

Department of Physics and Astronomy GHENT UNIVERSITY

radiation physics
biomaterials research
polymer chemistry
atomic and solid-state physics
medicine
food technology and agriculture

15 MeV electron accelerator intense electron and X-ray beams

WM/JUAS

5

	APPLICATION			
Accelerators in the world * year 2007 (approximate numbers)	High-energy physics research		120	
	Synchrotron radiation sources		50	
	Ion beam analysis		200	
	Photon or electron therapy		9100	
	Hadron therapy		30	
	Radioisotope production		550	
	Ion implantation		9500	
	Neutrons for industry or security		1000	
	Radiation processing		2000	
	Electron cutting and welding		4500	
	Non-destructive testing		650	
* R. Hamm at 9th ICFA Seminar October 30, 2008		TOTAL	27700	
WM/JUAS	~ 60% low-energy electron accelerators			

6

-

Low-energy electron accelerators

- 1. Basic principles of X-ray production
 - → bremsstrahlung
 - \rightarrow synchrotron radiation
- 2. Physical, chemical and biological aspects of the application of electrons and bremsstrahlung photons
- 3. Electron accelerators in medicine
- 4. Electron accelerators in industry
- 5. Electron storage rings for medicine and industry

WM/JUAS

7

Radiation of a <u>non-relativistic</u> accelerating charge

LARMOR

$$P = \frac{q^2}{6\pi\varepsilon_0 m_o^2 c^3} \left(\frac{d\vec{p}}{dt}\right)^2$$

Radiated power $\sim 1/m_0^2$

 \rightarrow protons - electrons: factor 3.5 10⁶

WM/JUAS

Radiation of a relativistic accelerating charge

LIENARD

$$P = \frac{q^2 \gamma^6}{6\pi\varepsilon_0 c^3} \left[\left(\frac{d\vec{v}}{dt} \right)^2 - \frac{1}{c^2} \left(\vec{v} \wedge \frac{d\vec{v}}{dt} \right)^2 \right]$$

Longitudinal force

$$\frac{d\vec{v}}{dt} = \frac{1}{m_0 \gamma^3} \frac{d\vec{p}}{dt}$$

$$P = \frac{q^2}{6\pi\varepsilon_0 m_o^2 c^3} \left(\frac{d\vec{p}}{dt}\right)^2$$

Transversal force

$$\frac{d\vec{v}}{dt} = \frac{1}{m_0 \gamma} \frac{d\vec{p}}{dt}$$

$$P = \frac{q^2 \gamma^2}{6\pi\varepsilon_0 m_o^2 c^3} \left(\frac{d\vec{p}}{dt}\right)^2$$

WM/JUAS

Q

Radiation of an accelerating charge - angular distribution

WM/JUAS

Radiation of relativistic electrons in a transverse field

Coulomb field of atomic nuclei

Magnetic field

BREMSSTRAHLUNG

braking radiation

SYNCHROTRON RADIATION

WM/JUAS

11

Accelerator-based radiotherapy

1937 first hospital-based VAN DE GRAAFF

1946 first hospital-based BETATRON

1952 first hospital-based RF LINAC

WM/JUAS

13

1953

WM/JUAS

14

,

Accelerator-based radiotherapy

1937 first hospital-based VAN DE GRAAFF

1946 first hospital-based BETATRON + WILSON:

use of protons and ions

1952 first hospital-based RF LINAC

1990 first hospital-based PROTON SYNCHROTRON ←

Now electrons and photons: routine therapy

IMRT, IGRT, IMAT, CYBERKNIFE...

protons and ions remains less conventional

WM/JUAS

15

Low-energy electron accelerators in industry

1905 APPLEBY and MILLER, patent:

'use of X-rays to bring about an improvement in

the conditions of foodstuffs'

1956 JOHNSON and JOHNSON

sterilisation of medical devices

INDUSTRY radiation processing

in a car: dashboard, tyres, cables, painting ... in an airplane: constructional components ...

at the doctor: syringes, pharmaceuticals, sterile dressings

in the supermarket: strawberries, red meat, shrink packaging materials ... in the clothing shop: permanently-creased trousers or T-shirts, raincoats ...

at home: electrical cables, parquet

in the human body: prostheses, catheters, advanced drug-delivery systems ...

WM/JUAS

Bremsstrahlung production

COLLISION STOPPING POWER → HEAT !!!

$$-\left(\frac{dT}{dx}\right)_{c} = 2\pi \frac{e^{4}NZ}{m_{e}\beta^{2}c^{2}} \left[ln \frac{m_{e}\beta^{2}c^{2}T}{2I^{2}(1-\beta^{2})} + (1-\beta^{2}) - ln2(2\sqrt{1-\beta^{2}} - 1 + \beta^{2}) + \frac{\left[1 - \sqrt{1-\beta^{2}}\right]}{8} \right]$$

BREMSSTRAHLUNG STOPPING POWER

$$-\left(\frac{dT}{dx}\right)_{r} = \frac{NTZ(Z+1)e^{4}}{137m_{e}^{2}c^{4}} \left[4\ln\left(\frac{2T}{m_{e}c^{2}}\right) - \frac{4}{3}\right]$$

high Z high melting point < 5 MeV

WM/JUAS

19

BREMSSTRAHLUNG SOURCE:

- forward-peaked
- on / off
- Cobalt 12.4% / year ↓
- no nuclear waste
- X-ray and electron mode

21

WM/JUAS

Low-energy electron machines

- 1. Basic principles of X-ray production
 - → bremsstrahlung
 - → synchrotron radiation

2. Physical, chemical and biological aspects of the application of electrons and bremsstrahlung photons

- 3. Electron accelerators in medicine
- 4. Electron accelerators in industry
- 5. Electron storage rings for medicine and industry

WM/JUAS

FREE RADICALS

damage DNA radiotherapy food irradiation

food irradiation sterilisation

• chain reaction $R^\circ + AB \rightarrow R-AB^\circ$ $R-AB^\circ + AB \rightarrow R-AB-AB^\circ$

polymer chemistry

- special chemical reactions radiation synthesis
- graft a second polymer curing biomaterials

WM/JUAS

25

Physical, chemical and biological effects

~ deposited energy

DOSE = deposited energy per unit mass

1 Gray = 1 J / kg

1 Gy = 100 rad

4.2 kGy in water \rightarrow 1° C

 \Rightarrow high yields of reactive species at low temperatures

ELECTRONS or PHOTONS

similar end products different spatial distributions

WM/JUAS

Dose fractionation

- dose-dependent survival fraction
- oxygenation
- radiosensitivity during cell cycle

Cells are more anoxic further from blood vessels

Tumour shrinks

35

WM/JUAS

Dose fractionation

- · dose-dependent survival fraction
- oxygenation
- radiosensitivity during cell cycle

