Transverse Beam Dynamics

JUAS 2020 - Tutorials (solutions)

1 Exercise: Wien Filter

A Wien Filter is a device that allows to select particles in a beam according to their velocity.

1.

Write down the expression of the Lorentz force.
Answer.
F=qE+qixB
How should we orient an electric field E if we want to compensate the force of an uniform magnetic field B?

Answer. The electric field must be oriented perpendicularly to both ¢ and B.

. Assuming the magnetic field is 2 mT, what would be the required electric field (V/m) to select protons travelling with a

velocity of 0.15¢ 7

Answer.

E =vB =0.15¢2 mT ~ 90’000 V/m

. Assuming that the particles move along the z axis and B= (O, By, 0), write the equations of motion.

Answer. If B = (O, B,, 0) and the particles move along the z axis, then E = (Eg;, 0, O), and the equations of

motion read:
d? d
m=2 =g (Ez .y Z)

dt var
d2y
Mg =Y
d2z dz
m— = —
az - Py

: dz __
with G = v..

e Particles with v = v, are not deflected if

d
<Em - Byd”:> =0 = (E,—Byp.) = E,=DByu.

See: “CONSTRUCTION OF A WIEN FILTER HEAVY ION ACCELERATOR?”, K. Jensen and E. Veje, Nuclear Instru-
ments and Methods 122 (1974)

. [Optional] Could we use a Wien filter with a neutral beam (eg. neutron)? What other techniques could be employed to

create a velocity filter?

Answer. A Wien filter will not work with a neutral beam, but still it is possible to filter it by velocity. A possibility
consists in having two rotating disks made of an absorbing material, presenting a radial slit. The velocity can be selected
tuning the distance, the rotation frequency and the phase between the the discs.
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Figure 1: Sketch of a Wien filter

2 Exercise: Understanding the phase space concept

1. Phase Space Representation of a Particle Source:

e Consider a source at position sg with radius w emitting particles. Make a drawing of this setup in the configuration
space and in the phase space. Which part of the phase space can be occupied by the emitted particles?
Answer. Particles are emitted from the entire source surface x € [—w, +w] with a trajectory slope ¢ € [—g, ] , Le.

the particles can have any 2’ € R. The occupied phase space area is infinite.
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e Any real beam emerging from a source like the one above will be collimated. This can be modelled by assuming that
a distance d away from the source there is an iris with opening radius R = w. Draw this setup in the configuration
space and in the phase space. Which part of the phase space is occupied by the beam, right after the collimator?
Answer. Particles with angle 2’ = 0 are emitted from the entire source surface z € [—w, +w] and arrive behind the
iris opening. For & = 4w there is a maximum angle &’ = +2w/d that will still be accepted by the iris. This leads to
a parallelogram in phase space. Such a beam has a specific emittance given by the occupied phase space area.
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2. Sketch the emittance ellipse of a particle beam in:



(D horizontal -z’ phase space at the position of a transverse waist,
Answer. Beam at the position of a transverse (x) waist

fany
NP,

x[mm]

(I1) when the beam is divergent, and
Answer. Divergent beam (positive slope):

x'[mrad]

-

Answer. Convergent beam (negative slope):

\

(I11) when the beam is convergent.

x‘[mrad]

=

Q X[mm]

3 Exercise: Local radius, rigidity

We wish to design a proton ring with a radius of R = 200 m. Let us assume that only 50% of the circumference is occupied by
bending magnets:

e What will be the local radius of bend p in these magnets if they all have the same strength?

Answer.
27p = 50% - 2rR — p = 100 m.

e If the kinetic energy of the protons is 2 GeV, calculate the beam rigidity Bp and the field in the dipoles.

E = \/mdc* + p>c?,

where mgo = 938 MeV/c? is the rest mass of the proton. Knowing that the kinetic energy is

By, = E —moc® = \/mct + p2c — moc?

Answer. The total energy is given by

then



p=2.78 GeV/ec.
The magnetic rigidity is:

1
Bp ~ 03P [GeV/c]=9.27 T - m

and therefore B ~ 0.09 T.

Exercise: Thin-lens approximation

1. Compute and compare the matrices for the quadrupole of the previous exercise for the thin and thick cases.

Answer. The matrix of a focusing quadrupole is given by

MQF =

cos (V1) \/ﬁsm(\/mlq) < 0.8525 5.22)
- |k|sin(\/mq) cos(\/wq) ~\ —0.0522  0.8525

In thin lens approximation we replace the matrix above by the expression

1 0
Mgr = ( _1 ) with focal length f = Vf%ql =182 m
]

The thin lens description has to be completed by the matrix of a drift space of half the quadrupole length in front and
after the thin lens quadrupole. The appropriate description is therefore

M
. ~ JU\ ~ )
l‘I

l OF l l"
) )
So we write
l l
1 = 1 0 1 =
: = 2 . . 2
Mthznlens < 0 1 ) ( % 1 ) < 0 1 )

Multiplying out we get

l l l
Lkl g (24 Ry )
Mthinlens = < 2 2 12

klq 1+ kl,
With the parameters in the example we get finally

0.848  5.084
Minhiniens = ( —0.055 0.848 >

which is still quite close to the result of the exact calculation above.
2. Verify if the stability condition is valid

3. Would the answer be the same, if the quadrupole was defocusing?



e Answer. The stability condition is:
[T (M) < 2

Indeed,
0.848 + 0.848 < 2.

If the quadrupole was defocusing, then

(M) = cosh <\/\?|lq) + cosh (\/|?|lq>

which is always > 2.

5 Exercise: Hill’s equation

Solve the Hill’s equation:
y' +k(s)y=0

by substituting;:

y = A/ B(s) cos[p(s) + o] with ¢’ = ﬂ(s), and where A and ¢q are constants,

demonstrating that a necessary condition is:
136" — 157 + h(s)B* = 1

The first and second derivative of y:

y = ;34(3) (%/ cos[@(s) + do] — sin[p(s) + ¢o])
Y = 2(5) (52” - [jT; - %) cos|o(s) + do

Substituting in the Hill’s equation

A (5 — 5 +R(s)8 — ) coslé(s) + do] =0

Since the phase ¢(s) has a different value at every point around the orbit and the amplitude A # 0, the previous equation
can only be satisfied if

B8 B2 L k()82 ~1 = 0

and therefore
166" = 157 + k()8 =1
Q.E.D.!

6 Exercise: Particle momentum, geometry of a storage ring and thin lenses

The LHC storage ring at CERN collides proton beams with a maximum momentum of p = 7 TeV/c per beam. The main
parameters of this machine are:

Circumference Co = 26658.9 m
Particle momentum p="7TeV/c

Main dipoles B=8392T Ip=142m
Main quadrupoles G =235T/m ly=55m




1. Calculate the magnetic rigidity of the design beam, the bending radius of the main dipole magnets in the arc and determine
the number of dipoles that is needed in the machine.

Answer. The beam rigidity is obtained in the usual way by the golden rule:
Bp =P = 5o - p[GeV/c] = 3.3356 - p[GeV /c] = 3.3356 - 7000 Tm= 23349 T-m

and knowing the magnetic dipole field we get

_3.3356 - 7000Tm

— 2782
8.392T 782m

The bending angle for one LHC dipole magnet:

0 — %B = 21;12-322?1 = 5.104 mrad

and as we want to have a closed storage ring we require an overall bending angle of 27
N = 2% = 1231 Magnets

2. Calculate the k-strength of the quadrupole magnets and compare its focal length to the length of the magnet. Can this
magnet be treated as a thin lens?

Answer. We can use the beam rigidity (or the particle momentum) to calculate the normalised quadrupole strength:

_ G _ G _ G _ 235T/m _
k=5 =5 = 0299792 =G = 0.299792 - -aot it = 0.01 m—2

an the focal length:

f=%r=182m >,

The focal length of this magnet is still quite bigger than the magnetic length I,. So it is valid to treat that quadrupole in
thin lens approximation.

7 Exercise: Stability condition

Consider a lattice composed by a single 2 meters long quadrupole, with f =1 m
e Prove that if the quadrupole is defocusing, then a lattice is not stable
e Prove that if the quadrupole is focusing, then the lattice is stable

Solution:

e Let’s work in thin-lens approximation

?)((1) Lquid/2>
o (1 1)

has trace Tr (Mqp) = 4, which does not fulfill the stability requirement:

o
|w}
|
N
—
h
fa)
ot
—_
[al
\
)
~——
N
e =

which can be computed to be

—_

Tr (Mgp)| < 2

e In the case of a focusing quadrupole:

o (3 ) (4 1) (3 ) (4 2)

which clearly satisfies the stability criterion.

=



8 Exercise: Normalised phase space

Let us consider the following phase space vector: (z,z’). The transformation to a normalised phase space (X, X') is given by:

(%)= v )(2)

The normalisation process of the phase space is illustrated in the figure below:

/ Normalization
/ X l X

If we know that the transfer matrix between two points 1 and 2 (with phase advance ¢, between them) in the phase space
(z,2") is given by:

X’

\ 4
v

M _ %(COS @g + Q1 8in ¢m) V Be1Bz2 sin ¢y
1—2 — (a1 —p2) cos oy —(1+ag1az2) sin ¢, @(COSQS —a Sin(b )
Ba2Bz1 Ba2 z z2 z

Obtain the transfer matrix between two points 1 and 2 in the normalised phase space.
Answer. If one writes

My =U;'-R-U;

with Uy the transformation into normalised coordinates for the Twiss parameters at 1, and U, its inverse for the Twiss parameters

at 2: i.e.,
1
n={ v o) U‘1< 2 (1))
A= VB )’ 2 -

It can be shown that the matrix M5 can be written as:

N VB2 0 cosA¢p  sinA¢
12 = _\?572 \/%2 —sinA¢ cosA¢

3
=

st
5=
N——

with
p_( cos Agp  sinAg
T\ —sinA¢ cosA¢ |-

9 Exercise: beam size and luminosity

An efe collider has an interaction Point (IP) with 85 = 0.5 m and §; = 0.1 cm. The peak luminosity available by a ete~
collider can be written as:

_ NbNe— N+ frev

k%
droyoy

L [em s}

where N}, = 80 is the number of bunches per beam (we assume the same number of bunches for both the e~ and the e™ beams),
N,- = N+ =5 x 10! is the number of particles per bunch (we assume the same number for both e~ and e bunches), and
frev is the revolution frequency. The horizontal and vertical normalised beam emittances are respectively: e; y = 2.2 mm and
€y,N = 4.7 pm.

e Compute the revolution frequency fie,, knowing that the circumference is 80 km and that the beam moves nearly at the
speed of light



Solution. The revolution period is given by 7., = circumference/c = 80km/c, and therefore the revolution frequency is:
Jrev = ]-/Trev = C/8O km~3.75 kHz

e Calculate the beam transverse beam sizes o and oy at the IP, and the luminosity L for two different beam energies: 45
GeV and 120 GeV

Solution. For 45 GeV beam energy: in this case the Lorentz factor is v = 88062.622, and o = \/B%e, n/7 ~ 111.76 um and
oy = \/Biey,n /vy~ 0.23 pm, and the luminosity is L ~ 2.32 x 103 cm~?s~*

For 120 GeV beam energy: in this case the Lorentz factor is v = 234833.66, and o) = \/W ~ 68.56 pm and
o) = \/Bieyn/y~0.14 ym, and the luminosity is L ~ 6.22 x 103 cm™?s™!

e What are the beam divergences (horizontal and vertical) at the IP for the 45 GeV case?

o¥, = €z, N _
I/ - T oees
VB3

e What is the value of the betatron function at position s = 0.5 m from the IP?

Solution. Where o = 0 we have

Solution. We know that the betatron function in the drift space of a low beta region (where we have the interaction point)
depends on the longitudinal coordinate as follows:
B) = B+ 2
§) = —
B*
Therefore, 5,(0.5m) = 1 m, and £,(0.5m) = 250 m

10 Exercise: Basics of lattice design

Design a FODO cell such that it has: phase advance p = 90 degrees, a total length of 10 m, and a total bending angle of 5
degrees. What are Bmaz, Bmin, Dmaz, Dmin?
Answer.

Lattice parameters: L = 10 m, 8 = 5 degrees= 0.087266 rad, f = i% = 3.535 m.
Maximum and minimum betatron functions:

L+& 12 L 12

f ir

mazr — N =1L — =17 s min = - =L - — =9,

B sin +4f 7.07m, 3 S 17 93 m

Maximum and minimum dispersion:

LO(1+isink) f L LO(1—1isink) f L
Doy = ——2—22 = 2 [Af + =} 0 = 0.59060 Dppin, = ———2 "2/ — 2 [ 4f — = | § = 0.28207
4sin? & L ( U 2) o 4sin? & M3 m

11 Exercise: Bump and Orbit Control

Given two kickers located at the two ends of a FODO cell with phase advance 45 degrees (the two kickers are located at Leen
distance from each other), compute the strengths of such kickers (in radians) in order to give the beam, initially at (z;, z}) = (0, 0),

an arbitrary offset at the end of the cell while preserving its angle, (x I x’f) = (Zarbitrary 0)-



Solution

The transfer matrix of a periodic cell is:
M= cosp + asiny Bsin
a —vsin COs p — asin

Substituting the value for the phase advance we get the matrix to apply to the beam right after the first kick %q:

()50 2)(2)- ()

From this we see that to achieve an arbitrary x; we need:

ﬁxf
k1= ——
B
The second kick, ko, has only to remove the final tilt:
1—a)
ko = —a/ = | k
2 ¥ NG 1

Notice that one can reduce the strength of the kickers by placing them close to a focusing quadrupoles, where § is maximum.

12 Exercise: Measurement of Twiss parameters

One of the possible ways to determine experimentally the Twiss parameters at a given point makes use of a so-called quadrupole
scan. Ome can measure the transverse size of the beam in a profile monitor, called Wire Beam Scanner (WBS), located at
a distance L downstream a focusing quadrupole, as a function of the normalised gradient in this quadrupole. This allows to
compute the emittance of the beam, as well as the 8 and the « functions at the entrance of the quadrupole.

Let’s consider a quadrupole @ with a length of [ = 20 cm. This quadrupole is installed in an electron transport line where
the particle momentum is 300 MeV /c. At a distance L = 10 m from the quadrupole the transverse beam size is measured with
a WBS, for various values of the current Ig. The maximum value of the quadrupole gradient G is obtained for a current of 100
A andis G=1T/m.

Hint: G is proportional to the current. Advice: use thin-lens approximation.

1. How does the normalised focusing strength K vary with Ig?
Answer. The quadrupole gradient G is proportional to the current flowing through the coils I
G=C-lIy,
C is the proportionality coefficient. We know that G = 1 T/m when Iy = 100 A, therefore C' = 0.01 T/(A-m). The
normalised focusing strength is

G C-Ig
K = —— therefore K =
P/q P/q

2. Give the expression Y5 as function of ay, 81, and 11

B

Lo e ), at the quadrupole entrance

Answer. Let ¥ and Y5 be the 2 x 2 matrices with the twiss parameters, > = <

and at the wire scanner, respectively.

Quadrupole

Profile monitor

B

L=10m

Kl



It is worth explaining that the matrix > multiplied by the emittance € is the covariance matrix of the beam distribution:

e — Be —ac\ [ (2?) (xz')

T\ —ae e )T (x'z)  (2'?)
The transverse beam size of the beam is given by o, = \/(22) = \/Br€, (horizontal beam size), and o, = \/(y?) = \/By€y
(vertical beam size). Here we will simply use the following notation: o; = y/B1€ for the beam size (horizontal or vertical)

at position 1, and o9 = 1/Bs¢ for the beam size (horizontal or vertical) at position 2.The matrix ¥ propagates from position
1 to position 2 as follows:

Yo =M MT

where M is the transfer matrix of the system and M7 its transpose. We have:

E o 62 —Q9 _ l—KlL L ﬁl —Q 1—KZL —Kl
L N A Kl 1 - M L 1
_ ﬂ1L2(Kl>2+2L(Oz1L—ﬁ1)Kl+61 —2a1L+'ylL2 ﬂlL(Kl)Q—f—(20{1L—51)Kl+’71L—a1
BL(KD)? + (201 L — B1) Kl + 7L —ay Br(K1)? + 201 Kl +m

. Show that 3 can be written in the form: 3, = A, (Kl)2 + A; (K1) + Ap, and express Ag, Ay, and A, as a function of L,
aq, 517 and Y1-
Answer. We can see from Eq. (1) that:

(1)

B2 = B1LA(K1)* + 2L(ay L — B1) Kl + By — 200 L + y, L?

and therefore:

Ay = B L?
Ay =2L(an L — B4)
Ao = B1 —20q L + v L?
Hint for the next questions: show that if one expresses 35 as
B2 = By + By (Kl — By)?

one has:
By = Ao — A} /443 = L? /B
By = Ay =L*B
B2 = —Al/AQ = ]./L— al/ﬁl

. Express the final beam size, 02, as a function of K, and find its minimum, which will correspond to (K1) -
Answer. The transverse r.m.s. beam size is ¢ = /¢, where ¢ is the transverse (geometric) emittance. As we have seen
in the previous questions 82 depends quadratically on Ki: 8y = By + By (Kl — 32)2. Since € is constant, if we want to

minimise o7, we have to minimise fJs:

dgz = n=By= -2
awy =0 2K = Be) =0 — (Klmin = Bo = 7 — 5 @

We can write:

2

L
Why is this useful? By means of a quadrupole scan (i.e. changing the quadrupole strength) we identify the strength K1
which minimises the value 02. We fit a parabola to the measurements o3 vs. KI, and select then o2((K1)min). The

minimum beam size is given by:

Min(os) = L é = /Boe (3)

10



5. How does o9y vary with K1 when |KI — (K1),;,| > 1/51 7

Answer. Under this condition:

05 =

For |Kl — (Kl),,;,| > 1/B1, o2 depends linearly on K1, with slope

doy  L?p
d(Kl) B ()]

(Kl — (kl)min)e.

6. Deduce the values of o, 81, and 71 from the measurement o9, as a function of the quadrupole current Ig.

Answer. We know that

_ G-l _Cl-Ig _ 0.01[T/(Am)]-0.2[m]

K= e = " pje ~ (0.3[Gev]/0.3)[Tm]

Io=2x10"""Ig

If we measure o as a function of the quadrupole current Ig, from the minimum value we can get 8; (Eq. (3)), and since
from the measurement we obtain (K1) = 2 X 1073(1g)min, using Eq. (2) we can calculate a;. Once we know 3; and
a1, it is then straightforward to calculate v; = (1 + a2)/f;.

13 Exercise: The spectrometer line of CTF3

The CTF3 (CLIC Test Facility 3) experiment at CERN consists of a linac that injects very short electron bunches into an
isochronous ring. A spectrometer line made of one quadrupole and one bending magnet is located at the end of the linac where
the particle momentum is 350 MeV /c. The goal of the spectrometer is to measure the energy before injecting the electrons in
the ring. The spectrometer line is sketched on the figure below. It is made of a focusing quadrupole of focal length f, a drift
space of length L1, a bending magnet of deflection angle 6 in the horizontal plane, and a drift space of length Ly. We assume
that the spectrometer line starts at the quadrupole and ends at the end of the second drift. We neglect the focusing effect of the
dipole.

Focusing Bending
quadrupole magnet

Spectrometer
Drift screen

BEAM E

Focal length / Deflection

1. If the effective length of the dipole is {5 = 0.43 m, what should be the maguetic field (in Tesla) inside the dipole to deflect
the electrons by an angle of 35 degrees?
3.356p0
l

2. Starting from the general horizontal 3 x 3 transfer matrix of a sector dipole of deflection angle 6, show that the transfer
matrix of a dipole in the thin-lens approximation is

Answer. One has 0 = % and Bp =3.356p: B = =1.66 T.

Mdipole =

O O =
o = O
—_ > O

Which approximations are done?

11



Hint: A sector dipole has the following 3 x 3 transfer matrix:

cos® psinf p(1 —cosb)

Maipole = —sind  cosf sin 6
0 0 1
Answer. We need to compute the limit for I — 0 while keeping § = £ = const. Remember that, if 6 is a small angle,

cosf =~ 1, sinf = . Besides the trivial elements, such as mi1, mos, and mss3, the others read:

. ol
. . . sinf s
mia : lim psinf = lim —— = lim /- lp =0
1—0 -0 = 1—0 L
P P
——
const
) ) l ) 1-— COS%
mi3 : limp(1—cosf) =limp(1—cos— | =liml- —F—F= =0
1—0 l—0 P =0 »
——
const
. sin 6 . sin 6
Moy : lim — = lim — =0
1—0 P p—00 p

therefore, in thin-lens approximation the matrix of a dipole magnet, is

Mdipole =

O O =
(=N}
= O

. In the thin-lens approximation, derive the horizontal extended 3 x 3 transfer matrix of the spectrometer line. Show that
it is:

# Li+ Ly L0
Mspectro = _% 1 0
0 0 1

Answer. For the spectrometer line, one has

Mpectro = Mprifs2 - Mbipote - Mbrifst - MQuad

therefore:
1 L2 L20 1- % Ll 0
Mgpeeto=| 0 1 6 | x -+ 1.0
0 O 1 0 0 1

. Assuming D = D’ = 0 at the entrance of the quadrupole, what is the dispersion and its derivative at the end of the
spectrometer line? Give the numerical value of D’ at the end of the spectrometer line for the angle of 35 degrees.

Answer. At the entrance of the line, D = 0 and D’ = 0. If M is the transfer matrix of a system the dispersion D at exit
is the element my3 of M, whereas D’ is the element mo3:

D = Ls#,

D’ =6 = 35 degrees = 0.61.

. What is the difference between a periodic lattice and a beam transport lattice (or transfer line) as concerns the betatron
function ?

Answer. In a periodic lattice the S-functions are periodic and contained in the (periodic) transfer matrix of the lattice. In
transfer line one needs to know the initial conditions in order to calculate the S-functions at any point (using the transfer
matrix).

12



6. Derive the betatron function S, at the end of the spectrometer line in terms of Ly, Lo, f and p;, assuming a7 = 0.

Hint 1. Remember from the lecture:

I3 C? —-25C S? I3
« = -CcC’ SC'+8'C -85 o
~ C'? —25'C’ S'2 vy

s 0

An alternative way to transport the Twiss parameters is through the o matrix:

o= P T
—Q; Y

This matrix multiplied by the emittance e gives the so-called beam matrix (which has already been introduced during the

lecture):
o ﬂiG — 0O €
i = ( —Qie €

If o7 is the matrix at the entrance of the transfer line, the matrix o9 at the exit of the transfer line is given by

09 — MUlMT

where M is the 2 x 2 transfer matrix of the line extracted from the extended 3 x 3 transfer matrix (see question 3), and
MT the transpose matrix of M.

Hint 2. For the calculations, write M as M = ( zn 212 > and replace the values of the matrix elements only at the
21 22
end.
T B 0
Answer. One has 09 = Mo M*. If a; =0, then o1 =
0 1/h
P B 0 mi1 Mol
mMa1 M2z 0 1/4 miz M2z
oy — Bimiy +mis/ B Brmiimeor + miamaz/f1
Brmiimar + miamas /B Brm3, +m3y /b1
Therefore:
B2 = fimi; +mis/ B
Since mi; = # and mis = L1 + Lo, one has:

Ly —|—L2>2 n (Ly + L»)
f B1 .

7. Given the numerical values L1 =1 m, Ly =2 m, $; = 10 m, a; = 0, compute the value of the focal length f such that the
betatron function at the end of the spectrometer line is minimum.

B2 = B (1—

2
Answer. If L, = 1m, Ly = 2m, and f; = 10 m, then S = 0.9 + 10 (1 — %) . To have (B minimum one needs
(1 — % = O) .Therefore, f =3 m.

8. For an off-momentum particle, compute the deviation from the design orbit? Why is it important to minimise the g
function in the spectrometer?

Answer. With dispersion, the deviation from the design orbit is Ax = D%f. Measuring Az allows to determine AP and
therefore P, if one has calibrated the spectrometer at Py. It is important to minimise 5 (at the screen location) in order
to have the best possible resolution for Az: a smaller 8o will result in a smaller transverse beam size on the screen, which
favours an accurate measurement of the momentum.

13



14 Exercise: Transfer matrix of a dipole magnet

o Remember weak focusing:

K=

P

—=sin= cos =
P p p

' _ cos (\/FL) % sin (\/RL) _ coS % sin &
Mpipote = ( —+vK sin (\/KL) \:os (\/?L) B ( Lsin £ f o )

e Compute the 3 x 3 matrix of a sector dipole including the dispersion terms.

Remembering that:

1 |
D(S)ZS(S)/O m(](t)dt—()(s)/o S

one can easily find that:

D(L):p(l—cosi)

D' (L) =sin L
p
which allows to write Mgipole as 3 x 3 matrix in the form:
c S D
Mpipoe = C' S D'
0 0 1

15 Exercise: Dispersion suppressor

In several straight sections of the accelerator, like the ones hosting RF cavities, extraction systems or other devices such as
detectors, it is preferable to have no dispersion 7(s) = 7'(s) = 0. For example, in big colliders, such as the LHC, where
small spot sizes are required at the interaction points, the dispersion is reduced to zero at the detector positions. The most
common dispersion suppressors consists of two FODO cells of equal length L and equal quadrupole strengths. Bending magnets
are placed in the space between the quadrupoles with a different bending field in each FODO. Figure below shows a typical
dispersion suppressor.

;_F 91/2 D 91/2 R 92/2 b 92/2 ;_F

1. Considering two FODO cells with different total bend angles, 6, # 62, calculate the relation between the angles 6; and 65
which must be satisfied to cancel the dispersion at the end of the lattice.

Hint:

For each FODO cell, Mropo = Mi/sr - Maipole - MD - Maipole - M1/, in thin-lens approximation we have the following 3 x 3 matrix:

& L(+4) H(+&)e
— 2 2
Movos = |~ (1-8) 1-& (1-d- o
0 1
cosp  [Bsinp %(1+%) 0;
= sin p L L?
=5 cosp ( _87'_32f2)0j
0 0 1
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where j = 1,2 (1=first cell, 2=second cell).

The following condition must be satisfied:

0 Mo
0 - Msuppressor 0 (4)
1 1

where 1) is the initial dispersion (at the middle of the first focusing quadrupole). It can be demonstrated that for a FODO
lattice the dispersion has its maximum at the middle of the focusing quadrupole:

=T (1) @

with 8 = 61 + 65 the total bend in the suppressor.
Answer.

Performing the corresponding matrix multiplication yields

cos2u  Bsin2u D,

Msuppressor = _% COS QM D;
0 0 1
where:
L? L
cos2uflfﬁ+34f4
: L? L
Bsin2p = 2L <18f2> <1+4f)
sin 2u L L? L
E 2f2< 8f2)< 4f) (6)
. L L? L L
Da = cos 2<1+)91+Bm“<1_8f 32f2)91+2 <1+8f)9
po_smplL L _L_ L _ L _r
DZ— 2(1+8f>91+COS,u(1 8f 32f2 01+ 1 8f2 32f2 92

Taking into account:

cosp = 1= s g = L+ and 25 = o (1 )

the elements D, and D/ may also be written as

(e 57) (i)l
o= (5 mm) (i) 2

Nocos2u+ D, =0

in 2
—770511/18“+D;:0

D, =

From the condition Eq. (4) we have

Substituting Eq. (5) in Eq. (8) one obtains:
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L2 L2 8f?
L2 L2
@‘uﬂﬁ+%:@‘wﬁe

In terms of phase advance p this can be written as:

where 61 + 65 = 0.

2. Obtain the relation between the angles for the cases of phase-advance per cell u = 7/3 and 7/2

Answer.

e For 1 = /3 — 4sin® £ = 1 and therefore (using Eq. (9)) 61 = 0 and 6, = 6. This corresponds to a dispersion
suppressor with missing magnets.

e For y=m/2 — 4sin® £ = 2 and therefore §; = 05 = 0/2.

16 Exercise: Double-Bend Achromat (DBA) lattice

A Double-Bend Achromat (DBA) can be made from two dipoles with a horizontally focusing quadrupole between them. The
transfer matrix through the achromat is:

Mpa = Myend Maritt M1 jor My j2r Maritt Myena

Note that this magnet configuration does not produce vertical focusing, therefore it will not be enough to create a stable lattice.
A full DBA typically comprises additional quadrupole doublets before and after the bending section. For sake of simplicity, we
will neglect them.

1. Use the thin-lens approximation for quadrupoles and small-angle approximation for bends to find the dispersion in the
middle of the quadrupole. Write the focal length in terms of the drift and bend parameters.

Answer. Let us consider the 3 x 3 transfer matrices of each element of the lattice (using the thin lens approximation and
small angle approximation for the bending magnets) for the beam coordinates z, ’and Ap/p:

1 0 0 1 L 0 1 0 0
Myena=| 0 1 6 |, Mayiw=1| 0 1 0 |, Mpp= —% 1 0
001 0 0 1 0 0 1

Assuming the initial dispersion vector (10,79 1) = (0,0,1) and propagating it to the centre of the quadrupole:

Tle 0
0 = M1/2FMdrifthend 0
1

Here we take into account that ’=0 at the centre of a quadrupole. After matrix multiplication we obtain:

Ne 11 LL L@L 0
0 |=| &% 1-£& 9(1 ﬁ) 0
1 0 0 1 1

Therefore, one obtains:
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n. = L0
L
1-— = L=2
57 0= f

2. Show that the dispersion vanishes after the bend.
Answer. Propagate the dispersion vector from the centre of the quadrupole to the end of the lattice:

Tlend Tle
Nena | = MbenaMarigsMijor | 0],
1 1
TNend 1- 12% L 0 Te
/ _
Nema | = —3f 1 6 0
1 0 0 1 1

Taking into account L = 2f, we obtain:
Nend = (2f - L)e =0,

1
2f

3. Compute the parameters L, f for a 10-meter long DBA which bends the beam by an angle of 1 radians. What is the
dispersion in the centre? Given a particle with 1% energy deviation, compute the displacement at the centre of the cell.

1
/ _ _ — —
Nend = ¢ anc ¢ (2f0) 0

Answer.
L=5m

f=25m
D=L-0=5m
z=0D=001*5m=>5cm

17 Exercise: Chromaticity in a FODO cell

Consider a ring made of N identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles are both
of length [,, but their strengths may differ.

1. Calculate the maximum and the minimum betatron function in the FODO cell. (Use the thin-lens approximations)

17



Answer. First we calculate the transfer matrix for a FODO cell (see figure). We start from the centre of the focusing
quadrupole where the betatron function is maximum. This exercise considers a general case where fr is not necessarily
equal to fp. Using the thin lens approximation for the FODO cell with drifts of length L we get the following matrix:

v ( 1 O)(l L)(l O)(l L)( 1 0)
cell = 1 1 1
—ml 0 1 El 0 1 —ml

(10)
1 1 L L?
= ( 1 ' _1L(f7 _LE +Lm22 12L +1E L )
o wdmtn ) UG )
Remember that, in terms of betatron functions and phase advance, the matrix of a FODO cell is given by:
cosjt + asin sin
Meen = ( lj : H 57 'u ) (11)
sin 1 cosp — asinp
Since 8 has a maximum at the centre of the focusing quadrupole, then « = —f’/2 = 0, and we can also write:
cosp PBsinp
Meen = ( _sinp cos )
B H
Equating Eq. (10) to Eq. (12) we obtain:
1 L L L? I
cosp=—tr(Mpey) =14+ — - — — —— =1-2sin* =
=3 ( ) Ip  fr 2fpfr 2
or
L L L?
2sin? = 2 2 (12)

2:fF o 2fpfr
I

Where we have applied the following trigonometric identity: cos = 1 — 2sin? 5.
The maximum for the betatron function f,,,, occurs at the focusing quadrupole. Since Eq. (10) is for a periodic cell
starting at the centre of the focusing quadrupole, the mi5 component of the matrix gives us

2

L
Bmaz Sinp = 2L + —
Ip

Rearranging:
ﬁmaz = 7 /o (13)

On the other hand, the minimum for the betatron function occurs at the defocusing quadrupole position. Therefore,
interchanging fr with —fp for a FODO cell gives:

oL — L
sin y4

. Calculate the natural chromaticities for this ring.

Answer. Let us remember the definition of natural chromaticity. The so-called “natural” chromaticity is the chromaticity
that derives from the energy dependence of the quadrupole focusing, i.e. the chromaticity arising only from quadrupoles.
The chromaticity is defined in the following way:

AQ

T AP/R (15)

§
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where AQ is the tune shift due to the chromaticity effects and AP/P, is the momentum offset of the beam or the particle

with respect to the nominal momentum pg.

The natural chromaticity is defined as (remember from Lecture 4):

1 P Blem(s)as

(16)

Sometimes, especially for small accelerators, the chromaticity is normalised to the machine tune Q and defined also as:

AQ/Q
AP/P,

&y = — MQ%&

¢ =

For this exercise, either you decide to use Eq. (16) or Eq. (18) it is fine! From now on let us use Eq. (16):

1= P Bl

:_7><N(,ell B() ()

4m cell
Neen
=B S i)
i€{quads}

Here we have used the following approximation valid for thin lens:

B(s)k(s)ds ~ > Bi(kly)

cell ic{quads}

(17)

(18)

where we sum over each quadrupole 7 in the cell. In the case of the FODO cell we have two half focusing quadrupoles and

one defocusing quadrupole. Taking into account that (kl,); = 1/f;, we have:

NCS
e NS

i€{quads}

_ cell 1 o
= |:5ma:v ( f ) + ﬂmzn ( fD) + Bmaz (

o cell i ) _i
- |:ﬁmam <fF> + 5mzn < fD)]

_ Ncell E i_ _E i
~ 4msinp KQL—F fD) IF (2L fF) fD]
_ NcellL |:11+ L :|
N fr o frfp

Here we have used the expressions (13) and (14) for B4, and Bpin.

27 sin

3. Show that for short quadrupoles, if fr ~ fp,

N('P
En ~ —Jtanﬁ.
s 2
Answer. If fr ~ fp, we have
§ ~ Ncell L2
N omsing frfp
Ncell .o [
—_ 4 o
drsmBcosE 00 9
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where we have used the trigonometric identity: sinp = 2sin 4 cos §

Considering Eq. (12), we have

Y
4sin? = =
2 frfp
which finally gives:
NCE
En — el fan K
s 2

Q.E.D.!

. Design the FODO cell such that it has: phase advance p = 90 degrees, a total length of 10 m, and a total bending angle
of 5 degrees. What are Bimaz, Bmin, Dmazs Dmin?

Answer. Lattice parameters: L = 10 m, § = 5 degrees= 0.087266 rad, f = i% = 3.535 m

V2
Maximum and minimum betatron functions:
L+ & r L-% L
ar = — =L+ —==170"Tm, QBpm=—">=L——=293m
sin 4f sin p 4f
Maximum and minimum dispersion:
LO(1+3sing)  f L LO(1—§sing) f L
D, =" "2772) _J (44 Z)9=0.59060 Dppin = ———2 "2/ — 2 [ 4f - = |0 =0.28207
mer Asin® & L ( U 2> o Hmin Asin? & M3 m

. Add two sextupoles at appropriate locations to correct horizontal and vertical chromaticities. (hints: use 1 sextupole for
the horizontal plane and 1 for the vertical plane; do not consider geometric aberrations).

Answer. By locating sextupoles with strength K, > 0 where 3, is large and 8, is small, we can correct the horizontal
chromaticity with relatively little impact on the vertical chromaticity. Similarly, by locating sextupoles with Ky < 0
where (3, is large and 3, is small, we can correct the vertical chromaticity with relatively little impact on the horizontal
chromaticity. See figure below.

sextupole sextupole
quadrupole |, dipole quadrupoICi dipole

-

Let us assume the case of a FODO lattice where fr = fp = f. Then the natural chromaticity of this FODO cell is given
by the expression (exercise 1.3):

1
&y ~ ——tan K
0 2
For y = 90 it is {§ ~ —1/7 in both horizontal and vertical plane. Therefore, we need to adjust the strength of the
sextupoles to cancel this chromaticity:

1 1
- [KQFDmaxﬂmaa: + KZDsznﬁmzn] ===

4 s
where Kop = kopls is the normalised integrated strength of the sextupole located near the focusing quadrupole, and
Ksp = kopls the normalised integrated strength of the sextupole near the defocusing quadrupole (with I the effective
length of the sextupole). For an effective cancellation of the chromaticity in both planes, usually Kop > 0 and Kop < 0.
Substituting the values for the maximum and minimum dispersion and betatron function in terms of the total length of
the lattice L and the focal length of the quadrupoles f, one obtains the following expression:
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2 2
e 2) (5 - 2) (- 5]

Considering the same absolute value for the strength of the sextupoles, Kop = —Ksp = K, we can write then:
3 1
—K,Lfo=—
4 T

The strength of the sextupole is given then by:
4
Ki=—
© 3LfO
Then, substituting all the numerical values for the lattice parameters:

KQF = 0.865 m_Q
Ksp = —0.865 m~2

. If the gradient of all focusing quadrupoles in the ring is wrong by +10%, how much is the tune-shift with and without

sextupoles?

Answer.

If the gradient of the focusing quadrupole has and error of 10%, then the corresponding quad. strength error is also 10%.
We calculate the number of cells of a ring made of these FODO cells, N = 72 cells, and then we calculate the total
tune-shift in both planes:

AQL = {Vcell AKifzmal =9.78
AQy = Ny 8L min — 1 68

When the sextupoles correct for the chromaticity, the particles have, in principle, no tune-shift with energy. In real
machines, one wants to have a non-zero residual chromaticity to stabilise the beam against resonant imperfections.

Exercise: Low-Beta Insertion

Consider the following low-beta insertion around an interaction point (IP). The quadrupoles are placed with mirror-symmetry
with respect to the IP:

(i)
(i)
(i)

The beam enters the quadrupole with Twiss parameters Sy = 20 m and gy = 0. The drift space has length L. = 10 m.

Determine the focal length of the quadrupole in order to locate the waist at the IP.
What is the value of 5*?7

What is the phase advance between the quadrupole and the IP?
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Solution.

We get a system of equations:

multiplying them:
. LIV, L) (B L
= (5“ (-%) +Bo> (%)

Fo Bo/ (B —4L2) + 55
2L

and solving for f:

from which one finds:
f=20m

and substituting back into one of the equations in the system:

Bip = 10 m.

The phase advance can be computed remembering that

L % (cos s + apsinty) v/ BsBo sin i,
O=s = —os s—(1+ s)sins :
(ap—as) cos v Bs(ﬁ0 apa) sin % (COS djs — a,sin 1)[}9)

In this case, ag = ap =0,

Trace (M) = g = <\/§+ \/§> cos Ap

1 3 1
D = arccos ( ) =45 degrees
6=, [B°
Bo B*

3
Ay — 2 oL+
fr=arecos {5 2 21213

Alternatively, given that the system:

M=Q -D-D-Q

_ 2L 2L
M= 5 % "
e 7

AL

1 1
€08 Aflpyice = i’I‘race (M) = iTrace <2 — f) =0

is indeed periodic, one can say:

Apigwice = 90 degrees = Ap = 45 degrees
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