
Transverse Beam Dynamics

JUAS 2020 - Tutorials (solutions)

1 Exercise: Wien Filter

A Wien Filter is a device that allows to select particles in a beam according to their velocity.

1. Write down the expression of the Lorentz force.

Answer.

~F = q ~E + q~v × ~B

2. How should we orient an electric �eld ~E if we want to compensate the force of an uniform magnetic �eld ~B?

Answer. The electric �eld must be oriented perpendicularly to both ~v and ~B.

3. Assuming the magnetic �eld is 2 mT, what would be the required electric �eld (V/m) to select protons travelling with a
velocity of 0.15c ?

Answer.

E = vB = 0.15c 2 mT ≈ 90′000 V/m

4. Assuming that the particles move along the z axis and ~B =
(
0, By, 0

)
, write the equations of motion.

Answer. If ~B =
(
0, By, 0

)
and the particles move along the z axis, then ~E =

(
Ex, 0, 0

)
, and the equations of

motion read:

m
d2x

dt2
= q

(
Ex −By

dz

dt

)
m

d2y

dt2
= 0

m
d2z

dt2
= qBy

dx

dt

with dz
dt = vz.

• Particles with v = vz are not de�ected if(
Ex −By

dz

dt

)
= 0 ⇒ (Ex −Byvz) ⇒ Ex = Byvz

See: �CONSTRUCTION OF A WIEN FILTER HEAVY ION ACCELERATOR�, K. Jensen and E. Veje, Nuclear Instru-
ments and Methods 122 (1974)

5. [Optional] Could we use a Wien �lter with a neutral beam (eg. neutron)? What other techniques could be employed to
create a velocity �lter?

Answer. A Wien �lter will not work with a neutral beam, but still it is possible to �lter it by velocity. A possibility
consists in having two rotating disks made of an absorbing material, presenting a radial slit. The velocity can be selected
tuning the distance, the rotation frequency and the phase between the the discs.
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Figure 1: Sketch of a Wien �lter

2 Exercise: Understanding the phase space concept

1. Phase Space Representation of a Particle Source:

• Consider a source at position s0 with radius w emitting particles. Make a drawing of this setup in the con�guration
space and in the phase space. Which part of the phase space can be occupied by the emitted particles?

Answer. Particles are emitted from the entire source surface x ∈ [−w,+w] with a trajectory slope ϕ ∈
[
−π2 ,

π
2

]
, i.e.

the particles can have any x′ ∈ R. The occupied phase space area is in�nite.

• Any real beam emerging from a source like the one above will be collimated. This can be modelled by assuming that
a distance d away from the source there is an iris with opening radius R = w. Draw this setup in the con�guration
space and in the phase space. Which part of the phase space is occupied by the beam, right after the collimator?

Answer. Particles with angle x′ = 0 are emitted from the entire source surface x ∈ [−w,+w] and arrive behind the
iris opening. For x = ±w there is a maximum angle x′ = ±2w/d that will still be accepted by the iris. This leads to
a parallelogram in phase space. Such a beam has a speci�c emittance given by the occupied phase space area.

2. Sketch the emittance ellipse of a particle beam in:
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(I) horizontal x-x′ phase space at the position of a transverse waist,

Answer. Beam at the position of a transverse (x) waist

(II) when the beam is divergent, and

Answer. Divergent beam (positive slope):

(III) when the beam is convergent.

Answer. Convergent beam (negative slope):

3 Exercise: Local radius, rigidity

We wish to design a proton ring with a radius of R = 200 m. Let us assume that only 50% of the circumference is occupied by
bending magnets:

• What will be the local radius of bend ρ in these magnets if they all have the same strength?

Answer.

2πρ = 50% · 2πR −→ ρ = 100 m.

• If the kinetic energy of the protons is 2 GeV, calculate the beam rigidity Bρ and the �eld in the dipoles.

Answer. The total energy is given by

E =
√
m2

0c
4 + p2c2,

where m0 = 938 MeV/c2 is the rest mass of the proton. Knowing that the kinetic energy is

Ek = E −m0c
2 =

√
m2

0c
4 + p2c2 −m0c

2

then
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p = 2.78 GeV/c.

The magnetic rigidity is:

Bρ ≈ 1

0.3
p [GeV/c]=9.27 T ·m

and therefore B ≈ 0.09 T.

4 Exercise: Thin-lens approximation

1. Compute and compare the matrices for the quadrupole of the previous exercise for the thin and thick cases.

Answer. The matrix of a focusing quadrupole is given by

MQF =

 cos
(√
|k|lq

)
1√
|k|

sin
(√
|k|lq

)
−
√
|k| sin

(√
|k|lq

)
cos
(√
|k|lq

)
 =

(
0.8525 5.22
−0.0522 0.8525

)

In thin lens approximation we replace the matrix above by the expression

MQF =

(
1 0
− 1
|f | 1

)
with focal length f = 1

|klq| = 18.2 m

The thin lens description has to be completed by the matrix of a drift space of half the quadrupole length in front and
after the thin lens quadrupole. The appropriate description is therefore

So we write

Mthinlens =

(
1

lq
2

0 1

)
·
(

1 0
1
f 1

)
·
(

1
lq
2

0 1

)
Multiplying out we get

Mthinlens =

(
1 +

lq
2 klq

lq
2

(
2 + klq

lq
2

)
klq 1 + klq

)

With the parameters in the example we get �nally

Mthinlens =

(
0.848 5.084
−0.055 0.848

)
which is still quite close to the result of the exact calculation above.

2. Verify if the stability condition is valid

3. Would the answer be the same, if the quadrupole was defocusing?
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• Answer. The stability condition is:
|Tr (M)| ≤ 2

Indeed,
0.848 + 0.848 ≤ 2.

If the quadrupole was defocusing, then

Tr (M) = cosh
(√
|k|lq

)
+ cosh

(√
|k|lq

)
which is always > 2.

5 Exercise: Hill's equation

Solve the Hill's equation:
y′′ + k(s)y = 0

by substituting:

y = A
√
β(s) cos[φ(s) + φ0] with φ′ = 1

β(s) , and where A and φ0 are constants,

demonstrating that a necessary condition is:

1
2ββ

′′ − 1
4β
′2 + k(s)β2 = 1

The �rst and second derivative of y:

y′ = A√
β(s)

(β
′

2 cos[φ(s) + φ0]− sin[φ(s) + φ0])

y′′ = A√
β(s)

(β
′′

2 −
β′2

4β −
1
β ) cos[φ(s) + φ0]

Substituting in the Hill's equation

A√
β(s)

(β
′′

2 −
β′2

4β + k(s)β − 1
β ) cos[φ(s) + φ0] = 0

Since the phase φ(s) has a di�erent value at every point around the orbit and the amplitude A 6= 0, the previous equation
can only be satis�ed if

ββ′′

2 −
β′2

4 + k(s)β2 − 1 = 0

and therefore

1
2ββ

′′ − 1
4β
′2 + k(s)β2 = 1

Q.E.D.!

6 Exercise: Particle momentum, geometry of a storage ring and thin lenses

The LHC storage ring at CERN collides proton beams with a maximum momentum of p = 7 TeV/c per beam. The main
parameters of this machine are:

Circumference C0 = 26658.9 m
Particle momentum p = 7 TeV/c

Main dipoles B = 8.392 T lB = 14.2 m
Main quadrupoles G = 235 T/m lq = 5.5 m
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1. Calculate the magnetic rigidity of the design beam, the bending radius of the main dipole magnets in the arc and determine
the number of dipoles that is needed in the machine.

Answer. The beam rigidity is obtained in the usual way by the golden rule:

Bρ = p
e = 1

0.299792 · p[GeV/c] = 3.3356 · p[GeV/c] = 3.3356 · 7000 Tm= 23349 T·m

and knowing the magnetic dipole �eld we get

ρ =
3.3356 · 7000Tm

8.392T
= 2782m

The bending angle for one LHC dipole magnet:

θ = lB
ρ = 14.2m

2782m = 5.104 mrad

and as we want to have a closed storage ring we require an overall bending angle of 2π:

N = 2π
θ = 1231 Magnets

2. Calculate the k-strength of the quadrupole magnets and compare its focal length to the length of the magnet. Can this
magnet be treated as a thin lens?

Answer. We can use the beam rigidity (or the particle momentum) to calculate the normalised quadrupole strength:

k = G
Bρ = G

p/e = 0.299792 · G
p[GeV/c] = 0.299792 · 235T/m

7000GeV/c = 0.01 m−2

an the focal length:

f = 1
k·lq = 18.2 m > lq

The focal length of this magnet is still quite bigger than the magnetic length lq. So it is valid to treat that quadrupole in
thin lens approximation.

7 Exercise: Stability condition

Consider a lattice composed by a single 2 meters long quadrupole, with f = 1 m

• Prove that if the quadrupole is defocusing, then a lattice is not stable

• Prove that if the quadrupole is focusing, then the lattice is stable

Solution:

• Let's work in thin-lens approximation

MQD =

(
1 Lquad/2
0 1

)(
1 0
1
f 1

)(
1 Lquad/2
0 1

)
which can be computed to be

MQD =

(
2 3
1 2

)
has trace Tr (MQD) = 4, which does not ful�ll the stability requirement:

|Tr (MQD)| ≤ 2

• In the case of a focusing quadrupole:

MQF =

(
1 Lquad/2
0 1

)(
1 0
− 1
f 1

)(
1 Lquad/2
0 1

)
=

(
0 1
−1 0

)
which clearly satis�es the stability criterion.
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8 Exercise: Normalised phase space

Let us consider the following phase space vector: (x, x′). The transformation to a normalised phase space (X,X ′) is given by:(
X
X ′

)
=

(
1/
√
βx 0

αx/
√
βx

√
βx

)(
x
x′

)
The normalisation process of the phase space is illustrated in the �gure below:

If we know that the transfer matrix between two points 1 and 2 (with phase advance φx between them) in the phase space
(x, x′) is given by:

M1→2 =

 √
βx2

βx1
(cosφx + αx1 sinφx)

√
βx1βx2 sinφx

(αx1−αx2) cosφx−(1+αx1αx2) sinφx√
βx2βx1

√
βx1

βx2
(cosφx − αx2 sinφx)


Obtain the transfer matrix between two points 1 and 2 in the normalised phase space.
Answer. If one writes

M1→2 = U−1
2 ·R · U1

with U1 the transformation into normalised coordinates for the Twiss parameters at 1, and U2 its inverse for the Twiss parameters
at 2: i.e.,

U1 =

(
1√
β1

0
α1√
β1

√
β1

)
; U−1

2 =

( √
β2 0

− α2√
β2

1√
β2

)
It can be shown that the matrix M12 can be written as:

M12 =

( √
β2 0

− α2√
β2

1√
β2

)(
cos ∆φ sin ∆φ
− sin ∆φ cos ∆φ

)( 1√
β1

0
α1√
β1

√
β1

)
with

R =

(
cos ∆φ sin ∆φ
− sin ∆φ cos ∆φ

)
.

9 Exercise: beam size and luminosity

An e+e− collider has an interaction Point (IP) with β∗x = 0.5 m and β∗y = 0.1 cm. The peak luminosity available by a e+e−

collider can be written as:

L =
NbNe−Ne+frev

4πσ∗xσ
∗
y

[cm
−2
s−1]

where Nb = 80 is the number of bunches per beam (we assume the same number of bunches for both the e− and the e+ beams),
Ne− = Ne+ = 5 × 1011 is the number of particles per bunch (we assume the same number for both e− and e+ bunches), and
frev is the revolution frequency. The horizontal and vertical normalised beam emittances are respectively: εx,N = 2.2 mm and
εy,N = 4.7 µm.

• Compute the revolution frequency frev, knowing that the circumference is 80 km and that the beam moves nearly at the
speed of light
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Solution. The revolution period is given by Trev = circumference/c = 80km/c, and therefore the revolution frequency is:

frev = 1/Trev = c/80 km'3.75 kHz

• Calculate the beam transverse beam sizes σ∗x and σ∗y at the IP, and the luminosity L for two di�erent beam energies: 45
GeV and 120 GeV

Solution. For 45 GeV beam energy: in this case the Lorentz factor is γ = 88062.622, and σ∗x =
√
β∗xεx,N/γ ' 111.76 µm and

σ∗y =
√
β∗yεy,N/γ ' 0.23 µm, and the luminosity is L ' 2.32× 1034 cm−2s−1

For 120 GeV beam energy: in this case the Lorentz factor is γ = 234833.66, and σ∗x =
√
β∗xεx,N/γ ' 68.56 µm and

σ∗y =
√
β∗yεy,N/γ ' 0.14 µm, and the luminosity is L ' 6.22× 1034 cm−2s−1

• What are the beam divergences (horizontal and vertical) at the IP for the 45 GeV case?

Solution. Where α = 0 we have

σ∗x′ =

√
εx,N
γβ∗x

= ...

• What is the value of the betatron function at position s = 0.5 m from the IP?

Solution. We know that the betatron function in the drift space of a low beta region (where we have the interaction point)
depends on the longitudinal coordinate as follows:

β(s) = β∗ +
s2

β∗

Therefore, βx(0.5m) = 1 m, and βy(0.5m) = 250 m

10 Exercise: Basics of lattice design

Design a FODO cell such that it has: phase advance µ = 90 degrees, a total length of 10 m, and a total bending angle of 5
degrees. What are βmax, βmin, Dmax, Dmin?

Answer.

Lattice parameters: L = 10 m, θ = 5 degrees= 0.087266 rad, f = 1√
2
L
2 = 3.535 m.

Maximum and minimum betatron functions:

βmax =
L+ L2

4f

sinµ
= L+

L2

4f
= 17.07 m, βmin =

L− L2

4f

sinµ
= L− L2

4f
= 2.93 m

Maximum and minimum dispersion:

Dmax =
Lθ
(
1 + 1

2 sin µ
2

)
4 sin2 µ

2

=
f

L

(
4f +

L

2

)
θ = 0.59060 m, Dmin =

Lθ
(
1− 1

2 sin µ
2

)
4 sin2 µ

2

=
f

L

(
4f − L

2

)
θ = 0.28207 m

11 Exercise: Bump and Orbit Control

Given two kickers located at the two ends of a FODO cell with phase advance 45 degrees (the two kickers are located at Lcell
distance from each other), compute the strengths of such kickers (in radians) in order to give the beam, initially at (xi, x

′
i) = (0, 0),

an arbitrary o�set at the end of the cell while preserving its angle,
(
xf , x

′
f

)
= (xarbitrary, 0).
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Solution

The transfer matrix of a periodic cell is:

M =

(
cosϕ+ α sinψ β sinϕ
−γ sinϕ cosϕ− α sinϕ

)
Substituting the value for the phase advance we get the matrix to apply to the beam right after the �rst kick k1:(

xf
x′f

)
=

√
2

2

(
1 + α β
−γ 1− α

)(
0
k1

)
=

√
2

2

(
βk1

(1− α)k1

)
From this we see that to achieve an arbitrary xf we need:

k1 =

√
2xf
β

The second kick, k2, has only to remove the �nal tilt:

k2 = −x′f = − (1− α)√
2

k1

Notice that one can reduce the strength of the kickers by placing them close to a focusing quadrupoles, where β is maximum.

12 Exercise: Measurement of Twiss parameters

One of the possible ways to determine experimentally the Twiss parameters at a given point makes use of a so-called quadrupole
scan. One can measure the transverse size of the beam in a pro�le monitor, called Wire Beam Scanner (WBS), located at
a distance L downstream a focusing quadrupole, as a function of the normalised gradient in this quadrupole. This allows to
compute the emittance of the beam, as well as the β and the α functions at the entrance of the quadrupole.

Let's consider a quadrupole Q with a length of l = 20 cm. This quadrupole is installed in an electron transport line where
the particle momentum is 300 MeV/c. At a distance L = 10 m from the quadrupole the transverse beam size is measured with
a WBS, for various values of the current IQ. The maximum value of the quadrupole gradient G is obtained for a current of 100
A, and is G = 1 T/m.

Hint: G is proportional to the current. Advice: use thin-lens approximation.

1. How does the normalised focusing strength K vary with IQ?

Answer. The quadrupole gradient G is proportional to the current �owing through the coils IQ

G = C · IQ,

C is the proportionality coe�cient. We know that G = 1 T/m when IQ = 100 A, therefore C = 0.01 T/(A·m). The
normalised focusing strength is

K =
G

P/q
therefore K =

C · IQ
P/q

2. Give the expression Σ2 as function of α1, β1, and γ1

Answer. Let Σ1 and Σ2 be the 2× 2 matrices with the twiss parameters, Σ =

(
β −α
−α γ

)
, at the quadrupole entrance

and at the wire scanner, respectively.
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It is worth explaining that the matrix Σ multiplied by the emittance ε is the covariance matrix of the beam distribution:

Σε =

(
βε −αε
−αε γε

)
=

(
〈x2〉 〈xx′〉
〈x′x〉 〈x′2〉

)
The transverse beam size of the beam is given by σx =

√
〈x2〉 =

√
βxεx (horizontal beam size), and σy =

√
〈y2〉 =

√
βyεy

(vertical beam size). Here we will simply use the following notation: σ1 =
√
β1ε for the beam size (horizontal or vertical)

at position 1, and σ2 =
√
β2ε for the beam size (horizontal or vertical) at position 2.The matrix Σ propagates from position

1 to position 2 as follows:

Σ2 = MΣ1M
T

where M is the transfer matrix of the system and MT its transpose. We have:

Σ2 =

(
β2 −α2

−α2 γ2

)
=

(
1−KlL L
−Kl 1

)(
β1 −α1

−α1 γ1

)(
1−KlL −Kl

L 1

)
=

(
β1L

2(Kl)2 + 2L(α1L− β1)Kl + β1 − 2α1L+ γ1L
2 β1L(Kl)2 + (2α1L− β1)Kl + γ1L− α1

β1L(Kl)2 + (2α1L− β1)Kl + γ1L− α1 β1(Kl)2 + 2α1Kl + γ1

) (1)

3. Show that β2 can be written in the form: β2 = A2 (Kl)
2

+ A1 (Kl) + A0, and express A0, A1, and A2 as a function of L,
α1, β1, and γ1.

Answer. We can see from Eq. (1) that:

β2 = β1L
2(Kl)2 + 2L(α1L− β1)Kl + β1 − 2α1L+ γ1L

2

and therefore:

A2 = β1L
2

A1 = 2L(α1L− β1)

A0 = β1 − 2α1L+ γ1L
2

Hint for the next questions: show that if one expresses β2 as

β2 = B0 +B1 (Kl −B2)
2

one has:
B0 = A0 −A2

1/4A
2
2 = L2/β1

B1 = A2 = L2β1

B2 = −A1/A2 = 1/L− α1/β1

4. Express the �nal beam size, σ2, as a function of Kl, and �nd its minimum, which will correspond to (Kl)min.

Answer. The transverse r.m.s. beam size is σ =
√
εβ, where ε is the transverse (geometric) emittance. As we have seen

in the previous questions β2 depends quadratically on Kl: β2 = B0 + B1 (Kl −B2)
2
. Since ε is constant, if we want to

minimise σ2, we have to minimise β2:

dβ2

d(Kl)
= 0 −→ 2B1(Kl −B2) = 0 −→ (Kl)min = B2 =

1

L
− α1

β1
(2)

We can write:

σ2
2 = β2ε =

L2

β1

(
1 + β2

1(Kl − (Kl)min)2
)
ε

Why is this useful? By means of a quadrupole scan (i.e. changing the quadrupole strength) we identify the strength Kl
which minimises the value σ2

2 . We �t a parabola to the measurements σ2
2 vs. Kl, and select then σ2

2((Kl)min). The
minimum beam size is given by:

Min(σ2) = L

√
ε

β1
=
√
B0ε (3)

10



5. How does σ2 vary with Kl when |Kl − (Kl)min| � 1/β1 ?

Answer. Under this condition:

σ2
2 =

L2

β1

(
1 + β2

1(Kl − (Kl)min)2
)
ε −→ σ2 ' L

√
β1ε(Kl − (Kl)min)

For |Kl − (Kl)min| � 1/β1, σ2 depends linearly on Kl, with slope

dσ2

d(Kl)
=
L2β1

σ2
(Kl − (kl)min)ε.

6. Deduce the values of α1, β1, and γ1 from the measurement σ2, as a function of the quadrupole current IQ.

Answer. We know that

Kl =
G · l
p/e

=
C · l · IQ
p/e

=
0.01[T/(Am)]·0.2[m]

(0.3[GeV]/0.3)[Tm]
· IQ = 2× 10−3 · IQ

If we measure σ2 as a function of the quadrupole current IQ, from the minimum value we can get β1 (Eq. (3)), and since
from the measurement we obtain (Kl)min = 2 × 10−3(IQ)min, using Eq. (2) we can calculate α1. Once we know β1 and
α1, it is then straightforward to calculate γ1 = (1 + α2

1)/β1.

13 Exercise: The spectrometer line of CTF3

The CTF3 (CLIC Test Facility 3) experiment at CERN consists of a linac that injects very short electron bunches into an
isochronous ring. A spectrometer line made of one quadrupole and one bending magnet is located at the end of the linac where
the particle momentum is 350 MeV/c. The goal of the spectrometer is to measure the energy before injecting the electrons in
the ring. The spectrometer line is sketched on the �gure below. It is made of a focusing quadrupole of focal length f , a drift
space of length L1, a bending magnet of de�ection angle θ in the horizontal plane, and a drift space of length L2. We assume
that the spectrometer line starts at the quadrupole and ends at the end of the second drift. We neglect the focusing e�ect of the
dipole.

1. If the e�ective length of the dipole is lB = 0.43 m, what should be the magnetic �eld (in Tesla) inside the dipole to de�ect
the electrons by an angle of 35 degrees?

Answer. One has θ = l
ρ and Bρ = 3.356 p: B =

3.356 p θ

l
= 1.66 T.

2. Starting from the general horizontal 3 × 3 transfer matrix of a sector dipole of de�ection angle θ, show that the transfer
matrix of a dipole in the thin-lens approximation is

Mdipole =

 1 0 0
0 1 θ
0 0 1


Which approximations are done?
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Hint: A sector dipole has the following 3× 3 transfer matrix:

Mdipole =

 cos θ ρ sin θ ρ(1− cos θ)
− sin θ

ρ cos θ sin θ

0 0 1


Answer. We need to compute the limit for l → 0 while keeping θ = l

ρ = const. Remember that, if θ is a small angle,
cos θ ≈ 1, sin θ ≈ θ. Besides the trivial elements, such as m11, m22, and m23, the others read:

m12 : lim
l→0

ρ sin θ = lim
l→0

sin θ
1
ρ

= lim
l→0

l ·
sin l

ρ

l
ρ︸ ︷︷ ︸

const

= 0

m13 : lim
l→0

ρ (1− cos θ) = lim
l→0

ρ

(
1− cos

l

ρ

)
= lim
l→0

l ·
1− cos l

ρ

l
ρ︸ ︷︷ ︸

const

= 0

m21 : lim
l→0
− sin θ

ρ
= lim
ρ→∞

− sin θ

ρ
= 0

therefore, in thin-lens approximation the matrix of a dipole magnet, is

Mdipole =

 1 0 0
0 1 θ
0 0 1

 .

3. In the thin-lens approximation, derive the horizontal extended 3 × 3 transfer matrix of the spectrometer line. Show that
it is:

Mspectro =

 f−L1−L2

f L1 + L2 L2θ

− 1
f 1 θ

0 0 1


Answer. For the spectrometer line, one has

Mspectro = MDrift2 ·MDipole ·MDrift1 ·MQuad

therefore:

Mspectro =

 1 L2 L2θ
0 1 θ
0 0 1

×
 1− L1

f L1 0

− 1
f 1 0

0 0 1

 .

4. Assuming D = D′ = 0 at the entrance of the quadrupole, what is the dispersion and its derivative at the end of the
spectrometer line? Give the numerical value of D′ at the end of the spectrometer line for the angle of 35 degrees.

Answer. At the entrance of the line, D = 0 and D′ = 0. If M is the transfer matrix of a system the dispersion D at exit
is the element m13 of M , whereas D′ is the element m23:

D = L2θ,

D′ = θ = 35 degrees = 0.61.

5. What is the di�erence between a periodic lattice and a beam transport lattice (or transfer line) as concerns the betatron
function ?

Answer. In a periodic lattice the β-functions are periodic and contained in the (periodic) transfer matrix of the lattice. In
transfer line one needs to know the initial conditions in order to calculate the β-functions at any point (using the transfer
matrix).
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6. Derive the betatron function β2 at the end of the spectrometer line in terms of L1, L2, f and β1, assuming α1 = 0.

Hint 1. Remember from the lecture: β
α
γ


s

=

 C2 −2SC S2

−CC ′ SC ′ + S′C −SS′
C ′2 −2S′C ′ S′2

 β
α
γ


0

An alternative way to transport the Twiss parameters is through the σ matrix:

σi =

(
βi −αi
−αi γi

)
This matrix multiplied by the emittance ε gives the so-called beam matrix (which has already been introduced during the
lecture):

Σi =

(
βiε −αiε
−αiε γiε

)
If σ1 is the matrix at the entrance of the transfer line, the matrix σ2 at the exit of the transfer line is given by

σ2 = Mσ1M
T

where M is the 2 × 2 transfer matrix of the line extracted from the extended 3 × 3 transfer matrix (see question 3), and
MT the transpose matrix of M .

Hint 2. For the calculations, write M as M =

(
m11 m12

m21 m22

)
and replace the values of the matrix elements only at the

end.

Answer. One has σ2 = Mσ1M
T . If α1 = 0, then σ1 =

(
β1 0
0 1/β1

)

σ2 =

(
m11 m12

m21 m22

)(
β1 0
0 1/β1

)(
m11 m21

m12 m22

)

σ2 =

(
β1m

2
11 +m2

12/β1 β1m11m21 +m12m22/β1

β1m11m21 +m12m22/β1 β1m
2
21 +m2

22/β1

)
Therefore:

β2 = β1m
2
11 +m2

12/β1

Since m11 = f−L1−L2

f and m12 = L1 + L2, one has:

β2 = β1

(
1− L1 + L2

f

)2

+
(L1 + L2)

2

β1
.

7. Given the numerical values L1 = 1 m, L2 = 2 m, β1 = 10 m, α1 = 0, compute the value of the focal length f such that the
betatron function at the end of the spectrometer line is minimum.

Answer. If L1 = 1 m, L2 = 2 m, and β1 = 10 m, then β2 = 0.9 + 10
(

1− 3
f

)2

. To have β2 minimum one needs(
1− 3

f = 0
)
.Therefore, f = 3 m.

8. For an o�-momentum particle, compute the deviation from the design orbit? Why is it important to minimise the β
function in the spectrometer?

Answer. With dispersion, the deviation from the design orbit is ∆x = D∆P
P0

. Measuring ∆x allows to determine ∆P and
therefore P , if one has calibrated the spectrometer at P0. It is important to minimise β2 (at the screen location) in order
to have the best possible resolution for ∆x: a smaller β2 will result in a smaller transverse beam size on the screen, which
favours an accurate measurement of the momentum.
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14 Exercise: Transfer matrix of a dipole magnet

• Remember weak focusing:

K = 1
ρ2
:

MDipole =

 cos
(√

KL
)

1√
K

sin
(√

KL
)

−
√
K sin

(√
KL

)
cos
(√

KL
)  =

(
cos L

ρ
ρ sin L

ρ

− 1
ρ
sin L

ρ
cos L

ρ

)

• Compute the 3× 3 matrix of a sector dipole including the dispersion terms.

Remembering that:

D (s) = S (s)

ˆ s

0

1

ρ (t)
C (t) dt− C (s)

ˆ s

0

1

ρ (t)
S (t)dt

one can easily �nd that:

D (L) = ρ

(
1− cos

L

ρ

)
D′ (L) = sin

L

ρ

which allows to write Mdipole as 3× 3 matrix in the form:

MDipole =

 C S D
C ′ S′ D′

0 0 1



15 Exercise: Dispersion suppressor

In several straight sections of the accelerator, like the ones hosting RF cavities, extraction systems or other devices such as
detectors, it is preferable to have no dispersion η(s) = η′(s) = 0. For example, in big colliders, such as the LHC, where
small spot sizes are required at the interaction points, the dispersion is reduced to zero at the detector positions. The most
common dispersion suppressors consists of two FODO cells of equal length L and equal quadrupole strengths. Bending magnets
are placed in the space between the quadrupoles with a di�erent bending �eld in each FODO. Figure below shows a typical
dispersion suppressor.

1. Considering two FODO cells with di�erent total bend angles, θ1 6= θ2, calculate the relation between the angles θ1 and θ2

which must be satis�ed to cancel the dispersion at the end of the lattice.

Hint:

For each FODO cell, MFODO =M1/2F ·Mdipole ·MD ·Mdipole ·M1/2F, in thin-lens approximation we have the following 3× 3 matrix:

MFODO j =


1− L2

8f2 L
(

1 + L
4f

)
L
2

(
1 + L

8f

)
θj

− L
4f2

(
1− L

4f

)
1− L2

8f2

(
1− L

8f −
L2

32f2

)
θj

0 0 1



=


cosµ β sinµ L

2

(
1 + L

8f

)
θj

− sinµ
β cosµ

(
1− L

8f −
L2

32f2

)
θj

0 0 1


14



where j = 1, 2 (1=�rst cell, 2=second cell).

The following condition must be satis�ed:  0
0
1

 = Msuppressor

 η0

0
1

 (4)

where η0 is the initial dispersion (at the middle of the �rst focusing quadrupole). It can be demonstrated that for a FODO
lattice the dispersion has its maximum at the middle of the focusing quadrupole:

η0 =
4f2

L

(
1 +

L

8f

)
θ (5)

with θ = θ1 + θ2 the total bend in the suppressor.

Answer.

Performing the corresponding matrix multiplication yields

Msuppressor =

 cos 2µ β sin 2µ Dx

− sin 2µ
β cos 2µ D′x

0 0 1


where:

cos 2µ = 1− L2

2f2
+

L4

34f4

β sin 2µ = 2L

(
1− L2

8f2

)(
1 +

L

4f

)
sin 2µ

β
=

L

2f2

(
1− L2

8f2

)(
1− L

4f

)
Dx = cosµ

L

2

(
1 +

L

8f

)
θ1 + β sinµ

(
1− L

8f
− L2

32f2

)
θ1 +

L

2

(
1 +

L

8f

)
θ2

D′x = − sinµ

β

L

2

(
1 +

L

8f

)
θ1 + cosµ

(
1− L

8f
− L2

32f2

)
θ1 +

(
1− L

8f2
− L2

32f2

)
θ2

(6)

Taking into account:

cosµ = 1− L2

8f2 ; β sinµ = L+ L2

4f and sinµ
β = 1

4f2

(
1− L

4f

)
the elements Dx and D′xmay also be written as

Dx =
L

2

(
1 +

L

8f

)[(
3− L2

4f2

)
θ1 + θ2

]
D′x =

(
1− L

8f
− L2

32f2

)[(
1− L2

4f2

)
θ1 + θ2

] (7)

From the condition Eq. (4) we have

η0 cos 2µ+Dx = 0

−η0
sin 2µ

β
+D′x = 0

(8)

Substituting Eq. (5) in Eq. (8) one obtains:
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(
3− L2

4f2

)
θ1 + θ2 =

(
4− L2

4f2
− 8f2

L2

)
θ(

1− L2

4f2

)
θ1 + θ2 =

(
2− L2

4f2

)
θ

In terms of phase advance µ this can be written as:

θ1 =

(
1− 1

4 sin2 µ
2

)
θ

θ2 =
1

4 sin2 µ
2

θ

(9)

where θ1 + θ2 = θ.

2. Obtain the relation between the angles for the cases of phase-advance per cell µ = π/3 and π/2

Answer.

• For µ = π/3 −→ 4 sin2 µ
2 = 1 and therefore (using Eq. (9)) θ1 = 0 and θ2 = θ. This corresponds to a dispersion

suppressor with missing magnets.

• For µ = π/2 −→ 4 sin2 µ
2 = 2 and therefore θ1 = θ2 = θ/2.

16 Exercise: Double-Bend Achromat (DBA) lattice

A Double-Bend Achromat (DBA) can be made from two dipoles with a horizontally focusing quadrupole between them. The
transfer matrix through the achromat is:

MDBA = MbendMdriftM1/2FM1/2FMdriftMbend

Note that this magnet con�guration does not produce vertical focusing, therefore it will not be enough to create a stable lattice.
A full DBA typically comprises additional quadrupole doublets before and after the bending section. For sake of simplicity, we
will neglect them.

1. Use the thin-lens approximation for quadrupoles and small-angle approximation for bends to �nd the dispersion in the
middle of the quadrupole. Write the focal length in terms of the drift and bend parameters.

Answer. Let us consider the 3× 3 transfer matrices of each element of the lattice (using the thin lens approximation and
small angle approximation for the bending magnets) for the beam coordinates x, x′and ∆p/p:

Mbend =

 1 0 0
0 1 θ
0 0 1

 , Mdrift =

 1 L 0
0 1 0
0 0 1

 , M1/2F =

 1 0 0
− 1

2f 1 0

0 0 1


Assuming the initial dispersion vector (η0,η

′
0,1) = (0, 0, 1) and propagating it to the centre of the quadrupole: ηc

0
1

 = M1/2FMdriftMbend

 0
0
1


Here we take into account that η′=0 at the centre of a quadrupole. After matrix multiplication we obtain:

 ηc
0
1

 =

 1 L Lθ

− 1
2f 1− L

2f θ
(

1− L
2f

)
0 0 1


 0

0
1


Therefore, one obtains:
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ηc = Lθ

1− L

2f
= 0⇒ L = 2f

2. Show that the dispersion vanishes after the bend.

Answer. Propagate the dispersion vector from the centre of the quadrupole to the end of the lattice: ηend
η′end

1

 = MbendMdriftM1/2F

 ηc
0
1

 ,

 ηend
η′end

1

 =

 1− L
2f L 0

− 1
2f 1 θ

0 0 1

 ηc
0
1

 .

Taking into account L = 2f , we obtain:

ηend = (2f − L)θ = 0,

η′end = θ − 1

2f
ηc = θ − 1

2f
(2fθ) = 0

3. Compute the parameters L, f for a 10-meter long DBA which bends the beam by an angle of 1 radians. What is the
dispersion in the centre? Given a particle with 1% energy deviation, compute the displacement at the centre of the cell.

Answer.

L = 5 m

f = 2.5 m

D = L · θ = 5 m

x = δD = 0.01 ∗ 5 m = 5 cm

17 Exercise: Chromaticity in a FODO cell

Consider a ring made of Ncell identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles are both
of length lq, but their strengths may di�er.

1. Calculate the maximum and the minimum betatron function in the FODO cell. (Use the thin-lens approximations)
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Answer. First we calculate the transfer matrix for a FODO cell (see �gure). We start from the centre of the focusing
quadrupole where the betatron function is maximum. This exercise considers a general case where fF is not necessarily
equal to fD. Using the thin lens approximation for the FODO cell with drifts of length L we get the following matrix:

Mcell =

(
1 0
− 1

2fF
1

)(
1 L
0 1

)(
1 0
1
fD

1

)(
1 L
0 1

)(
1 0
− 1

2fF
1

)

=

(
1− L( 1

fF
− 1

fD
+ L

2fF fD
) 2L+ L2

fD
1
fD
− 1

fF
(1− L

2fF
+ L

fD
− L2

4fF fD
) 1− L( 1

fF
− 1

fD
+ L

2fF fD
)

) (10)

Remember that, in terms of betatron functions and phase advance, the matrix of a FODO cell is given by:

Mcell =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
(11)

Since β has a maximum at the centre of the focusing quadrupole, then α = −β′/2 = 0, and we can also write:

Mcell =

(
cosµ β sinµ

− sinµ
β cosµ

)
Equating Eq. (10) to Eq. (12) we obtain:

cosµ =
1

2
tr(Mcell) = 1 +

L

fD
− L

fF
− L2

2fDfF
= 1− 2 sin2 µ

2

or

2 sin2 µ

2
=

L

fF
− L

fD
+

L2

2fDfF
(12)

Where we have applied the following trigonometric identity: cosµ = 1− 2 sin2 µ
2 .

The maximum for the betatron function βmax occurs at the focusing quadrupole. Since Eq. (10) is for a periodic cell
starting at the centre of the focusing quadrupole, the m12 component of the matrix gives us

βmax sinµ = 2L+
L2

fD

Rearranging:

βmax =
2L+ L2

fD

sinµ
(13)

On the other hand, the minimum for the betatron function occurs at the defocusing quadrupole position. Therefore,
interchanging fF with −fD for a FODO cell gives:

βmin =
2L− L2

fF

sinµ
(14)

2. Calculate the natural chromaticities for this ring.

Answer. Let us remember the de�nition of natural chromaticity. The so-called �natural� chromaticity is the chromaticity
that derives from the energy dependence of the quadrupole focusing, i.e. the chromaticity arising only from quadrupoles.
The chromaticity is de�ned in the following way:

ξ =
∆Q

∆P/P0
(15)
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where ∆Q is the tune shift due to the chromaticity e�ects and ∆P/P0 is the momentum o�set of the beam or the particle
with respect to the nominal momentum p0.

The natural chromaticity is de�ned as (remember from Lecture 4):

ξN = − 1

4π

˛
β(s)k(s)ds (16)

Sometimes, especially for small accelerators, the chromaticity is normalised to the machine tune Q and de�ned also as:

ξ′ =
∆Q/Q

∆P/P0
(17)

ξ′N = − 1

4πQ

˛
β(s)k(s)ds (18)

For this exercise, either you decide to use Eq. (16) or Eq. (18) it is �ne! From now on let us use Eq. (16):

ξN = − 1

4π

˛
β(s)k(s)ds

= − 1

4π
×Ncell

ˆ
cell

β(s)k(s)ds

= −Ncell
4π

∑
i∈{quads}

βi(klq)i

Here we have used the following approximation valid for thin lens:

ˆ
cell

β(s)k(s)ds '
∑

i∈{quads}

βi(klq)i

where we sum over each quadrupole i in the cell. In the case of the FODO cell we have two half focusing quadrupoles and
one defocusing quadrupole. Taking into account that (klq)i = 1/fi, we have:

ξN ' −
Ncell
4π

∑
i∈{quads}

βi(klq)i

= −Ncell
4π

[
βmax

(
1

2fF

)
+ βmin

(
− 1

fD

)
+ βmax

(
1

2fF

)]
= −Ncell

4π

[
βmax

(
1

fF

)
+ βmin

(
− 1

fD

)]
= − Ncell

4π sinµ

[(
2L+

L2

fD

)
1

fF
−
(

2L− L2

fF

)
1

fD

]
= − NcellL

2π sinµ

[
1

fF
− 1

fD
+

L

fF fD

]
Here we have used the expressions (13) and (14) for βmax and βmin.

3. Show that for short quadrupoles, if fF ' fD,

ξN ' −
Ncell
π

tan
µ

2
.

Answer. If fF ' fD, we have

ξN ' −
Ncell

2π sinµ

L2

fF fD

= − Ncell
4π sin µ

2 cos µ2
4 sin2 µ

2

19



where we have used the trigonometric identity: sinµ = 2 sin µ
2 cos µ2

Considering Eq. (12), we have

4 sin2 µ

2
=

L2

fF fD

which �nally gives:

ξN ' −
Ncell
π

tan
µ

2

Q.E.D.!

4. Design the FODO cell such that it has: phase advance µ = 90 degrees, a total length of 10 m, and a total bending angle
of 5 degrees. What are βmax, βmin, Dmax, Dmin?

Answer. Lattice parameters: L = 10 m, θ = 5 degrees= 0.087266 rad, f = 1√
2
L
2 = 3.535 m

Maximum and minimum betatron functions:

βmax =
L+ L2

4f

sinµ
= L+

L2

4f
= 17.07 m, βmin =

L− L2

4f

sinµ
= L− L2

4f
= 2.93 m

Maximum and minimum dispersion:

Dmax =
Lθ
(
1 + 1

2 sin µ
2

)
4 sin2 µ

2

=
f

L

(
4f +

L

2

)
θ = 0.59060 m, Dmin =

Lθ
(
1− 1

2 sin µ
2

)
4 sin2 µ

2

=
f

L

(
4f − L

2

)
θ = 0.28207 m

5. Add two sextupoles at appropriate locations to correct horizontal and vertical chromaticities. (hints: use 1 sextupole for
the horizontal plane and 1 for the vertical plane; do not consider geometric aberrations).

Answer. By locating sextupoles with strength Ks > 0 where βx is large and βy is small, we can correct the horizontal
chromaticity with relatively little impact on the vertical chromaticity. Similarly, by locating sextupoles with Ks < 0
where βy is large and βx is small, we can correct the vertical chromaticity with relatively little impact on the horizontal
chromaticity. See �gure below.

Let us assume the case of a FODO lattice where fF = fD = f . Then the natural chromaticity of this FODO cell is given
by the expression (exercise 1.3):

ξN ' −
1

π
tan

µ

2

For µ = 90 it is ξN ' −1/π in both horizontal and vertical plane. Therefore, we need to adjust the strength of the
sextupoles to cancel this chromaticity:

− 1

4π
[K2FDmaxβmax +K2DDminβmin] ' − 1

π

where K2F = k2F ls is the normalised integrated strength of the sextupole located near the focusing quadrupole, and
K2D = k2Dls the normalised integrated strength of the sextupole near the defocusing quadrupole (with ls the e�ective
length of the sextupole). For an e�ective cancellation of the chromaticity in both planes, usually K2F > 0 and K2D < 0.
Substituting the values for the maximum and minimum dispersion and betatron function in terms of the total length of
the lattice L and the focal length of the quadrupoles f , one obtains the following expression:
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− 1

4π

f

L
θ

[
K2F

(
4f +

L

2

)(
L+

L2

4f

)
+K2D

(
4f − L

2

)(
L− L2

4f

)]
' − 1

π

Considering the same absolute value for the strength of the sextupoles, K2F = −K2D = Ks, we can write then:

3

4π
KsLfθ =

1

π

The strength of the sextupole is given then by:

Ks =
4

3Lfθ

Then, substituting all the numerical values for the lattice parameters:

K2F = 0.865 m−2

K2D = −0.865 m−2

6. If the gradient of all focusing quadrupoles in the ring is wrong by +10%, how much is the tune-shift with and without
sextupoles?

Answer.

If the gradient of the focusing quadrupole has and error of 10%, then the corresponding quad. strength error is also 10%.
We calculate the number of cells of a ring made of these FODO cells, Ncell = 72 cells, and then we calculate the total
tune-shift in both planes:

∆Qx = Ncell
∆KF βmax

4π = 9.78

∆Qy = Ncell
∆KF βmin

4π = 1.68

When the sextupoles correct for the chromaticity, the particles have, in principle, no tune-shift with energy. In real
machines, one wants to have a non-zero residual chromaticity to stabilise the beam against resonant imperfections.

18 Exercise: Low-Beta Insertion

Consider the following low-beta insertion around an interaction point (IP). The quadrupoles are placed with mirror-symmetry
with respect to the IP:

IP

L
f

The beam enters the quadrupole with Twiss parameters β0 = 20 m and α0 = 0. The drift space has length L = 10 m.

(i) Determine the focal length of the quadrupole in order to locate the waist at the IP.

(ii) What is the value of β??

(iii) What is the phase advance between the quadrupole and the IP?
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Solution.

M =

(
1− L

f L

− 1
f 1

)
(

β −α
−α γ

)
IP

= M ·
(

β −α
−α γ

)
0

·MT

(
βIP 0
0 1/βIP

)
= M ·

(
β0 0
0 1/β0

)
·MT

We get a system of equations: βIP = β0

(
1− L

f

)2

+ L2

β0

1
βIP

= β0

f2 + 1
β0

multiplying them:

1 =

(
β0

(
1− L

f

)2

+
L2

β0

)(
β0

f2
+

1

β0

)
and solving for f :

f =
β0

√
(β2

0 − 4L2) + β2
0

2L

from which one �nds:
f = 20 m

and substituting back into one of the equations in the system:

βIP = 10 m.

The phase advance can be computed remembering that

M0→s =

 √
βs

β0
(cosψs + α0 sinψs)

√
βsβ0 sinψs

(α0−αs) cosψs−(1+α0αs) sinψs√
βsβ0

√
β0

βs
(cosψs − αs sinψs)


In this case, α0 = αIP = 0,

Trace (M) =
3

2
=

(√
β?

β0
+

√
β0

β?

)
cos ∆µ

∆µ = arccos

3

2
· 1√

β?

β0
+
√

β0

β?

 = arccos

(
3

2
· 1

2.1213

)
= 45 degrees

Alternatively, given that the system:

M = Q ·D ·D ·Q

is indeed periodic, one can say:

M =

(
1− 2L

f 2L
2L
f2 − 2

f 1− 2L
f

)

cos ∆µtwice =
1

2
Trace (M) =

1

2
Trace

(
2− 4L

f

)
= 0

∆µtwice = 90 degrees ⇒ ∆µ = 45 degrees
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