treatment

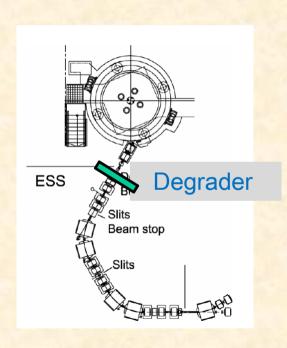



Proton therapy (230 MeV)

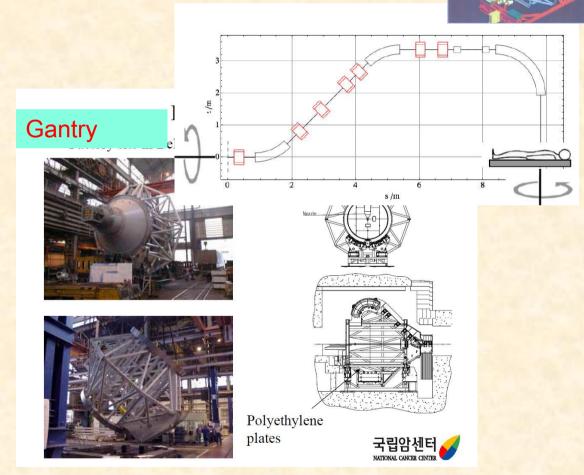
-Energy variation with degrader

Scanning the tumors

With energy variations induce by a degrader


Energy variation

Range variation (tumour scanning)


Proton therapy (230 MeV)

Energy variation with degrader + Rotating gantry

Optimal dose delivery Scan the tumors:

Depth variation in patiuent body:
Tumor scanning

The gantry reduces dose in healthy tissues

References & Acknowledgements:

F. Chautard, Juas 2015

M. Craddock lecture on Cyclo //FFAG

W.Joho lecture on PSI facility

S. Brandenburg lecture on beam optics

P. Heikinnen, CAS Jyväskylä 1992, CERN 94-01 (1994) "Cyclotrons" and "Injection and Extraction"

T. Stammbach, CAS La Hulpe, 1994, CERN 96-02 (1996) "Introduction to Cyclotrons"

... & Many others

Few other slides for questions.....

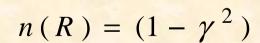
Isochronous fied B(R) = good field index n(R)

$$n = -\frac{R}{B_{0z}} \frac{\partial B_z}{\partial R}$$

$$\frac{dB}{B} = -n \frac{dR}{R}$$

$$B \rho = \langle B \rangle . \langle R \rangle = \frac{p}{q}$$

$$\frac{dp}{p} = \frac{dB}{B} + \frac{dR}{R} = \underbrace{(1-n)}\frac{dR}{R}$$


Longitudinal dynamics lecture

$$\frac{dp}{p} = \gamma^2 \frac{d\beta}{\beta} = \gamma^2 \frac{d(\omega_{rev}.R)}{\omega_{rev}.R} = \gamma^2 \frac{dR}{R}$$

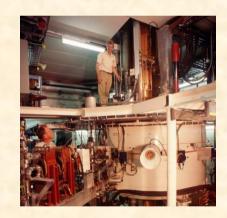
$$1-n=\gamma^2$$

« At high energy » isochronism requires n << 0

Bz Azimutal modulations are not sufficient It is a (Focusing) limit for high energy isochronous cyclotron

Max Energy for Superconducting Cyclotrons

not limited by (B x Rextraction)


Because of the focusing limitation due to the Flutter dependence on the B field, the max energy is not given by $Kb \sim 48 (B.Rextraction)^2$

but K_f the so-called "focusing factor": $\left[\frac{E}{A}\right] \neq Kb \cdot \left\{\frac{Q}{A}\right\}^2$

$$\left[\frac{E}{A}\right]_{\text{max}} \neq Kb \cdot \left\{\frac{Q}{A}\right\}^2$$

vertical oscillation+ isochronous field condition

$$v_z^2 = \left[1 - \gamma^2\right] + \frac{N^2}{N^2 - 1} F \left(1 + 2 \tan^2 \varepsilon\right) > 0$$

Focusing limitation (stronger than B limitation)

$$\left[\frac{E}{A}\right]_{\text{max}} = Kf \cdot \left\{\frac{Q}{A}\right\}^2 < Kb \cdot \left\{\frac{Q}{A}\right\}^2$$

Kb~48 (B.Rextract)²

Kf~ f(FLUTTER)

Tutorial

The axial oscillations of ion beams in a isochronous cyclotron is described by Where the vertical tune should respect 1/2² >0,

$$\ddot{z} + \left[v_z \omega_0\right]^2 z = 0$$

- a. Why?(1)
- b. Give a particular solution of the differential equation when $1/2^2 < 0$ (1)
- c. What is the axial physically 1/Z

Answer

a.Otherwise the beam is unstable (beam size increase exponentially)

$$z(t) \sim Z_0 \exp(+/-i \ vz \ wt)$$

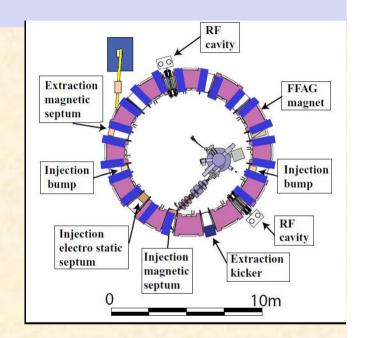
b.
$$z(t) = Z_0 \exp(+/-|vz|) wt$$

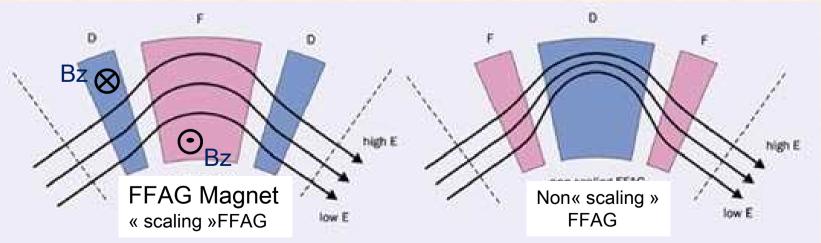
c. 1/2 correspond to number of oscillations per turn for beam not injected at the reference orbit.

An exotic cyclotron = the FFAG

RF pulsed (like a Synchrotron); B fixed

FFAG = "Fixed-Field Alternating-Gradient"


A kind of synchro-cyclotron


- pulsed beam

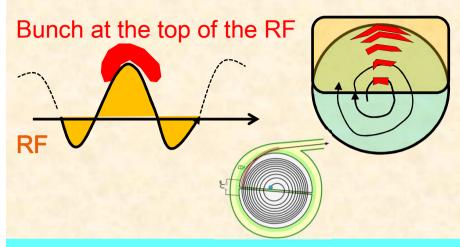
$$F_{rf} = f(t)$$

- not Isochronous
- focusing DFD or FDF
 with alternating magnet

High repetition Rate (100Hz-1kHz) Large momentum acceptance

R&D an exotic cyclotron =FFAG

FFAG =Fixed-field alternating-gradient: Higher repetition rate than a synchrotron



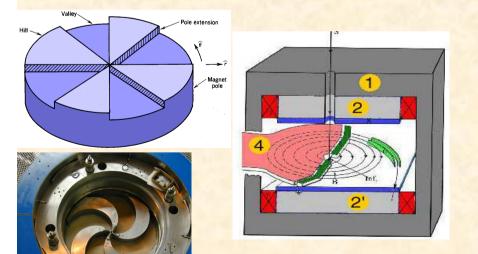
2 coupled FFAG =150 MeV proton in Kyoto

R&D for: - Accelerator Driven System (nuclear reactor)

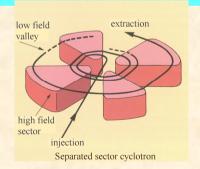
- muon acceleration

Cyclotron Summary: with pictures

harmonics =h bunches by turn


$$\omega_{\rm rf} = \mathbf{h} \; \omega_{\rm rev}$$

$$\omega_{rev} = \frac{qB_z}{\gamma m}$$


Kb= 30 MeV-200MeV Compact cyclotrons (with Hills //Valleys) Straight or Spiralled sectors

Kb= 300-600 MeV « Ring cyclotrons » : higher energy Straight or Spiralled

Separated sectors

30-200 MeV protons

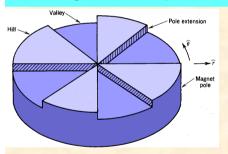
300-600 MeV protons

The Cyclotron Family

isochronous cyclotron

(Azimuthally Varying Field)

 $Bz(R, \theta) = NOT uniform$


Frev = Constant

F*RF* = constant

Isochronous

$$\omega_{rev}h = \omega_{RF}$$

Compact cyclotrons (with Hills //Valleys) Straight or Spiralled sectors

Ring cyclotrons: Straight or Spiralled

Separated sector cyclotron

Separated sectors

Synchrocyclotrons

$$\omega_{rev}(R).h = \omega_{RF}(t)$$

Frev = NOT Constant

FRF = NOT Constant = beam pulsed

Not Isochronous