
L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
J
a

n
u

a
ry

 2
0
2

0

1L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
J
a

n
u

a
ry

 2
0
2

0

1

Linear imperfections and correction

Hannes BARTOSIK with the help of 

Androula ALEKOU and Haroon RAFIQUE

Accelerator and Beam Physics group

Beams Department CERN

Joint University Accelerator School 

Archamps, FRANCE

January 2020



L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
J
a

n
u

a
ry

 2
0
2

0

2

Bibliography

■ Courses on linear imperfections

❑ O. Brüning, Linear imperfections, CERN Accelerator School, 

Intermediate Level, Zeuthen 2003, 

http://cdsweb.cern.ch/record/941313/files/p129.pdf

■ Books treating linear imperfections

❑ H. Wiedemann, Particle Accelerator Physics, Third edition, Springer, 

2007.

❑ K. Wille, The physics of Particle Accelerators, Oxford University Press, 

2000.

❑ S.Y. Lee, Accelerator Physics, 3rd edition, World Scientific, 2011.

http://cdsweb.cern.ch/record/941313/files/p129.pdf


L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
J
a

n
u

a
ry

 2
0
2

0

3L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
J
a

n
u

a
ry

 2
0
2

0

3

Transverse beam dynamics

reminder
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Equations reminder

: total energy

: kinetic energy

: momentum 

: reduced velocity

: reduced energy

: reduced momentum

Lorentz equation
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Reference trajectory

❑ Cartesian coordinates not useful to describe motion in a circular 

accelerator (not true for linacs)

❑ A system following an ideal path along the accelerator is used (Frenet

reference system)

■ The curvature vector is

■ From Lorentz equation

where we used the curvature vector definition and

❑ Using , the ideal path of the 

reference trajectory is defined by

Ideal path

Particle trajectory

ρ

ux

uy

us

x
y s
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Beam guidance

❑ Consider uniform magnetic field in a direction 

perpendicular to particle motion. From the reference trajectory 

equation, after developing the cross product and considering that the 

transverse velocities                      , the radius of curvature r is given by

❑ We define the magnetic rigidity 

❑ In more practical units

❑ For ions with charge multiplicity Z and atomic mass A, the energy per 

nucleon is
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Dipoles

❑ Consider a ring for particles 

with energy E with N dipoles 

of length L (or effective length 

l, i.e. measured on beam path)

■ Bending angle

■ Bending radius 

■ Integrated dipole strength

❑ Note: 

■ By choosing a dipole field, the dipole 
length is imposed and vice versa

■ The higher the field, the shorter or smaller 
number of dipoles can be used

■ The ring circumference (cost) is 
influenced by the field choice

B

l
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Beam focusing

■ Consider a particle in a dipole field

❑ In the horizontal plane

■ it performs harmonic oscillations

with frequency

■ the horizontal acceleration is described by

■ there is a weak focusing effect in the horizontal plane

❑ In the vertical plane, the only force present is gravity

■ Particles are displaced vertically following the usual law: 

■ With ag ≈ 10 m/s2, the particle is displaced by 18 mm (LHC dipole aperture) 

in 60 ms (few hundred turns in LHC)  need focusing!

s = vt

reference orbit

particle with x0

initial offset
y



x
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Quadrupoles

■ Quadrupoles are focusing in one plane

and defocusing in the other

❑ The field is

❑ The resulting force

with the normalised gradient k defined as

❑ In practical units: 

❑ is the integrated norm. quadrupole strength

■ Need to alternate focusing and 

defocusing to control the beam, 

i.e. alternating gradient focusing   
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Quadrupoles
Quadrupoles are focusing in one plane and
defocusing in the other

The field is

The resulting force

Need to alternate focusing and defocusing in
order to control the beam, i.e. alternating
gradient focusing

From optics we know that a combination of two
lenses with focal lengths f1 and f2 separated by a
distance d

If f1 =  -f2, there is a net focusing effect, i.e.

v

F

B

F

B
v

… G is the gradient
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Equations of motion – Linear fields

❑ Consider s-dependent fields from dipoles and normal quadrupoles

❑ The total momentum can be written

❑ With magnetic rigidity and normalized gradient 

the equations of motion are

■ Inhomogeneous equations with s-dependent coefficients

■ The term corresponds to the dipole weak focusing and 

represents off-momentum particles 



L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
J
a

n
u

a
ry

 2
0
2

0

11

Hill’s equations

❑ Solutions are combination of the homogeneous and 

inhomogeneous equations’ solutions

❑ Consider particles with the design momentum. 

The Equations of motion become 

with and

■ Hill’s equations of linear transverse particle motion

❑ Linear equations with s-dependent coefficients (harmonic oscillator 

with time dependent frequency)

❑ In a ring (or in transport line with symmetries), the coefficients are 

periodic

❑ Not straightforward to derive analytical solutions for whole accelerator

George Hill
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Betatron motion

❑ The on-momentum linear betatron motion of a particle in both planes is 

described by (Floquet theorem)

with the twiss functions

the betatron phase

and the beta function     is defined by the envelope equation

❑ By differentiation, we have that the angle is
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General transfer matrix

❑ From the position and angle equations it follows that

❑ Expand the trigonometric formulas and set to get the transfer 

matrix from location 0 to s

with

and                                         the phase advance
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Periodic transfer matrix

■ Consider a periodic cell of length C

❑ The optics functions are

and the phase advance

❑ The transfer matrix is 

❑ The cell matrix can be also written as

with and the Twiss matrix
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Phase space ellipse

❑ The phase space coordinates (u, u’) of a single particle at a given 

location s of the machine lie on the phase space ellipse when plotted 

for several turns

❑ The values of the Twiss parameters and therefore the orientation of 

the phase space ellipse depend on the s location in the machine

❑ The Twiss parameters are periodic with the machine 

circumference. Their values are derived from the transfer matrix and 

they are uniquely defined at any point in the machine

turn 1

turn 2

turn 3

turn 4

turn 5

turn 6

turn 7
turn 8
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Illustration on a FODO lattice

a) b)

c)

a) Before foc. quad. b) After foc. quad. c) Before defoc. quad. d) After defoc. quad.

d)
QDs

QFs
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Tune and working point

❑ In a ring, the betatron tune is defined from the 1-turn phase advance

i.e. number of betatron oscillations per turn

❑ The tune is defined by the quadrupole arrangement and strength 

around the machine 

❑ The position of the tunes in a diagram of horizontal versus vertical  

tune is called working point

❑ The tunes are imposed by the choice of the quadrupole strengths

❑ One should try to avoid resonance conditions
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Transverse linear imperfections 

and correction
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Outline

■ Introduction

■ Closed orbit distortion (steering error)

 Beam orbit stability

 Imperfections leading to closed orbit distortion

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Dispersion and chromatic orbit

■ Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

■ Coupling error

 Coupling errors and their effect

 Coupling correction

■ Chromaticity
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Outline

■ Introduction

■ Closed orbit distortion (steering error)

 Beam orbit stability

 Imperfections leading to closed orbit distortion

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Dispersion and chromatic orbit

■ Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

■ Coupling error

 Coupling errors and their effect

 Coupling correction

■ Chromaticity
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From model to reality - fields

❑ The physical units of the machine model defined by the accelerator 

physicist must be converted into magnetic fields and eventually into 

currents for the power converters that feed the magnet circuits.

❑ Imperfections (= errors) in the real accelerator optics can be 

introduced by uncertainties or errors on: beam momentum, magnet 

calibrations and power converter regulation. 

Example of the LHC main 

dipole calibration curve

Magnet 

strength
Magnetic field

(gradient)

Requested 

current

Beam 

momentum
Magnet 

calibration curve 

(transfer function)

Power converter

Actual 

magnet 

current
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From model to reality - alignment

❑ To ensure that the accelerator elements are in the correct position the 

alignment must be precise – to the level of micrometers for CLIC !

■ For CERN hadron machines we aim for accuracies of around 0.1 mm.

❑ The alignment process implies:

■ Precise measurements of the magnetic axis in the laboratory with reference 

to the element alignment markers used by the survey group.

■ Precise in-situ alignment (position and angle) of the element in the tunnel.

❑ Alignment errors are a common source of imperfections
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Outline

■ Introduction

■ Closed orbit distortion (steering error)

 Beam orbit stability

 Imperfections leading to closed orbit distortion

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Dispersion and chromatic orbit

■ Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

■ Coupling error

 Coupling errors and their effect

 Coupling correction

■ Chromaticity
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Illustration of closed orbit distortion

1. Ideal machine toy model (no errors)

a) Particle injected on the design (or reference) orbit … remains on the 

design orbit turn after turn
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Illustration of closed orbit distortion

1. Ideal machine toy model (no errors)

a) Particle injected on the design (or reference) orbit … remains on the 

design orbit turn after turn

b) Particle injected with offset
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Illustration of closed orbit distortion

1. Ideal machine toy model (no errors)

a) Particle injected on the design (or reference) orbit … remains on the 

design orbit turn after turn

b) Particle injected with offset … performs betatron oscillations around 

the closed orbit which is the same as design orbit as long as there 

are no imperfections
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Illustration of closed orbit distortion

2. Ideal machine toy model with dipole error (unintended 

deflection) somewhere in the lattice

a) Particle injected on the design orbit … receives dipole kick every 

turn
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Illustration of closed orbit distortion

2. Ideal machine toy model with dipole error (unintended 

deflection) somewhere in the lattice

a) Particle injected on the design orbit … receives dipole kick every 

turn … and consequently performs betatron oscillation around a 

distorted closed orbit
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Illustration of closed orbit distortion

2. Ideal machine toy model with dipole error (unintended 

deflection) somewhere in the lattice

a) Particle injected on the design orbit … receives dipole kick every 

turn … and consequently performs betatron oscillation around a 

distorted closed orbit

b) Particle injected onto distorted closed orbit remains on closed orbit
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Sources of unintended deflections 

■ Field error (deflection error) of a dipole magnet

❑ This can be due to an error in the magnet current or in the 

calibration table (measurement accuracy etc.)

❑ The imperfect dipole can be expressed as the ideal one + a small error

■ A small rotation (misalignment) of a dipole magnet has the 

same effect, but (mostly) in the other plane

imperfect dipole ideal dipole

= +

small dipole 

error
 horizontal kick

ideal dipole

= +
φ

tilted dipole small dipole 

error

 vertical kick
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Misalignments causing feed-down

■ Misalignment of a quadrupole magnet

❑ Equivalent to perfectly aligned quadrupole plus small dipole
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Misalignments causing feed-down

■ Misalignment of a quadrupole magnet

❑ Equivalent to perfectly aligned quadrupole plus small dipole

= +

quadrupole  dipole
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Misalignments causing feed-down

■ Misalignment of a quadrupole magnet

❑ Equivalent to perfectly aligned quadrupole plus small dipole

= +

= +

quadrupole  dipole

horizontal offset creates 

horizontal (normal) dipole

vertical offset creates 

vertical (skew) dipole
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Multipole expansion

■ Multipole expansion of transverse magnetic field

❑ Start from the general expression for the transverse magnetic flux in 

terms of multipole coefficients

❑ In some cases it is more convenient to use “normalized” components:

so that:

Normal components

(“upright” magnets)

Skew components

(magnets rotated by             )

e.g. normal quad e.g. skew quad

Normalized normal components Normalized skew components
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Feed-down from multipoles

❑ Explicitly: the vertical field is the sum of all multipole components

■ Feed-down: lower order field components from misalignments 

❑ Systematic horizontal offset in normal (skew) magnets creates normal 

(skew) feed-down components as seen with                    at y=0:

❑ Systematic vertical offset in normal magnets results in alternating skew 

and normal feed-down components (and vice-versa for skew magnets), 

as can be worked out from

2(n+1)-pole 2n-pole        2(n-1)-pole            dipole

dipole   quadrupole        sextupole octupole            

for n = even                                             for n = odd
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Problem 1

Derive an expression for the resulting magnetic field when the closed orbit in a 

normal sextupole is displaced by δx from its center position. What are the 

resulting field components? Do the same for an octupole. What is the leading 

order multi-pole field error when displacing a general 2(n+1)-pole magnet? 

dx
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Effect of single dipole kick

❑ Consider a single dipole kick at s=s0

❑ The coordinates before and after the kick are 

❑ Taking the solutions of Hill’s equations (u and u’) at the location of the 

kick, the orbit will close to itself only if

❑ This yields the following relations for the invariant and phase 
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Closed orbit from single dipole kick 

❑ The initial conditions of the closed orbit at the location of the kick are 

therefore obtained as 

and

❑ For any location around the ring, the orbit distortion is written as

maximum distortion amplitude
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Integer and half integer resonance

❑ Dipole kicks get cancelled in 

consecutive turns for Q = n/2

❑ Half-integer tune cancels orbit 

oscillations

❑ Dipole kicks add-up in 

consecutive turns for Q = n

❑ Integer tune excites orbit 

oscillations (resonance) 

 orbit becomes unstable
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Single dipole kick vs. tune
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Single dipole kick vs. tune

❑ Closed orbit distortion is most critical for tunes close to integer 

closed orbit becomes unstable (but beam size not affected)

❑ The closed orbit distortion propagates with the betatron phase advance 

(e.g. single kick induces 4 oscillations for a tune of Q=4.x)
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Closed orbit examples

❑ Example of horizontal closed orbit for a machine with tune Q = 6.x

❑ The kink at the location of the deflection () can be used to localize 

the deflection (if it is not known)  can be used for orbit correction.

Q = 6.5

Q = 6.2Q = 6.1

Q = 6.9 Q = 6.7
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A deflection at the LHC

❑ In the example below for the 26.7km long LHC, there is one undesired 

deflection, leading to a perturbed closed orbit. 

Beam Position Monitor index along the LHC circumference

B
e

a
m

 p
o

s
it

io
n

 x
 (

m
m

)

Where is the location of the deflection?
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A deflection at the LHC

❑ To make our life easier we divide the position by and replace the 

BPM index by its phase  transform into pure sinusoidal 

oscillation

B
e

a
m

 p
o

s
it

io
n

Can you localize the deflection now?

Betatron phase 
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Global orbit distortion

■ Orbit distortion due to many errors

■ By approximating the errors as delta functions in n locations, the 
distortion at i observation points (Beam Position Monitors) is

with the kick produced by the jth error

❑ Integrated dipole field error 

❑ Dipole roll

❑ Quadrupole displacement

Courant and Snyder, 1957

φj
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Example: Orbit distortion in SNS

❑ In the SNS accumulator ring, the beta function is about 6 m in the 

dipoles and about 30 m in the quadrupoles, the tune is 6.2

❑ Consider dipole errors of 1 mrad

❑ The maximum orbit distortion in dipoles is

❑ For quadrupole displacement giving the same 1 mrad kick (and betas 

of 30 m) the maximum orbit distortion is 25 mm, to be compared to 

magnet radius of 105 mm

βx

βy

Dx

horizontal rms CO

vertical rms CO
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Statistical estimation of orbit errors

■ Consider random distribution of errors in N magnets

❑ By squaring the orbit distortion expression and averaging over the 

angles (considering uncorrelated errors), the expectation (rms) value is 

given by

■ Example:

❑ In the SNS ring, there are 32 dipoles and 54 quadrupoles

❑ The rms value of the orbit distortion in the dipoles

❑ In the quadrupoles, for equivalent kick
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Correcting closed orbit distortion

■ Horizontal dipole correctors and BPMs close to focusing quads + 
Vertical dipole correctors and BPMs next to defocusing quads

❑ Highest sensitivity / effect on closed orbit due to beta-function maxima

■ Measure orbit in BPMs and minimize orbit distortion

❑ Locally

■ Closed orbit bumps

■ Singular Value Decomposition (SVD)

❑ Globally

■ Harmonic: minimizing components of orbit frequency response from 
Fourier analysis

■ MICADO: finding the most efficient corrector for minimizing the rms orbit 

■ Least square minimization using orbit response matrix of correctors

corrector
BPM

quadrupole

BPM: Beam Position Monitor

DH, DV: correctors

SPSDH
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Closed orbit bumps

■ Often it is needed to steer the closed-orbit away from the nominal 
trajectory in a localized part of a synchrotron 

❑ Injection / extraction

❑ Local orbit correction (or steering around local aperture restrictions)

■ Standard bump configurations exist

❑ π-bump (with 2 correctors)

❑ 3 and 4-corrector bumps 

unperturbed 

closed orbit

local orbit bump

dipole

dipole

septum

example of 2-corrector bump

example of 3-corrector bump
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Closed orbit bumps

■ Often it is needed to steer the closed-orbit away from the nominal 
trajectory in a localized part of a synchrotron 

❑ Injection / extraction

❑ Local orbit correction (or steering around local aperture restrictions)

■ Standard bump configurations exist

❑ π-bump (with 2 correctors)

❑ 3 and 4-corrector bumps 

unperturbed 

closed orbit

fast kick

dipole

dipole

septum

example of 2-corrector bump

example of 3-corrector bump
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Transport of closed orbit distortion

❑ Consider a transport matrix between positions 1 and 2

❑ The transport of transverse coordinates is written as

❑ Consider a single dipole kick at position 1

❑ Then, the first equation may be rewritten

❑ Replacing the coefficient from the general betatron matrix
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Orbit bumps: 2-corrector bump

❑ Consider a cell in which correctors are placed close to the focusing 

quads

❑ The orbit shift at the 2nd corrector is

❑ This orbit bump can be closed by choosing a phase advance equal to 

between correctors (this is called a “   -bump”)

❑ The angle should satisfy the following equation 

QF QF QF QF QF

QD QD QD QD

s

x

q1 q2
dipole 

corrector

dipole 

corrector
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Orbit bumps: 3-corrector bump

❑ Works for any phase advance if the three correctors satisfy

❑ Angle of the closed orbit in the center of the bump is defined by above 

condition (cannot be adjusted independently of bump amplitude)

QF QF QF QF QF

QD QD QD QD

s

x

q1 q2 q3
dipole 

corrector

dipole 

corrector
dipole 

corrector
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Orbit bumps: 4-corrector bump

◻Works for any phase advance

◻Position xb and angle x’b of the 

bump at location sb can be 

adjusted independently

◻Can be used for aperture 

scanning, extraction bumps, 

…

QF QF QF QF QF

QD QD QD QD

s

x

q1 q2 q3 q4

xb

x’b

dipole 

corrector

dipole 

corrector
dipole 

corrector

dipole 

corrector

sb
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Problem 2

Three correctors are placed at locations with phase advance of between 

them and beta functions of 12, 2 and 12 m. How are the corrector kicks related to 

each other in order to achieve a closed 3-corrector bump (i.e. what is the 

relative strength between the three kicks)?

QF QF QF QF QF

QD QD QD QD

s

x

q1 q2 q3
dipole 

corrector

dipole 

corrector
dipole 

corrector
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Closed orbit correction: MICADO

❑ The problem of correcting the orbit deterministically came up a long 

time ago in the first CERN machines.

❑ B. Autin and Y. Marti published a note in 1973 describing an algorithm 

that is still in use today (but in JAVA/C/C++ instead of FORTRAN) at 

ALL CERN machines: MICADO*

(Minimization of the quadratic orbit distortions)
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MICADO – how does it work?

❑ The intuitive principle of MICADO is rather simple

❑ Need a model of the machine

❑ Compute for each orbit corrector what the effect (response) is 

expected to be on the orbit
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MICADO – how does it work?

❑ MICADO compares the response of every corrector with raw orbit

❑ MICADO picks out the corrector that has the best match with the orbit, 

and that will give the largest improvement to the orbit deviation rms

❑ The procedure can be iterated until the orbit is good enough (or as 

good as it can be)

…
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MICADO – LHC Orbit example

❑ The raw orbit at the LHC can have huge errors, but the correction 

(based partly on MICADO) brings the deviations down by a factor 20

MICADO & Co

LHC vacuum chamber

44 mm

34 mm

50 mm

Corrected horizontal orbit of ring 1

At the LHC a good orbit correction is vital !

Uncorrected horizontal orbit of ring 1

50 mm
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Response matrix approach

■ This approach works for orbit correction when using the measured 
orbit distortion (but also for beta-beating when using ∆β/β, etc.)

❑ Available set of correctors: 

❑ Available observables (here the Beam Position Monitors):

❑ Assume the linear approximation is good (small corrections):

❑ Use optics model to compute response matrix       (i.e. the orbit change in 
the ith monitor due to a unit kick from the jth corrector): 

… or use, e.g. MADX 

❑ Invert or pseudo-invert the response matrix to compute an effective 
global correction based on the measured        :

❑ In case the number of correctors is not the same as the number of Beam 
Position Monitors one has to perform a pseudo matrix inversion, for 
example using the “Singular Value Decomposition (SVD)” algorithm
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Singular Value Decomposition

N monitors / N correctors

N monitors / M correctors

Monitors
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Problem 3

SNS: A proton ring with kinetic energy of 1 GeV and a circumference of 248 m

has 18, 1 m-long focusing quads with gradient of 5 T/m. In one of the quads, the 

horizontal and vertical beta function are 12 m and 2 m respectively. The rms beta 

function in both planes on the focusing quads is 8 m. With a horizontal tune of 6.23

and a vertical of 6.2, compute the expected horizontal and vertical orbit distortions 

on a single focusing quad given by horizontal and vertical misalignments of 

1 mm in all the quads. What happens to the horizontal and vertical orbit distortions 

if the horizontal tune drops to 6.1 and 6.01? 

S. Henderson et al. (2005)
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Problem 4

The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 

focusing and 108 defocusing quadrupoles of length 3.22 m and a gradient of 15 T/m, 

with a horizontal and vertical beta of 108 m and 30 m in the focusing quads (30 m 

and 108 m for the defocusing ones). The tunes are Qx=20.13 and Qy=20.18. Due to a 

mechanical problem, a focusing quadrupole was sinking down in 2016, resulting in an 

increasing closed orbit distortion compared to a reference taken earlier in the year. 

■ By how much the quadrupole had shifted down when the maximum vertical closed 

orbit distortion amplitude in defocusing quadrupoles reached 4 mm?

■ Why was there no change of the horizontal orbit measured?

■ How big would have been the maximum closed orbit distortion amplitude if it would 

have been a defocusing quadrupole?

vertical BPMs (at defocusing quadrupoles)

Difference orbit wrt reference (18.08.2016)

horizontal BPMs (at focusing quadrupoles)

0

0.5

1

1.5
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Beam orbit stability

■ Beam orbit stability is very critical 

❑ Injection and extraction efficiency of synchrotrons

❑ Stability of collision point in colliders

❑ Stability of the synchrotron light spot in the beam lines of light sources

■ Consequences of orbit distortion

❑ Miss-steering of beams, modification of dispersion function, resonance 
excitation, aperture limitations, lifetime reduction, coupling, modulation 
of lattice functions, poor injection/extraction efficiency

■ Sources for closed orbit drifts

❑ Long term (years - months): ground settling, season changes

❑ Medium term (days - hours): sun and moon, day-night variations 
(thermal), rivers, rain, wind, refills and start-up, sensor motion, drift of 
electronics, local machinery, filling patterns

❑ Short term (minutes - seconds): ground vibrations, power supplies, 
experimental magnets, air conditioning, refrigerators/compressors
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Off-momentum particles in a dipole

■ Up to now all particles had the same momentum p0

■ What happens for off-momentum particles, i.e. particles with 

momentum p0+Δp?

❑ Consider a dipole with field B and 

bending radius

❑ Recall that the magnetic rigidity is 

and for off-momentum particles

❑ Considering the effective length of the dipole unchanged

❑ Off-momentum particles get different deflection (different orbit)

θ

p0+Δp

p0

ρ

ρ+Δρ
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Dispersion equation

■ Consider the equations of motion for off-momentum particles

❑ The solution is a sum of the homogeneous (on-momentum) and the 

inhomogeneous (off-momentum) equation solutions

❑ In that way, the equations of motion are split in two parts

❑ The dispersion function can be defined as

■ The dispersion equation is
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Closed orbit including dispersion

❑ Design orbit is defined by main dipole field

❑ On-momentum particles oscillate around the closed orbit (which is 

different compared to the design orbit in case of imperfections)

❑ Off-momentum particles oscillate around the chromatic closed orbit, 

defined by the dispersion function times the momentum offset added to 

the on-momentum closed orbit

on-momentum 

particle at a given 

s-location

off-momentum 

particle at a given 

s-location

give ellipse
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Impact of earth tides on LHC energy

❑ The LHC circumference is oscillating periodically due to Earth tides, 

caused by sun and moon, which move the Earth surface up and down 

(the Moon contributes ~2/3, the Sun contributes ~1/3)

❑ A change of beam energy of 0.014% is observed (through radial beam 

excursion for given RF frequency), corresponding to a change of 

circumference of 1.1 mm

❑ Very important for experiments for calibrating collision events!

E. Todesco and J. Wenninger,  PR-AB 20, 081003 (2017)

– predicted 

– observed
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Outline

■ Introduction

■ Closed orbit distortion (steering error)

 Beam orbit stability

 Imperfections leading to closed orbit distortion

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Dispersion and chromatic orbit

■ Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

■ Coupling error

 Coupling errors and their effect

 Coupling correction

■ Chromaticity
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Illustration of optics distortion

■ Ideal machine toy model with regular FODO lattice and 
quadrupole error at the end of circumference 

❑ Particle injected with offset performs betatron oscillations but gets 
additional focusing from quadrupole error

❑ There is a tune-shift (additional de-/focusing)

❑ Beam envelope is distorted around the machine … “beta-beating”
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Gradient error and optics distortion

■ Optics functions perturbation can induce aperture restrictions

■ Tune perturbation can lead to reduced beam stability (dynamic 
aperture)

■ Broken super-periodicity  excitation of all resonances

❑ In a ring made of N identical cells, only resonances with integer multiples 
of N can be excited

■ Sometimes control of optics is critical for machine performance

❑ Beta functions at collision points or at collimators (e.g. LHC)

■ Sources

❑ Errors in quadrupole strengths (random and systematic)

❑ Injection elements

❑ Higher-order multi-pole magnets and errors

■ Observables

❑ Tune-shift

❑ Beta-beating

❑ Excitation of integer and half integer resonances
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Gradient error

❑ Consider the transfer matrix for 1-turn

❑ Consider a gradient error in a quad. In thin element approximation the 

quadrupole matrix without and with error are

❑ The new 1-turn matrix is

which yields
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Gradient error and tune-shift

❑ Can also be written as a new matrix with a new tune 

❑ The traces of the two matrices describing the 1-turn should be equal

which gives

❑ Developing the right hand side 

and finally 

❑ For a quadrupole of length l the tune shift is

❑ For distributed quadrupole errors

≈ ≈
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Gradient error and beta distortion

❑ Consider the unperturbed transfer matrix for one turn

with

❑ Introduce a gradient perturbation between the two matrices

❑ Recall that and write the perturbed term as

where we used and

a)
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Gradient error and beta distortion

❑ On the other hand 

❑ Equating the two terms 

❑ using and integrating yields

❑ for distributed errors around the machine

b)

a)  = b)
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Optics distortion vs. tune

❑ Quadrupole errors have biggest impact close to integer and half 

integer tunes  envelope (or beam size) becomes unstable

❑ Optics distortion propagates with twice the tune (check the plot)
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Quadrupole error in phase space

❑ Therefore integer tunes and half integer tunes need to be avoided 

for machine operation to avoid beam envelope becoming unstable 

due to quadrupole errors

❑ Recall: for integer tunes dipole errors drive the closed orbit unstable, 

but for half integer tunes they have minimum effect

Q = n (integer)

 kicks from quadrupoles add 

up (same as for kicks from 

dipoles) 

Q = n/2 (half integer)

 kicks from quadrupoles add up 

(while kicks from dipoles cancel)
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Optics distortion characteristics

❑ Let’s take a look at the LHC …

Nominal optics

Perturbed optics

Example: one quadrupole gradient is incorrect

Zoom into a subsection
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Optics distortion characteristics

❑ The local beam optics perturbation

❑ … note the oscillating pattern

Nominal optics

Perturbed optics
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Optics distortion characteristics

❑ The error is easier to analyse and diagnose if one considers the ratio of 

the betatron function perturbed/nominal.

❑ The ratio reveals an oscillating pattern called the betatron function 

beating (‘beta-beating’). The amplitude of the perturbation is the same 

all over the ring!
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Optics distortion characteristics

❑ The beta-beating pattern comes out even more clearly if we replace 

the longitudinal coordinate with the betatron phase advance

❑ The result is very similar to the case of the closed orbit kick, the error 

reveals itself by a kink!

❑ If you watch closely you will observe that there are two oscillation 

periods per 2p (360 deg) phase. The beta-beating frequency is twice 

the frequency of the orbit!
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Example: Gradient error in SNS

❑ Consider 18 focusing quads in the SNS ring with 0.01 T/m gradient error. In 

this location β = 12 m. The length of the quads is 0.5 m and the magnetic 

rigidity is 5.6567 Tm

■ The tune-shift is 

❑ For a random distribution of errors the beta beating is 

■ Optics functions beating > 20% by random errors (1% of gradient) in high 

dispersion quads of the SNS ring … defines correctors strengths



L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
J
a

n
u

a
ry

 2
0
2

0

83

Example: Gradient error in ESRF 

❑ Consider 128 focusing arc quads in the ESRF storage ring with 

0.001 T/m gradient error. In this location = 30 m. The length of the 

quads is around 1 m. The magnetic rigidity of the ESRF is 20 Tm.

❑ The tune-shift is
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Gradient error correction

■ Quadrupole correctors

❑ Individual correction magnets

❑ Windings on the core of the quadrupoles (trim windings)

❑ Pairs of correctors at well-chosen locations for minimizing resonance

■ Methods & approaches

❑ Compute tune-shift and optics function beta distortion 

❑ Move working point close to integer and half integer resonance to 

increase sensitivity

❑ Minimize beta wave or quadrupole resonance width with trim windings

❑ Individual powering of trim windings can provide flexibility and beam 

based alignment of BPM

■ Modern methods of response matrix analysis (LOCO) can fit 

optics model to real machine and correct optics distortion
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Linear Optics from Closed Orbit

Modified version of LOCO with constraints on 

gradient variations (see ICFA Newsletter, Dec’07)

 - beating reduced to 0.4%  rms

Quadrupole variation reduced to 2%

Results compatible with mag. meas. and calibrations 
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Example: LHC optics corrections

❑ At *=40cm, the bare machine has a beta-beat of more than 100%

❑ After global and local corrections, -beating was reduced to few %

R. Tomas et al. 2016

final correctionsbefore and after local correction
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PSB half integer resonance correction

■ Compensation of quadrupole errors at half integer Qy=4.5

❑ PSB has 16-fold symmetry

❑ 2 families of normal quadrupole correctors

■ +QNO4 and –QNO12 with Dmx = 2.25 * 2p

■ +QNO8 and –QNO16 with Dmx = 2.25 * 2p

❑ Due to opposite polarity within each family, their contribution on 

beta-beating adds up (beta-beat frequency is twice the tune!) while 

there is no change of tune (same change of focusing & defocusing)

❑ The two families are orthogonal with respect to the half integer 

resonance driving term (every phase achievable)

– QNO16L3 

QNO8L3    +

QNO4L3

+

–

QNO12L3
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PSB half integer resonance correction

■ Experimental data!

dynamic resonance crossing

– bare machine

– correction

F. Asvesta, CERN
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Outline

■ Introduction

■ Closed orbit distortion (steering error)

 Beam orbit stability

 Imperfections leading to closed orbit distortion

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Dispersion and chromatic orbit

■ Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

■ Coupling error

 Coupling errors and their effect

 Coupling correction

■ Chromaticity
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Coupling
❑ Coupling may result from rotation of a quadrupole, so that the field 

contains a skew component

❑ A systematic vertical offset in a sextupole has the same effect as a 

skew quadrupole. For a displacement of the field becomes

φ

tilted quadrupole normal quadrupole skew quadrupole

skew quadrupole
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4x4 Matrices

❑ Combine the matrices for each plane

to get a total 4x4 matrix

Uncoupled motion
with skew quadrupoles these 

matrix elements are non-zero
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Effect of coupling

■ Betatron motion is coupled in the presence of skew 
quadrupole components in the machine

❑ The field is and Hill’s equations are coupled 

❑ The motion is still linear with two new eigen-mode tunes, which are 
always split. For a thin skew quadrupole with ks the induced tune split 
is

❑ Coupling coefficients represent the strength of coupling

… complex number characterizing the difference resonance

■ As the motion is coupled, vertical dispersion and optics 
function distortion appears
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Closest tune approach

❑ Coupling makes it impossible to approach the tunes below 

, where        is again the coupling coefficient



L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
J
a

n
u

a
ry

 2
0
2

0

94

Closest tune approach

❑ Coupling makes it impossible to approach the tunes below 

, where        is again the coupling coefficient

❑ The coupling coefficient       can be measured very easily by trying to 

approach the tunes and measure the minimum distance 

Tune measurement in the CERN PS

quadrupole setting 

changed dynamically 

during storage time

programmed Qx

programmed Qy

programmed Qx

programmed Qy

tune peaks from both planes 

visible in Fourier spectra of 

horizontal and vertical motion

C–

C–
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Linear coupling correction

■ Coupling correctors

❑ Introduce skew quadrupoles into the lattice

❑ If skew quadrupoles are not available, one can make vertical closed 
orbit bumps in sextuple magnets (used in JPARC main ring until 
installation of skew quadrupole correctors)

■ Methods & approaches

❑ Correct globally/locally coupling coefficient (or resonance driving term) 

❑ Correct optics distortion (especially vertical dispersion)

❑ Move working point close to coupling resonances and repeat

■ Remarks

❑ Correction especially important for beams with unequal emittances “flat 
beams” (coupling leads to emittance exchange)

❑ The (vertical) orbit correction may be critical for reducing coupling (e.g. 
due to feed-down sextupoles)
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Outline

■ Introduction

■ Closed orbit distortion (steering error)

 Beam orbit stability

 Imperfections leading to closed orbit distortion

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Dispersion and chromatic orbit

■ Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

■ Coupling error

 Coupling errors and their effect

 Coupling correction

■ Chromaticity
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Chromaticity from quadrupoles

❑ Linear equations of motion depend on the energy (term proportional to 
dispersion)

❑ Chromaticity is defined as:

❑ Recall that the gradient is

❑ This leads to dependence of tunes and optics function on the particle’s 
momentum due to the momentum dependent focusing of quadrupoles

❑ For a linear lattice the tune shift is:

❑ So the natural chromaticity is:

❑ Natural chromaticity is always negative
(since quadrupoles have to provide overall focusing)

❑ Sometimes the normalized chromaticity is quoted
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Chromaticity induced tune spread

❑ A beam consists of particles with momentum spread and through 

chromaticity this leads to a tune spread

❑ Example for SNS ring

■ In the SNS ring, the natural chromaticity is –7 

(in both planes)

■ Consider that momentum spread dp/p = ±1%

■ Tune-shift for off-momentum particles

❑ To correct chromaticity need focusing for off-momentum particles

Sextupoles
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Chromaticity from sextupoles

❑ The sextupole field component in the x-plane is:

❑ In a location with non-zero dispersion the closed orbit is 

❑ Then the field is

❑ With

sextupoles introduce an equivalent focusing correction 

❑ The sextupole induced chromaticity is

❑ The total chromaticity is the sum of the natural and sextupole induced 

chromaticity

quadrupole     dipole
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Schematic of chromaticity correction

❑ Quadrupole focusing depends on particle momentum

❑ Sextupole in location with dispersion: closed orbit offset for off-

momentum particles from dispersion results in feed-down in sextupole 

giving quadrupole effect (focusing or defocusing depending on sign of 

momentum)

Equat ions of M ot ion From The Hamiltonian
Chromat icity

Chromat icity For Part icle Colliders

First Order Chromat icity
Derivat ion of First Order Chromat icity
Chromat icity Of Periodic FODO Lat t ice
Correct ing Chromat icity

First Order Chromaticity

The lowest order chromatic perturbation is caused by the

variation of the focal length of the quadrupoles with energy

Hisham Kamal Sayed G. Kra↵t A. Bogacz Nonlinear Beam Dynamics

Equat ions of M ot ion From The Hamiltonian
Chromat icity

Chromat icity For Part icle Colliders

First Order Chromat icity
Derivat ion of First Order Chromat icity
Chromat icity Of Periodic FODO Lat t ice
Correct ing Chromat icity

First Order Chromaticity

Particles with di↵erent energies are separated by the introducing dispersion function.

Once the particles are separated by energy we apply di↵erent focusing corrections

depending on the energy of the particles

Higher energy particles are focused less than ideal energy particles and lower energy

part icles are overfocused

Sextupole magnet introduce focusing for higher energy part icles and defocusing for

lower energy part icles

Hisham Kamal Sayed G. Kra↵t A. Bogacz Nonlinear Beam Dynamics
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Chromaticity correction

❑ Install sextupoles in areas with high-dispersion and high beta

❑ Two families are able to control horizontal and vertical chromaticity 

(if installed in locations with different beta-functions in the two planes)

❑ Tune them to achieve desired chromaticity values

❑ Sextupoles introduce non-linear fields (can lead to chaotic motion)

❑ Sextupoles introduce tune-shift with amplitude

❑ Example:

■ The SNS ring has natural chromaticity of –7

■ Placing two sextupoles of length 0.3 m in locations where β=12 m, and the 

dispersion Dx=4 m

■ For getting 0 chromaticity, their strength should be

or a gradient of B2=17.3 T/m2
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Two vs. four sextupole families

❑ Two families of sextupoles not enough for correcting off-momentum 

optics functions’ distortion and second order chromaticity

❑ Possible solutions:

■ Place sextupoles accordingly to eliminate second order effects (difficult)

■ Large optics function distortion for momentum spreads of ±0.7%,when using 

only two families of sextupoles  more families (4 in the case of the SNS 

ring) and optimize their settings to minimize off-momentum optics beating
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Problem 5

The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108 

focusing and 108 defocusing quadrupoles of length 3.22 m and a gradient of 15 

T/m, with a horizontal and vertical beta of 108 m and 30 m in the focusing quads 

(30 m and 108 m for the defocusing ones). The tunes are Qx=20.13 and Qy=20.18. 

■ Find the tune change for systematic gradient errors of 1% in the focusing and 

0.5% in the defocusing quads. 

■ What is the natural chromaticity of the machine (without gradient errors)?
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Problem 6

LEIR: Consider a heavy-ion synchrotron with 5 families of quadrupoles (no 

FODO structure) and the optical functions from the plot and table below. 

■ What is the natural chromaticity of the machine? (quad length lq=0.5m for all 

families, dipole length ld=6.44m)

■ What is the optimum placement for the sextupole magnets to correct the 

chromaticity? Give their estimated k2 value to get               ? (assume ls = lq)

QF1

QD1

QF2QD2QF3

r =  4.1m

k1 (m-2) x (m) y (m) Dx (m)

QF1 0.9041 7.9 7.9 -10.9

QD1 -1.1303 5.3 18.0 -7.3

QF2 0.3088 7.2 10.8 0

QD2 -1.3181 5.4 14.5 0

QF3 0.7167 7.4 7.6 0
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Summary

❑ Linear imperfections such as magnet misalignments and field errors 

are unavoidable in a real accelerator, but they can be corrected to 

some extent as summarized in this table:

Error Effect Cure 

fabrication imperfections unwanted multipolar components better fabrication / multipolar 

correctors coils 

transverse misalignments feed-down effect better alignment / correctors

dipole kicks orbit distortion / residual dispersion corrector dipoles

quad field errors tune shift, beta-beating trim special quadrupoles

quadrupole tilts coupling x − y better alignment  / skew quads 

chromaticity tune spread sextupoles

power supplies closed orbit distortion / tune shift / 

modulation

improve power supplies and their 

calibration


