

Energy Recovery Linac

Outline

- Introduction to Energy Recovery Linacs (ERLs)
- Examples
- Commissioning of ERL Mode @ S-DALINAC
- Summary and Outlook
- Research Training Group on ERLs

Outline

- Introduction to Energy Recovery Linacs (ERLs)
 - How does an ERL work?
 - History
 - Reasons to use an ERL
 - Possible applications
- Examples
- Commissioning of ERL Mode @ S-DALINAC
- Summary and Outlook
- Research Training Group on ERLs

Principle

LETTERE ALLA REDAZIONE

(La responsabilità scientifica degli scritti inseriti in questa rubrica è completamente lasciata dalla Direzione del periodico ai singoli autori)

A Possible Apparatus for Electron Clashing-Beam Experiments (*).

M. TIGNER

Laboratory of Nuclear Studies, Cornell University - Ithaca, N.Y.

(ricevuto il 2 Febbraio 1965)

A Possible Apparatus for Electron Clashing-Beam Experiments (*).

Principle

M. TIGNER

Laboratory of Nuclear Studies, Cornell University - Ithaca, N.Y.

(ricevuto il 2 Febbraio 1965)

Fig. 2.

- Two systems with same energy gain, same beam current, same frequency and phase
- \rightarrow Difficult to handle and two accelerator sections needed

A Possible Apparatus for Electron Clashing-Beam Experiments (*).

Principle

M. TIGNER

Laboratory of Nuclear Studies, Cornell University - Ithaca, N. Y.

(ricevuto il 2 Febbraio 1965)

- Same beam
- Only one accelerator section

Fig. 3.

First Energy Recovery

- 1979: First suggested "same-cell energy recovery" FEL context (C.A. Brau et al., High Efficiency Free-Electron Laser System, Proc. Int. Conf. on Lasers 1979)
- July 1986: First successful test of "same-cell energy recovery" no further user operation

Nuclear Instruments and Methods in Physics Research A259 (1987) 1-7 North-Holland, Amsterdam

Section I. Low gain experiments

DEVELOPMENT OF THE SCA/FEL FOR USE IN BIOMEDICAL AND MATERIALS SCIENCE EXPERIMENTS *

T.I. SMITH, H.A. SCHWETTMAN, R. ROHATGI, Y. LAPIERRE ** and J. EDIGHOFFER

High Energy Physics Laboratory, Stanford University, Stanford, California 94305, USA

First Energy Recovery

TECHNISCHE UNIVERSITÄT DARMSTADT

Fig. 1. SCA/FEL plan. Schematic layout of the superconducting linear accelerator, showing the locations of the injector, the linac, the recirculation system and the refrigerators.

- E_{max} ≈ 93 MeV (N=2)
- $I_{avg} \approx 150 \ \mu\text{A}$; $I_{peak} \approx 2.5 \ \text{A}$
- $Q_{bunch} \approx 12.5 \text{ pC}$

DEVELOPMENT OF THE SCA/FEL FOR USE IN BIOMEDICAL AND MATERIALS SCIENCE EXPERIMENTS *

T.I. SMITH, H.A. SCHWETTMAN, R. ROHATGI, Y. LAPIERRE ** and J. EDIGHOFFER High Energy Physics Laboratory, Stanford University, Stanford, California 94305, USA

360° path length adjustment possible

Energy Recovery and FEL

~ 2000: First successful "same-cell energy recovery" during FEL operation

Nuclear Instruments and Methods in Physics Research A 445 (2000) 192-196

www.elsevier.nl/locate/nima

First operation of an FEL in same-cell energy recovery mode

G.R. Neil*, S. Benson, G. Biallas, C.L. Bohn, D. Douglas, H.F. Dylla, R. Evans, J. Fugitt, J. Gubeli, R. Hill, K. Jordan, G. Krafft, R. Li, L. Merminga, D. Oepts, P. Piot, J. Preble, M. Shinn, T. Siggins, R. Walker, B. Yunn

Thomas Jefferson National Accelerator Facility, MS 6A, 12000 Jefferson Avenue, Newport News, VA 23606, USA

Energy Recovery and FEL

Fig. 1. Schematic view of IR Demo; dimensions of the recirculation loop are roughly $49 \text{ m} \times 6 \text{ m}$.

- $E_{max} = 48 \text{ MeV}$
- $I_{avg} = 5 \text{ mA}; I_{peak} = 22 \text{ A}$
- $Q_{bunch} = 60 \text{ pC}$

First operation of an FEL in same-cell energy recovery mode

G.R. Neil*, S. Benson, G. Biallas, C.L. Bohn, D. Douglas, H.F. Dylla, R. Evans, J. Fugitt, J. Gubeli, R. Hill, K. Jordan, G. Krafft, R. Li, L. Merminga, D. Oepts, P. Piot, J. Preble, M. Shinn, T. Siggins, R. Walker, B. Yunn

Thomas Jefferson National Accelerator Facility, MS 6A, 12000 Jefferson Avenue, Newport News, VA 23606, USA

Why should you use an ERL?

- Research in accelerator physics examples for beam dynamics
 - Multi-turn ERL operation
 - Non-isochronous operation for reduction of energy spread
 - FFAG ERL
 - \rightarrow smaller footprint, permanent magnets (thus cost effective)

Why should you use an ERL?

- Research in accelerator physics examples for beam dynamics
 - Multi-turn ERL operation
 - Non-isochronous operation for reduction of energy spread
 - FFAG ERL
 - \rightarrow smaller footprint, permanent magnets (thus cost effective)

Accelerated particle

Decelerated particle

Accelerated particle

Decelerated particle

TECHNISCHE

UNIVERSITÄT DARMSTADT

TECHNISCHE

UNIVERSITÄT DARMSTADT

TECHNISCHE

UNIVERSITÄT DARMSTADT

Why should you use an ERL?

- Research in accelerator physics examples for beam dynamics
 - Multi-turn ERL operation
 - Non-isochronous operation for reduction of energy spread
 - FFAG ERL

 \rightarrow smaller footprint, permanent magnets (thus cost effective)

FFAG (fixed-field alternating gradient) ERL

- Usage of permanent magnets \rightarrow no power supplies, no cooling, ...
- Cornell-BNL FFAG-ERL Test Accelerator (Cβ) → first ERL based on FFAG lattice
- 4 spreaders, 4 combiners, FFAG return loop (simultaneous transportation of energies that differ by up to a factor of 4)

"The FFAG-ERL moves the cost optimized linac and recirculation lattice to a dramatically better optimum."

White Paper: The Cornell-BNL FFAG-ERL Test Accelerator, 2015

Why should you use an ERL?

- Research in accelerator physics examples for beam dynamics
 - Multi-turn ERL operation
 - Non-isochronous operation for reduction of energy spread
 - FFAG ERL

 \rightarrow smaller footprint, permanent magnets (thus cost effective)

- Enhancement of experiments
 - Higher intensities with the same RF power (not injector !)
 - High brilliance (lowest transversal emittance and short pulse length)

Why should you use an ERL?

- Research in accelerator physics examples for beam dynamics
 - Multi-turn ERL operation
 - Non-isochronous operation for reduction of energy spread
 - FFAG ERL

 \rightarrow smaller footprint, permanent magnets (thus cost effective)

- Enhancement of experiments
 - Higher intensities with the same RF power (not injector !)
 - High brilliance (lowest transversal emittance and short pulse length)
- Additional benefit
 - Less power necessary to cool the dumped beam
 - Less activation of beam dump

Possible Applications

Small impact on the beam, otherwise no further transport possible

- Internal target experiment
- Free Electron Laser (FEL)
- Coherent electron cooling
- Electron-ion-collider
- Compton back-scattering

Outline

- Introduction to Energy Recovery Linacs (ERLs)
- Examples
 - Overview
 - Operating ERLs (external)
 - ERLs under design / construction (external)
- Commissioning of ERL Mode @ S-DALINAC
- Summary and Outlook
- Research Training Group on ERLs

ERLs Worldwide

• First collection of all ERLs including parameters (will be updated every ERL workshop)

														Cornell															
1	Name J	LabFEL	CEBAF-ER I	ERL DEMO	IR ERL Upgrade	e UV FEL	ER@CEBAF	eIC cooler	cERL	EUV Source	ALICE	bERLinPro	CBETA	Light Source	S-DALINAC ERL	MESA	test ERL	eRHIC ERL	CeC @ RHIC	LHeC	PERLE	ARIEL ERL	APS ERL	IHEP ERL	Peking ERL-FEL		PAPS	ERL H	FEL
2	Institute	JLab	JLab	JLab	JLab	JLab	JLab	JLab	KEK	KEK	STFC	HZB	Cornell	Cornell	U Darmstadt	U Mainz	BNL	BNL	BNL	CERN	LAL Orsay	TRIUMF	Argonne	IHEP	IHEP	SINUP	IHEP	BINP B	BINP
	Main application: Test Facility [TF],																												
	Light Source [LS], User Facility [UF],																												
3	Physics Application [PA]	LS	TF	TF	LS	LS	TF		TF	LS	TF, UF	TF	TF	LS	TF	PA	TF	PA	TF	PA	TF & PA	UF							
										In planning					2017 (ERL														
4	Commissioning Start		2003	1997	2001		2018		2013	2017	2005	2021	2017	Study	mode)	2019	2014	Study	2017	Study	In planning	In planning							
5	Operation End		2003	2001			2018		2016		2016	2022	tbd	tbd	tbd		2015	n.a.	n.a.										
6	# Re-Circulations	1	1	1	1	1	5		1	1	1	1	4	1	2	2	0	6	1	3	3	1						3	
7	RF type	SC	SC	SC	SC	SC	SC		SC	SC	SC	SC	SC	SC	SC	SC	SC	SC	SC	SC	SC	SC			SC	SC	SC	NC	NC
	RF Framaney [GHz]	1.5	1.5	1.5	1.5	1.5	1.50		13	13	13	13	13	13	3	13	0 704	0.647	0 704	0.8	0.8	13			1.3	00	0.65	0.18	
•	Buesh Ecomonary D (Hz]	-,-	*,-×	*,*	-,-	-,-	1,00		-1	-1- ⁻	81.25	13	325	-,-	3000	-,-	0,704	0,047	0,704	40	40	650MHz			-1- ²		0,00	0,10	
10	Acceleration Voltana ML [MeV / m]		5 12				5 12 20		8.2	12.5 to 15	10(14)	12.5	7	16	5000		19	18	22.5	19	17.5	10							
10	Accelerating voltage ML [Mev / m]		2 linacs in				2 linaca		0,2	12.5 10 15	10(14)	original: one		10			10	10	22,5	10	17,5	10							
			racetrack				racetrack 25		one	one	1	cruomodula	1				S-cell			4.5-cell							2.2-cel1		
			20.034/				CM cor		arramadula	arramainta	arrian adula	mith 3.7 coll	arromodula	64 CM mit	4 CM mith 2 20		annita	2.5 acti	One 5 cell	antitian /	4.5 coll						antition in		
			linna 5				tiona 5 colt		mith 2.9 coll	with 4.9 coll	mith 2	amiter com	mith 6.7	6.7 col1	coll emities		amonadul	antition /	antitu in one	or carried and	antition /	2.9 col1					000		
	A sector structure MI						and 7 cell		with 2 9-cen	with 4 5-cen	with 2	MERA Medule	with 0 7-	o /-cen	cen cavines		cryoniooor	cavities /	CM	cryoniodar	cavities/	2 y-cen					one data		
	Accelerating structure ML		cen				and /-cell		Cavities	cavities	Cavities 2	MILOR MODBLE	cell cavities	Cavities	eacn	_	e	1500 m 2	Cas	=	cryomodule	cavities					cryomodule		and the second sec
	Record and Aliza DAVI		500	40			700.00		17	50	24	25	26	5000	20.4	25	0	1500 x 2	22	10000	65.5	20							
12	Energy gam / mac [viev]		500	+0			/00,00		17	50	24	20	20	5000	50,4	25	v	intacs	22	10000	00,0	20							
13	Accelerating voltage injector [Mev / m]											20		_	C) (1, 1, 2,11	_													
															civit. 1 2-cell														
															plus 1 D-cell														
	A A 10 1 1 A A A A														cavity; CML2: 2							6600 MT							
14	Accelerating structure Injector	100	0.07	(0)	100	C 0	0.00		0.77 . 40	60		22	100		20-cell cavity		600	6000	600 · 6000	400	0.76	650MHz			CO	240			-
15	Bunch charge @ inj [pC]	135	0,07	60	135	60	0,20		0.77 to 40	60	80		123		0,007	1,1	500	5300	500 to 5000	400	375	15,4			60	240			_
16	Bunch length [ps]		0,7		0,15		0,70		0.2 to 3	0.05 to 2	1	2	3	2	2	4,3	8.5, 22	10	10 to 50			1							
17	Energy spread (extraction)		0.0001 (%)		0,5	0,5	0.0001 (2-3%)		1.2 x 10*	1×10^{-3}	5 keV	0,005	4,00E-04	2,00E-04	no data		no data	0,001	0,001			0,10%							
									1-1.6	(60pC/bunch																			
18	Transverse emittance [gamma mm mrad]	0,5		15	10	0,50		(7.7pC/bunch))	5 to 10	0.5 - 1.0	0,5	0,3	no data	1	2.5/3.5	20 to 70	0,3	50	6	1							
19	Av. Current @ inj [mA]	10	0,035	5	9	5	0,10		1	10	0,013	5	40	100	0,02	10	0,02	38	0,4	15	20	13		10		20	10	30	
20	Av. Current @ inj [mA] macro pulse										6,5																		
21	Injector Energy [MeV]		56		9	9	79,00		2,9	10,5	8,35	6,5	6	5	7,6	5	1,2	20	2	500	5	10					0,5		
22	Max beam energy @ end of accel [MeV]	160	1050	48	170	210	7079,00		20	800	35	32	150	5	68,4	105	1,2	18000	22	60000	400	50		35	30		50	11	
23	Max beam power @ end of accel [MW]	1,6	0,03675	0,24	1,53	1,05	0,7079	0	0,02	8	0,000455	0,16	6	0,5	0,001368	1,05	0,000024	684	0,0088	900	8	0,65	0	0,35	0	0	0,5	0,33	0
24	Max total current in cavity [mA]	20	0.07	10	18	10	1	0	2	20	0.026	10	320	200	0.08	40	0	456	0.8	90	120		0	0	0	0	Ó	180	0
25	Power on dump [MW]	0	0.00196	0	0.081	0.045	0.0079	0	0.0029	0.105	0.0001086	0.0325	0.24	0.5	0.000152	0.05	0.000024	0.76	0.0008	7.5	0.1		0	0	0	0	0.005	0	0
26	Power consumption of injector [MW]											0.0325	0.75	1.5				2.5											
27	Power consumption of Facility [MW]								1	10		4.2	0.8	20				24		100									
28	FEL section		10				no		VPS	Ves	VPS	not planned	10	10	10		no	10		10	No	Yes			Ves			Yes	
									,,,,,	,	,	not plained									110	UV and			,				_
																						Infrared.							
																						THz and							
																						CSR and							
																						Compton							
	FFI light tame								Infrared	FUV	TR											hackscatteri						TH-	
20	The light type									201					Thermionic gun				113MHz SRF			Vaccocatterr							
											DC Photo				(250keV:				gun with										
											gun with				tungsten wire)				room										
											500kV and		DC Photo	DC Photo	and Photo gun				temperature			Thermionic					Photocathod		
				DC Photo	DC Photo	DC Photo			DC mn 450	DC mm	GaAs	SRF Photo	Cathode	Cathode	(100keV -		Photocath	Photo	CsK2Sh			300kV DC					DC mp	DC	
30	Source type			Injector	Injector	Injector			kV	500kV	cathode	Injector	350kV	350kV	200keV): GaA.		od SRF gun	Injector	cathode:	na		FIIN					500kV	Gun	
24	Cathoda lifetima			injector		injector			faw month	one weels	1 week		2.6 days	2.6 dam	zoozer), oars		ou old goil	> 6h	ca00e,			Pour					JULKY	Coll	
20	Delarization		80%		4.		80%		No.	No	No	No.	2.0 days	2.0 days	85%		No	Ves		No	No								
			0070	110	110	10	0070		110	110	110	110	110	110	0.770		110	1 69		110	110								

By ERL 2019, now on HZB page https://www.helmholtz-berlin.de/projects/berlinpro/

ERLs Worldwide

09.03.2020 | Michaela Arnold | TU Darmstadt | AG Pietralla | Energy Recovery Linac

Based on ERL 2019 database, F. Hug

Operating ERLs (external)

Example is:

09.03.2020 | Michaela Arnold | TU Darmstadt | AG Pietralla | Energy Recovery Linac

CBETA

♦ At least 100 mA current will be needed for eRHIC hadron cooler (design limit for 1-turn CBETA)

- BNL and collaborators gained and demonstrated expertise in high-power ERLs.
- Successful operation, including energy recovery in each cavity (June 24th, 2019).
- Full 4-turn construction is underway.

June 2019: Successful 1-turn operation

December 2019: Successful 4-turn operation

https://www.bnl.gov/ newsroom/news.php? a = 116982

- Cornell DC gun
- 100mA, 6MeV SRF injector (ICM)
- 600kW beam dump
- 100mA, 6-cavity SRF CW Linac (MLC)

D2SCR01: a = 0.89566 mm, a = 1.4458 mm

ERLs under Design / Construction (external)

Examples are:

ال bERLinPro

Mainz Energy-recovering Superconducting Accelerator

bERLinPro

https://www.helmholtzberlin.de/projects/berlinpro/b pro-overview_en.html

- Demonstrator Facility for accelerator R&D
- Flexible parameters → standard mode shown
- Full energy recovery expected 2021

BERLinPro: Main Project Parameters

Total beam energy, MeV	50
Maximum average current, mA	100
Bunch charge, pC	77
Bunch repetition rate, GHz	1.3
Emittance (normalized), π mm mrad	≤ 1.0
Bunch length (rms), ps	2.0 or smaller
Maximum Losses (relative)	< 10 ⁻⁵

MESA

Picture Courtesy: D. Simon (Mainz)

- External beam mode: polarized, 150µA 155 MeV
- Energy recovery mode: non-polarized, 1mA to 10mA, 105 MeV

T. Stengler et al., *Status of the Superconducting Cryomodules and Cryogenic System for the Mainz Energy-Recovering Superconducting Accelerator MESA*, Proceedings of IPAC 2016

Outline

- Introduction to Energy Recovery Linacs (ERLs)
- Examples
- Commissioning of ERL Mode @ S-DALINAC
 - Introduction
 - Once-recirculating ERL operation
 - Test phase twice-recirculating ERL operation
- Summary and Outlook
- Research Training Group on ERLs

S-DALINAC

Superconducting-DArmstadt-LINear-ACcelerator

Thrice recirculating operation

Energy gain injector:7.6 MeVEnergy gain LINAC:30.4 MeV

Beam current: 20 µA

TECHNISCHE UNIVERSITÄT DARMSTADT

Path Length Adjustment System

• Adjusting the phase of the beam re-entering the main LINAC

- Adjusting the phase of the beam re-entering the main LINAC
- Existing systems in old recirculation beam lines
 - Stroke F measured: 33.76 mm
 - Stroke T measured: 30.62 mm

Stroke of both systems enlarged

- Adjusting the phase of the beam re-entering the main LINAC
- Existing systems in old recirculation beam lines
 - Stroke F measured: 33.76 mm _____ Stroke of both systems
 - Stroke T measured: 30.62 mm _____ enlarged
- New systems are capable of full RF wavelength adjustment
 - Stroke measured: (50.21 + 50.57) mm = 100.78 mm

S-DALINAC as ERL

• Thrice-recirculating lattice was not optimized for ERL operation

• Under investigation

• Thrice-recirculating lattice was not optimized for ERL operation

Simulation by Jonas Pforr

09.03.2020 | Michaela Arnold | TU Darmstadt | AG Pietralla | Energy Recovery Linac

Simulation by Jonas Pforr

09.03.2020 | Michaela Arnold | TU Darmstadt | AG Pietralla | Energy Recovery Linac

Overview Operation Modes / Commissioning

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

 Commissioning of modes following beam time schedule

Overview Operation Modes / Commissioning

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

 Commissioning of modes following beam time schedule

Efficiency of an ERL

• "Beam-recovery efficiency"

 $\varepsilon_b = \frac{E_{b,max}I_{b,dump} - E_{b,dump}I_{b,dump}}{E_{b,max}I_{b,max}}$

Limited by design of accelerator

$$\varepsilon_{b,max} = 1 - \frac{E_{b,dump}}{E_{b,max}}$$

- "RF recovery effect"
 - Reduction of external RF power as compared to single-end operation

$$\varepsilon_{RF} = \frac{P_{RF,acc.} - P_{RF,ERL}}{P_{RF,acc.}}$$

Once-Recirculating ERL Operation Energy gain injector: 2.5 MeV Energy gain LINAC: 20.0 MeV

• Current (I_{in}): 1.2 μA

Data taken in four phases:

- Phase 1 (ERL Operation): one accelerated and one decelerated beam
- Phase 2 (no beam): RF operation of cavity without beam
- Phase 3 (1x acc.): one accelerated beam
- Phase 4 (2x acc.): two accelerated beams
- 1st German ERL, August 2017
- 1 of only 3 running SRF ERL worldwide (D, USA, J)

Raw Data

- Forward (P_f) and reverse (P_r) powers of first cavity
- Thermal drift over time during beginning of operation due to heating of input coupler
- Only changes due to beamloading relevant

M. Arnold et al., First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac, Phys. Rev. Accel. Beams **23**, 020101 (2020).

Raw Data (during "no beam")

 Linear regression (time period without beam)

$$\tilde{P}_{i} = P_{i} - \left[\left(\frac{\Delta P}{\Delta t} \right)_{i} t + \tilde{P}_{0,i} \right]$$

- Slope of both powers nearly identical
- Correction of raw data by linear background → trivial warmingup drifts eliminated

M. Arnold et al., First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac, Phys. Rev. Accel. Beams **23**, 020101 (2020).

Once-Recirculating ERL Operation

M. Arnold et al., First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac, Phys. Rev. Accel. Beams **23**, 020101 (2020).

09.03.2020 | Michaela Arnold | TU Darmstadt | AG Pietralla | Energy Recovery Linac

RF Measurements - Power

Operation	Mean Beam Power in W
No Beam	0.00 ± 0.01
One Beam (acc.)	4.51 ± 0.16
Two Beams (acc. + acc.)	8.59 ± 0.01
ERL (acc. + dec.)	0.45 ± 0.03

RF-recovery effect:

 $\varepsilon_{RF} = (90.1 \pm 0.3)\%$

Value and uncertainty take correlations between fit parameters into account.

Beam-recovery efficiency:

 $\varepsilon_{b,max} = 88.9\%$

M. Arnold et al., First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac, Phys. Rev. Accel. Beams **23**, 020101 (2020).

RF Measurements - Power

Operation	Mean Beam Power in W
No Beam	0.00 ± 0.01
One Beam (acc.)	4.51 ± 0.16
Two Beams (acc. + acc.)	8.59 ± 0.01
ERL (acc. + dec.)	0.45 ± 0.03

RF-recovery effect:

 $\varepsilon_{RF} = (90.1 \pm 0.3)\%$

Value and uncertainty take correlations between fit parameters into account.

Beam-recovery efficiency:

8.59 about 10% less than 2 x 4.51

 $\varepsilon_{b,max} = 88.9\%$

Incomplete transmission due to abstaining from beamline optimization

M. Arnold et al., First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac, Phys. Rev. Accel. Beams **23**, 020101 (2020).

09.03.2020 | Michaela Arnold | TU Darmstadt | AG Pietralla | Energy Recovery Linac

Analytical Model

- Beam as additional external load couples to electric field
- Reflection coefficient changes

$$r = \frac{\beta_{input} - (1 + \beta_{output} + \beta_{beam})}{\beta_{input} + (1 + \beta_{output} + \beta_{beam})} = \sqrt{\frac{P_r}{P_f}}$$

LLRF system keeps electric field in cavity constant by changes in P_f

$$P_{f} = P_{0} \frac{\left[\beta_{input} + (1 + \beta_{output} + \beta_{beam})\right]^{2}}{4\beta_{input}}$$

• P_r reacts accordingly (almost symmetrically)

$$P_{r} = P_{0} \frac{\left[\beta_{input} - (1 + \beta_{output} + \beta_{beam})\right]^{2}}{4\beta_{input}}$$

M. Arnold et al., First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac, Phys. Rev. Accel. Beams **23**, 020101 (2020).

09.03.2020 | Michaela Arnold | TU Darmstadt | AG Pietralla | Energy Recovery Linac

Analytical Model

Analytical Model With Uncertainties in Data

09.03.2020 | Michaela Arnold | TU Darmstadt | AG Pietralla | Energy Recovery Linac

Phase Slippage

59

- Total change in setpoint of path length adjustment system: 186°
- Injection energy of 2.5 MeV $\rightarrow \gamma \approx 4.9$
 - Time-of-flight effects
 - Energy after one recirculation to re-enter main linac: 22.5 MeV $\rightarrow \gamma \approx 44$
 - Same effect for deceleration at last cavity
 - Need to shift phase of re-entering beam \rightarrow 6°

Overview Operation Modes / Commissioning

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

 Commissioning of modes following beam time schedule

Trials Twice-Recirculating ERL

October 2018

Example and Diagnostics

2018 DARMSTADT Example and Diagnostics A1SCO3 LINAC A1SC06 A1SC08 3.85 MeV A1SC03 (detuned), A1SC06 (electronics problem), A1T1 A1SC08 (damage transfer line) not operable 15.4 MeV Diagnostics Beam loading cavities (first 10+ different F1T4 decelerated beam in A1SC07 settings tried in up to $\sim 90\%$ recovered) \sim 2.5 weeks after first decelerated RF monitor system beam in F Beam loss monitor system Systematic BeO targets with hole on F1 investigations on Check path-length In F to S settings, phase adjustment system position In F to ERL-dump slippage,... (once decelerated) $(\rightarrow 180^{\circ})$

Trials Twice-Recirculating ERL

62

TECHNISCHE

UNIVERSITÄT

October

Trials Twice-Recirculating ERL

3.85 MeV

October 2018

A1SCO3 LINAC

A1SC08

Example and Diagnostics

- 10+ different settings tried in ~2.5 weeks after first decelerated beam in F
- Systematic investigations on settings, phase slippage,...

15.4 MeV

In F to S
In F to ERL-dump
(once decelerated)

A1SC03 (detuned), A1SC06 (electronics problem), A1SC08 (damage transfer line) not operable

2nd setting: March 2020

A1SC06

Diagnostics

- Beam loading cavities (first decelerated beam in A1SC07 up to ~90% recovered)
- RF monitor system
- Beam loss monitor system
- BeO targets with hole on F1
- Check path-length adjustment system position (→ 180°)

Outline

- Introduction to Energy Recovery Linacs (ERLs)
- Examples
- Commissioning of ERL Mode @ S-DALINAC
- Summary and Outlook
- Research Training Group on ERLs

Take Home Message

Test phase twicerecirculating ERL

Measurements ERL mode, analytical model

Take Home Message

Principle, history, reasons, applications

S-DALINAC

Take Home Message

- F

Principle, history, reasons, applications

S-DALINAC

Measurements ERL mode, analytical model

Test phase twicerecirculating ERL

 $|-N\lambda|^2 \rightarrow |-N\lambda|^2 \rightarrow |+N\lambda|^2 \rightarrow |+N\lambda$

power divider

RF

powe

source Fig. 2.

beam2

beam1

n=an integer

N = an integer

gun

maane

accelerator section 2

wavelength = λ

Outlook:

wide

Work on twicerecirculating ERL operation (simulations, diagnostics, tests)

im beam current/ beam energy for ERL facili

Outline

- Introduction to Energy Recovery Linacs (ERLs)
- Examples
- Commissioning of ERL Mode @ S-DALINAC
- Summary and Outlook
- Research Training Group on ERLs

Research Training Group: Accelerator Science and Technology for Energy-

Recovery Linacs "AccelencE"

- Sole coordinated DFG support for research training in accelerator science in Germany
- Joint programme by Darmstadt and Mainz
 - FRI in operation

TECHNISCHE

UNIVERSITÄT

DARMSTADT

ERL under • construction

JGU

TECHNISCHE

UNIVERSITÄT DARMSTADT

Research Training Group: Accelerator Science and Technology for Energy-

Recovery Linacs "AccelencE"

- Supervising and qualification concept
- Free positions, please apply
- More information after the talk or see https://www.ikp.tudarmstadt.de/accelence_main/startseite_accelence.en.jsp

TECHNISCHE

UNIVERSITÄT DARMSTADT

Thank you for your attention!

TECHNISCHE UNIVERSITÄT DARMSTADT

Picture: Jan-Christoph Hartung

