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Lorentz equation

dp _
dt

F=¢qE+vxB)

E : total energy

T
p

By

. Kinetic energy FE = \/p2c2 +mict =T +moc® =T + Ey

: momentum
. reduced velocity B = %
: reduced energy v = E 5
moC
reduced momentum By = P
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Cartesian coordinates not useful to describe motion in a circular

accelerator (not true for linacs)

A system following an ideal path along the accelerator is used (Frenet

reference system)

(uxa Uy, uz) — (u:xn Uy, us)

A Particle trajectory

dQS Ideal pi-i-th
= The curvature vectoris K= ——— /XUl =" :
ds?
« From Lorentz equation
dp d’s o d’s 0
— = MoV —= = My = —MyYV . Rk = VXB
d? d2
where we used the curvature vector definition and — = 1% —
dt? % ds?

Using movyvs = ps = (p* — ps — pj,

reference trajectory is defined by

2)1/2 ~ p | the ideal path of the



“=, Beam guidance
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Consider uniform magnetic field B = {0, B,,,0} in a direction
perpendicular to particle motion. From the reference trajectory
equation, after developing the cross product and considering that the
transverse velocities v, , v, < vy, the radius of curvature p is given by

1 q
~=[k[=1-B
P p
We define the magnetic rigidity |Bp| = P
q

In more practical units [BE[GeV] = 0.2998] Bp|[Tm)]

For ions with charge multiplicity Z and atomic mass A, the energy per
nucleon is

BE[GeV/u] = 0.2998 ]Bp\[Tm]
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Consider a ring for particles
with energy E with N dipoles
of length L (or effective length
[, .e. measured on beam path)

Bending angle 0 21 -
u | —_—
) A N
[
= Bending radius  p = 5

2T
= Integrated dipole strength Bl = WB

Note: T

» By choosing a dipole field, the dipole \ v
length is imposed and vice versa : 7

= The higher the field, the shorter or smaller \\ //
number of dipoles can be used \ 0 /P

= The ring circumference (cost) is N \Y,
influenced by the field choice \ %




+" &, Beam focusing

s Consider a particle in a dipole field

In the horizontal plane particle with x,
= it performs harmonic oscillations initial offset
xr = xq cos(wt + @)
with frequency

Vs
W= —
P
» the horizontal acceleration is described by
d’x 1 &z 1 .
— - ——1 reference orbit
ds?  v? dt? p?

» there is a weak focusing effect in the horizontal plane

In the vertical plane, the only force present is gravity
. . . . 1 5
= Particles are displaced vertically following the usual law: Ay = —a,At

= With a, = 10 m/s?, the particle is displaced by 18 mm (LHC dipole aperture)
in 60 ms (few hundred turns in LHC) - need focusing!
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. &, Quadrupoles

N

s Quadrupoles are focusing in one plane
and defocusing in the other

The fieldis (B, By) =G - (y,x)

The resulting force (Fy, Fy) =k - (—x,y)
with the normalised gradient k defined as
G  qG  qG
Bp p BE

In practical units: k[m~?] = 0.2998

k= ... G is the gradient

G[T/m]
BE[GeV] i
kL is the integrated norm. quadrupole strength = #°

= Need to alternate focusing and
defocusing to control the beam,
l.e. alternating gradient focusing

AN
v AU AV 9
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&

Consider s-dependent fields from dipoles and normal quadrupoles
B, =DBy(s)+G(s)-x By,=G(s) vy

A
The total momentum can be written p = po <1 + —p>

With magnetic rigidity Byp = PO and normalized gradient
q

the equations of motion are

,/’ ]_\\\ //’]? AF\

»« Inhomogeneous equations with s-dependent coefficients

= The term p% corresponds to the dipole weak focusing and

A .
%?p represents off-momentum particles
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Solutions are combination of the homogeneous and
inhomogeneous equations’ solutions

Consider particles with the design momentum.
The Equations of motion become

"+ Ky (s)x = O|
y' +Ky(s)y = 0

George Hill

with | K,.(s) = (k;(s) — p(i)Z) and | K,(s) = —k(s)

= Hill’s equations of linear transverse particle motion

Linear equations with s-dependent coefficients (harmonic oscillator
with time dependent frequency)

In a ring (or in transport line with symmetries), the coefficients are
periodic K,(s) = K,(s+C), K,(s)=K,(s+C)

Not straightforward to derive analytical solutions for whole accelerator
11
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"=, Betatron motion
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The on-momentum linear betatron motion of a particle in both planes is
described by (Floquet theorem)

u(s) = v eB(s) cos(¥(s) + vo) u—{z,y}

/ 2
with @, B, v the twiss functions a(s) = — 2, — 1+ al)
2 B(s)
¢ the betatron phase (s) = %
S

and the beta function 3 is defined by the envelope equation
Qﬁﬁ// . 5/2 —|—4/82K — 4

By differentiation, we have that the angle is

0(5) =\ 77 (S(H(E) + o) + als) cos(u(s) + o)

12



“a, General transfer matrix
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From the position and angle equations it follows that

¢ sin((s 0) = wu’ a(s) u
B T =V )

Expand the trigonometric formulas and set +)(0) = 0 to get the transfer
matrix from location O to s

(o)) =20 ()

cos(1(s) + p) =

with
\/ *3( ) (cos A + g sin Av) B(s)Bo sin Ay
MO—)S —
(ao— a(s)) cos AYp—(14+apa(s)) sin Ay Bo_ .
NEOE EO) (cos Ay — as) sin Arp)

and u(s) = Ay = / — the phase advance

13



."=, Periodic transfer matrix

s Consider a periodic cell of length C
The optics functions are Gy = 3(C) =0, ag=a(C) =«

“ ds
and the phase advance p =
o B(s)
The transfer matrix is Mo = (COS Ht “ SHLH psin p : >
—y SN i COS (4 — (¢ SIN [

The cell matrix can be also written as

Mec =Tcospu+ Jsinu

1 0

with 7 = (O |

) and the Twiss matrix |J = (a o )I
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N/ s

/ i

: u’
turnSC'/% i
\_Y_I i
Ve

Vep
The phase space coordinates (u, u’) of a single particle at a given

location s of the machine lie on the phase space ellipse when plotted
for several turns

The values of the Twiss parameters and therefore the orientation of
the phase space ellipse depend on the s location in the machine

The Twiss parameters are periodic with the machine
circumference. Their values are derived from the transfer matrix and
they are uniquely defined at any point in the machine

15



lllustration on a FODO lattice

s=0.0*L(FODO) s=0.0*L(FODO) s=0.5*L(FODO) s=0.5*L(FODO)

1.0} é) Before foc. quad‘. . . 'b) After foc. q‘uad.‘ . cj Before defoc. qua'dr . d) After defoc. 'quad'. .
0.5} - - - - - - : -

z
£ 0.0} . - . s . . .

£
-0.5} . . . . . . .
1.0}k 4 L 4 L 4 L 4
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
x [mm] x [mm] x [mm] x [mm]

X [mm]

Q: 4.27
turns: 100

_10 1 1 | 1 1 | I

0 2 4 6 8 10 12 14 16
FODO cell # 16
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%, Tune and working point

In a ring, the betatron tune is defined from the 1-turn phase advance

1 ds Vi oy
Qx’y — —
2 | Bry(s) 2w

l.e. number of betatron oscillations per turn

The tune is defined by the quadrupole arrangement and strength
around the machine

The position of the tunes in a diagram of horizontal versus vertical
tune is called working point

The tunes are imposed by the choice of the quadrupole strengths
One should try to avoid resonance conditions

17
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imperfections an

Linear

Transverse linear imperfections
and correction
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%, Outline

Introduction

Closed orbit distortion (steering error)
Beam orbit stability
Imperfections leading to closed orbit distortion
Effect of single and multiple dipole kicks
Closed orbit correction methods
Dispersion and chromatic orbit

Optics function distortion (gradient error)
Imperfections leading to optics distortion
Tune-shift and beta distortion due to gradient errors
Gradient error correction

Coupling error
Coupling errors and their effect
Coupling correction

Chromaticity

19
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" From model to reality - fields @

The physical units of the machine model defined by the accelerator
physicist must be converted into magnetic fields and eventually into
currents for the power converters that feed the magnet circuits.

Imperfections (= errors) in the real accelerator optics can be
Introduced by uncertainties or errors on: beam momentum, magnet
calibrations and power converter regulation.

Actual
Magnet :> Magnetic field Requested :>
_ :> magnet
strength ﬁ (gradient) ﬁ current ﬁ current
Beam Magnet Power converter
momentum calibration curve

(transfer function)

LHC main dipole transfer function

Example of the LHC main
dipole calibration curve

Integrated dipole field [Tm]
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To ensure that the accelerator elements are in the correct position the
alignment must be precise — to the level of micrometers for CLIC !

= For CERN hadron machines we aim for accuracies of around 0.1 mm.

The alignment process implies:

= Precise measurements of the magnetic axis in the laboratory with reference
to the element alignment markers used by the survey group.

= Precise in-situ alignment (position and angle) of the element in the tunnel.

Alignment errors are a common source of imperfections

22



m Closed orbit distortion (steering error)
Beam orbit stability
Imperfections leading to closed orbit distortion
Effect of single and multiple dipole kicks
Closed orbit correction methods
Dispersion and chromatic orbit
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"« lllustration of closed orbit distortion @

1. Ideal machine toy model (no errors)

Particle injected on the design (or reference) orbit ... remains on the
design orbit turn after turn

o

S AN I I I N O s

§ 10 | | | | | | | | | | | | | | | | phase space at end of machine
§ — particle trajectories I particle

r e design orbit

< 1.0H

3 °

_5 _ 0.5F

= — he]

g E 0 E 0.0} °

é ) 8 —05}

S .

o 5| ]

L turns: 100

8— -10 ! I ! ! I ! I =15 ! ] I | ! ! I i
£ 0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8
§ FODO cell # x [mm]

c

=
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~ lllustration of closed orbit distortion @

1. Ideal machine toy model (no errors)

Particle injected on the design (or reference) orbit ... remains on the
design orbit turn after turn

Particle injected with offset

o
I3
o
~
2>
S phase space at end of machine
c 1.5 1 | - | i | 1 I I
i particle
2’ 1ol # design orbit
-]
Law]
5 _o5p .7
5 = 3
() E © o
— = ... ... .c'
B E 00 o
x - .o.
ge} X o®
= -0.5}
(2]
s
= Q: 4.27 =LAl
L turns: 100
8— 1 ] ] ] ] ] ] =15} ] | ] ] ] ] ] a
£ 0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8
% FODO cell # x [mm]
C
5
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~ lllustration of closed orbit distortion @

1. Ideal machine toy model (no errors)

Particle injected on the design (or reference) orbit ... remains on the
design orbit turn after turn

Particle injected with offset ... performs betatron oscillations around
the closed orbit which is the same as design orbit as long as there
are no imperfections

phase space at end of machine

: ' : : : 1.5 _
=== cClosed orbit —— particle trajectories « particle

e design orbit
® closed orbit

o5} 7

1.0

B J
S 0.0} ..o' @ .-o'
~0.5} "
a:a27| CHOT
turns: 100
I ! ! ! ! ! ! =15 I ! ! I ! ! ! i
0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8
FODO cell # x [mm]
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", lllustration of closed orbit distortion

2.

X [mm]

Ideal machine toy model with dipole error (unintended
deflection) somewhere in the lattice

&

Particle injected on the design orbit ... receives dipole kick every

turn

N
T 1T 1711

—— particle trajectories

Q: 4.27

turns: 100
0 2 8 10 12 14 16
FODO cell #

x' [mrad]

1.5F

1.0H

05F

0.0}

—-0.5}

-1.0}

-1.5

phase space at end of machine
! 1l 1 I I ) 1

particle

design orbit

4

-8 -6 -4 -2 0 2 4 6 8

X [mm]
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", lllustration of closed orbit distortion @

2. ldeal machine toy model with dipole error (unintended
deflection) somewhere in the lattice

Particle injected on the design orbit ... receives dipole kick every
turn ... and consequently performs betatron oscillation around a
distorted closed orbit

o

S N N S O

§ 10 | | | | | T | | | | | | | | | | phase space at end of machine
§ == closed orbit — particle trajectories > particle

%) 1oll ® design orbit

<D( ' ® closed orbit

-

_5 _ 05}

S — Ee)

% é £ 0of /

E * _os)

= .

(2}

2 ]

8 Q: 4.27 —1.0F

L turns: 100

S _10 , , , , , , , -15F
£ 0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8
§ FODO cell # x [mm]

c

£
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% lllustration of closed orbit distortion @

2. ldeal machine toy model with dipole error (unintended
deflection) somewhere in the lattice

Particle injected on the design orbit ... receives dipole kick every
turn ... and consequently performs betatron oscillation around a
distorted closed orbit

Particle injected onto distorted closed orbit remains on closed orbit

I T N D

0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8
FODO cell # X [mm]

N
&
>
§ 10 | | | | | T | | | | | | | | | | phase space at end of machine
c I 1 1 1 1 1 1 1'5 | 1 | - 1 I I ) 1
S === closed orbit — particle trajectories * particle
%) e design orbit
< 1.0H )
- 51 | @® closed orbit
=
_ os)
° = -
£ @©
. \//W\A/\—' E 00F «®
e - £
g ) * 0.5
@ -0.5}
- -5} |
3 Q:4.27]\ ~HOT
2 turns: 100
(4] -1.5
o | | | ] ] | )
£ -10
3
Q
£
-
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Sources of unintended deflections @

= Field error (deflection error) of a dipole magnet

This can be due to an error in the magnet current or in the
calibration table (measurement accuracy etc.)

The imperfect dipole can be expressed as the ideal one + a small error

imperfect dipole ideal dipole small dipole - horizontal kick
Yy error
. — 5(BI)
+ 0= ——
| Bp

= A small rotation (misalignment) of a dipole magnet has the
same effect, but (mostly) in the other plane

A llted dipole ideal dipole small dipole - vertical kick
[ error .
+ . N II 9 Blsin ¢
: o Bp
30
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“&, Misalignments causing feed-down

s Misalignment of a qguadrupole magnet

Equivalent to perfectly aligned quadrupole plus small dipole
Y

- -
T »
i 1 ! |l

Ter

-
o
.-".
—

&

31



s Misalignment of a qguadrupole magnet

Equivalent to perfectly aligned quadrupole plus small dipole

guadrupole dipole

Linear imperfections and correction, JUAS, January 2020
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&

s Misalignment of a qguadrupole magnet

Equivalent to perfectly aligned quadrupole plus small dipole

g

g = Gz + Gox  horizontal offset creates
U)h . .

s quadru'pole dip'ole horizontal (normal) dipole
2 by —— '/ vertical offset creates

£ B, =Gy +dy) = Gy + Goy vertlcal (skew) dipole
D (esy = ) e e:' p—




"a, Multipole expansion
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= Multipole expansion of transverse magnetic field

Start from the general expression for the transverse magnetic flux in
terms of multipole coefficients

oo
B=DB,+iB, =) (B,+id,) (z+iy)"
n=0

e.g. normal quad

. -— ‘
. -
' For

e.g. skew quad

. Normal components Skew component§r
.4‘ (“upright” magnets) (magnets rotated by 57,57) )
& n 1 "B,
) Bn — ia By An — Ml n
n! Ox™ (0,0) n. 8y (0,0)

In some cases it is more convenient to use “normalized” components:

Normalized normal components Normalized skew components
1 o0"B ! 1 0"B, !
kn — 0 ! — " Bn ]n — 0 — " An
BOpO dz™ (0,0) BOpO (0,0) BOPO ayn (0,0) BOpO (0,0)
so that: M (z + iy)"
. . Y)
B, +iB; = Bopo g (kn + i7n) .y 5y

n=0



"%, Feed-down from multipoles @

Explicitly: the vertical field is the sum of all multipole components
B, =By+ Bix — Ay + By (2 — y*) — 2Asxy + Bs(2® — 3xy?) + As(y® — 32%y) + ...
|\ ) \ )

\_Y_’ Y Y Y )

dipole quadrupole sextupole octupole

s Feed-down: lower order field components from misalignments
Systematic horizontal offset in normal (skew) magnets creates normal
(skew) feed-down components as seen with * = x + ox at y=0:

B,(y=0) = A,z" = A,(x + 62)" = A, (2" + ndzz" ' + %51‘21‘”_2 + -+ (0x)™)

B,(y=0) = B,z" = B,(z + 0z)" = B, (z" + ndzx" ' + n(n2_1) At A R

+ (6x)™)
\_'_) |\ -y ) —y J \_Y_l
2(n+1)-pole 2n-pole 2(n-1)-pole dipole

Systematic vertical offset in normal magnets results in alternating skew
and normal feed-down components (and vice-versa for skew magnets),
as can be worked out from

B =0) ="B,y" B
for n = even y(#=0) =" Bny for n = odd y(
B, (x=0) =i"A,y" B.(x

0) =i" T A, g"
0) =i""'B,y" =
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Derive an expression for the resulting magnetic field when the closed orbit in a
normal sextupole is displaced by &x from its center position. What are the
resulting field components? Do the same for an octupole. What is the leading
order multi-pole field error when displacing a general 2(n+1)-pole magnet?

Linear imperfections and correction, JUAS, January 2020
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LV

Consider a single dipole kick 6 = duy = du’(sg) = B, at s=s,
The coordinates before and after the kick are

(o) =4 ()
ug — 0 U

Taking the solutions of Hill's equations (u and u’) at the location of the
kick, the orbit will close to itself only if

€Bo cos(pg) = v/ €6o cos(pg + 2mQ)
\/g (sin(¢o) + g cos(¢g)) — 0 = \/;(Sm(% +27Q) + g cos(¢g + 2mQ))
This yields the following relations for the invariant and phase

_ Bot? L
 4sin?(1Q)’ Po = —mQ 37




&

The initial conditions of the closed orbit at the location of the kick are
therefore obtained as

. 60 ;. 0 Qo
uo =0 and u0—2 L tan ()

For any location around the ring, the orbit distortion is written as

U(S) _ (9 \/5(3)50
2sin(mQ)

% J
maximum distortion amplitude

cos(mQ — [ (s) — tol)

A\

Linear imperfections and correction, JUAS, January 2020
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&

B(s)Bo

u(s) =60 cos(m(®) — |YP(s) —
Dipole kicks add-up in Dipole kicks get cancelled in
consecutive turns for Q = n consecutive turns for Q = n/2
Integer tune excites orbit Half-integer tune cancels orbit
oscillations (resonance) oscillations
—> orbit becomes unstable

y y'

N

Linear imperfections and correction, JUAS, January 2020
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1.0

Q: 4.47 =0
turns: 100
] ! ] ] ] ] ~1.51
2 6 8 10 12 14 16
FODO cell #

phase space at end of machine

* particle
® design orbit
® closed orbit

1 | | |

-20-15-10 -5 0

X [mm]

5 10 1

5

20
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&

Closed orbit distortion is most critical for tunes close to integer 2
closed orbit becomes unstable (but beam size not affected)

The closed orbit distortion propagates with the betatron phase advance
(e.g. single kick induces 4 oscillations for a tune of Q=4.x)

B(s)Bo

u(s) = 0 X————cos(mQ) — S) —
Q
S e
>
§ 10 | | ‘ | ! | | T | |. l I| | | |l ! .|| | 1 1 ptlmase‘spac‘e at‘endlof mlachipe'
§ === closed orbit =~ — particle trajectories I particle ’
2’ ’ 1 1' 1ol e design orbit ";‘_."7
= 5}F ® closed orbit
5 _ 05
g E 0 E 0.0
: E L oo -
© x
g -0.5
= J ‘ ‘ :4.02> -1.0F
g i ‘ s: 100
3 -15} .
Q. -10 Ao ] | - | A ] Ao ] I | | ] ] |
S 0 2 4 6 8 10 12 14 16 -20-15-10 -5 O 5 10 15 20
§ FODO cell # x [mm]
C
=
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Example of horizontal closed orbit for a machine with tune Q = 6.x

The kink at the location of the deflection (=) can be used to localize
the deflection (if it is not known) - can be used for orbit correction.
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“a A deflection at the LHC

In the example below for the 26.7km long LHC, there is one undesired
deflection, leading to a perturbed closed orbit.

CO-P 1.000 GeV/c- Fill #0 - Single Kick @& MCEH.32R4.B1 / Ang 10 / H - 04/01/17 21-35-43
2 T :
A Mean = 0.009 / RMS = 0.592 / RMS-dp = 0.592 / Dp; = -0.0093
E 1.5 1
£
x
c 0.5
O E
= E
= w 0
n £
O =
o -0.5
@© -1
(]
o | | | | |
ATLAS 5 B-CLEAN
_2 H :| H : H : H H : H |:
0 100 200 300 400 500
Monitor H

Beam Position Monitor index along the LHC circumference

»

Where Is the location of the deflection?

Linear imperfections and correction, JUAS, January 2020
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To make our life easier we divide the position by +/3(c) and replace the
BPM index by its phase u(o)-> transform into pure sinusoidal

oscillation

Beam position :C/\/E

JMW\“WMM

Betatron phase U

[UMIEE

Hor. Phase [2pi]

Can you localize the deflection now?

Linear imperfections and correction, JUAS, January 2020
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"%, Global orbit distortion

s Orbit distortion due to many errors

S s+C
) = S [ o) VBT cos(@  6(s) — (o))

Courant and Snyder, 1957

s By approximating the errors as delta functions in n locations, the
distortion at i observation points (Beam Position Monitors) is

B \/E i+n
Y S sin(rQ) j;ﬂ 0/ Bj cos(m@Q — |1b; — 1)

with the kick produced by the jth error

Integrated dipole field error g, — 5(?’13’)

P
Dipole roll 0, = Bjl;sin ¢,

Lp
Quadrupole displacement ¢, = ng5”j

P

Linear imperfections and correction, JUAS, January 2020
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Horz and Vert RMS COD (mm)

28.0 T T 1 T T T T
. 26.0 [ B -

’ 1 g ]
hJ . 24.0 X 4
' C ]
- 220 | B 3
h : y |
] 20.0 [ D 3
18.0 [ 1
16.0 [ -
N \ 1 ]

14.0

120 Bl LA | . .
PN LW A A N A A
. ! nj{nf{nfl?

L L LB TT

Beta and Dispersion (meters)

10 - horizontal rms CO 1 ' %
' vertlcal rms CO 20

0.0 L [ T R B R T 1 0.0 F—— S} TR |
0.0 50.0 100 O 150 0 200 0 250 0 0.0 100 0 150 O 200. O 250.0

S (meters) S (meters)

In the SNS accumulator ring, the beta function is about 6 m in the
dipoles and about 30 m in the quadrupoles, the tune is 6.2

Consider dipole errors of 1 mrad

V6 - 6
2 sin(6.2m)
For quadrupole displacement giving the same 1 mrad kick (and betas
of 30 m) the maximum orbit distortion is 25 mm, to be compared to
magnet radius of 105 mm 16

1073 ~ 5mm

The maximum orbit distortion in dipoles Is uy =



B, " statistical estimation of orbit errors @

s Consider random distribution of errors in N magnets

By squaring the orbit distortion expression and averaging over the
angles (considering uncorrelated errors), the expectation (rms) value is
given by

rms

\/7 \/Nﬁ 6rms
() = e @)] 2 VOO = 5 sm(?TQ)‘e

s Example:

In the SNS ring, there are 32 dipoles and 54 quadrupoles
The rms value of the orbit distortion in the dipoles
i _ VB8V
T 24/25in(6.27)
In the quadrupoles, for equivalent kick
V30 - 30/54

quad _ .1073 ~ 13cm
s 2v/2sin(6.27) 47

1073 ~ 2cm
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s Horizontal dipole correctors and BPMs close to focusing quads +
Vertical dipole correctors and BPMs next to defocusing quads

Highest sensitivity / effect on closed orbit due to beta-function maxima

BPM: Beam Position Monitor
DH, DV: correctors

HBPM VBPM .
1._I MB ms’ \r‘ rw
QF DH QD py |

s Measure orbitin BPMs and minimize orbit distortion

Locally
= Closed orbit bumps
» Singular Value Decomposition (SVD)

Globally

» Harmonic: minimizing components of orbit frequency response from
Fourier analysis

« MICADO: finding the most efficient corrector for minimizing the rms orbit
» Least square minimization using orbit response matrix of correctors

Linear imperfections and correction, JUAS, January 2020

48



s I
o ST

"a, Closed orbit bumps

« Often itis needed to steer the closed-orbit away from the nominal
trajectory in a localized part of a synchrotron

Injection / extraction
Local orbit correction (or steering around local aperture restrictions)

s Standard bump configurations exist
T-bump (with 2 correctors)
3 and 4-corrector bumps

L‘_LFLTLTL [ example of 2-corrector bump
T T T T T I T TTT] s sepun

local orbit bump

BUDSSERRSES-

Linear imperfections and correction, JUAS, January 2020

¥ o
- % % dipole
_5 L ]
Q:4.31 unperturbed
example of 3-corrector bump turns: 100 closed orbit
-10 I ] ] L 1 L 1
0 2 4 6 8 10 12 14 16
49
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s I
o ST
-

&, Closed orbit bumps

« Often itis needed to steer the closed-orbit away from the nominal
trajectory in a localized part of a synchrotron

Injection / extraction

Local orbit correction (or steering around local aperture restrictions)

s Standard bump configurations exist
T-bump (with 2 correctors)
3 and 4-corrector bumps

2
2
2
3

% g E R
_5 - -
Q:4.31
example of 3-corrector bump turns: 100
_10 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

FODO cell #

example of 2-corrector bump

dipole septum

fast kick

unperturbed
closed orbit
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Consider a transport matrix between positions 1 and 2
m m
M1_>2 _ ( 11 12)

ma1 122

The transport of transverse coordinates is written as
Uy = M11U1 + MU
u’2 = Moi1U1 + mggu’l
Consider a single dipole kick at position 1
o(BI)
Bp
Then, the first equation may be rewritten

0, =

U + 5UQ = miiuy + m12<u/1 + 6)1) — 5?1/2 = m126’1

Replacing the coefficient from the general betatron matrix

duz = +/ B1P2 sin(v12)0,

5’&’2 — %[COS(wlg) — (9 Siﬂ(?,blg)]el
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&

0, | 0
dipole QD QD dipole QD QD
corrector corrector

Consider a cell in which correctors are placed close to the focusing
guads

The orbit shift at the 2" corrector is dug = 1/ 182 sin (Y12) 61

This orbit bump can be closed by choosing a phase advance equal to 7T
between correctors (this is called a “7T-bump”)

The angle should satisfy the following equation

—0
) By

Oy = duy = \/61 [cos(¢12)01 — az sin(y12)] = o
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&

QF

o, 1o 1 o
QD dipole QD  dipole QD  dipole QD
corrector corrector corrector

Works for any phase advance if the three correctors satisfy

V51 9, — VB2 6, — VB3 "

sin ¢23 sin ¢31 sin Zplg

Angle of the closed orbit in the center of the bump is defined by above
condition (cannot be adjusted independently of bump amplitude)
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0, N B
dipole QD  dipole QD  dipole QD  dipole QD
corrector corrector corrector corrector

1 costbap — apsiniay By sintay ;- \Works for any phase advance

g /

2 0=+ : Ty — : Xy

5 VL5 S 12 frsin gz Position x, and angle x', of the
= p 1 costip — apsiniyy N By sinry bump at location s, can be
5 = — : T : T i i

g 2 NEN sin Y1 b By sin g ? adjusted independently

5 ‘ . Can be used for aperture

2 p - 1 costhps + apSinpy vy |50 (e ./ scanning, extraction bumps,
£ v 3305 Sin 3y Basingsy "

5 9 1 cosps + ap Sin s By sinyps

£ 4= . Xy + , Ty

. v B4 Sin sy B4 sin ¢y
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“s, Problem 2

Linear imperfections and correction, JUAS, January 2020

Three correctors are placed at locations with phase advance of 7/4 between
them and beta functions of 12, 2 and 12 m. How are the corrector kicks related to
each other in order to achieve a closed 3-corrector bump (i.e. what is the
relative strength between the three kicks)?

X
T QF QF QF QF QF
i II i :
0, 0, 0,
QD dipole QD  dipole QD  dipole QD
corrector corrector corrector
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%" Closed orbit correction: MICADO X

The problem of correcting the orbit deterministically came up a long
time ago in the first CERN machines.

B. Autin and Y. Marti published a note in 1973 describing an algorithm
that is still in use today (but in JAVA/C/C++ instead of FORTRAN) at
ALL CERN machines: MICADO*

* MInimisation des CArrés des Distortions d'Orbite.
(Minimization of the quadratic orbit distortions)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN ISR-MA/73-17

CLOSED ORBIT CORRECTION OF A.G. MACHINES
USING A SMALL NUMBER OF MAGNETS

by

Linear imperfections and correction, JUAS, January 2020

B. Autin & Y. Marti
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"MICADO - how does it work? @

The intuitive principle of MICADO is rather simple
Need a model of the machine

Compute for each orbit corrector what the effect (response) is
expected to be on the orbit

Mean - 0.002 / BMS - 0.348 / BAS-dp - 0.347 / Dp - 0.0112
15
1
s
E
£
3 0 I
x i
05
4 s
Mean - 0.000 / WNS - 0.304 / WNS-0p - 0.303 / D - 0.0015
15
15
o
=
o

-
By
a |
[ariag o] CEATET [Rr-r] il [owsir-u] T i
300
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MICADO compares the response of every corrector with raw orbit

‘WWMW%MW%W : Mean = 0.006 / RMS = 0.434 /i RMS-dp = 0.434 / Dpi= 0.0009
| b 15
o g % % I

Monitor H

MICADO picks out the corrector that has the best match with the orbit,
and that will give the largest improvement to the orbit deviation rms

The procedure can be iterated until the orbit is good enough (or as
good as it can be)

Linear imperfections and correction, JUAS, January 2020
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The raw orbit at the LHC can have huge errors, but the correction
(based partly on MICADO) brings the deviations down by a factor 20

vvvvvv | =8 | |G| T | more | [ E

9 co- P 450.000 GeVic -Fill # 4726 INJPROB - MICADO [ 0iter | V - 2510316 12-37-01 i i s s sssn s

%OpenVATPB[SVLH‘CRING/El/PH‘/SICSVJTEVVIONSrzulﬁ_\/l@l[IU_[END] Uncorrected hOfIZOﬂt&' Orblt of rlng 1 = |[ =

Mean = -1.029 7 RUS = 6.587 / DpAh 0.2431

150 mm MICADO & Co

vvvvv (== S RSN o= TR =)
e B AN e B R B A R S

L H C VaC u u m C h am b er %OEEWASP DY LHCRING / B1 / PHYSICS-4Te\-IONS-2016_Y1@100_[END] Corrected horlzontal Orblt Of rlng 1 o= =

Mean = -0.012 / FMS = 0.381 /Dp = 0.0315 AN

50 mm

VPos [mm]
-
—

=1
%
[ -

{
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At the LHC a good orbit correction is vital !~ 59
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Available set of correctors: ¢
Available observables (here the Beam Position Monitors): m
Assume the linear approximation is good (small corrections): A¢c = m

Use optics model to compute response matrix A (i.e. the orbit change in
the i monitor due to a unit kick from the j corrector):

a V/ BiB; cos(mQ — |1 — 1h,)
0] 2sin(7Q) ... or use, e.g. MADX

Invert or pseudo-invert the response matrix A to compute an effective
global correction based on the measured Am:

A= A"TAM
In case the number of correctors is not the same as the number of Beam

Position Monitors one has to perform a pseudo matrix inversion, for
example using the “Singular Value Decomposition (SVD)” algorithm

s This approach works for orbit correction when using the measured
orbit distortion (but also for beta-beating when using AB/B, etc.)
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Monitors

72

72| =

" Singular Value Decomposition

72 monitors / 72 correctors

Correctors Correctors Monitors

A-U*W*V T
SVD > R
ATt oveweu T

=> Minimization of the RMS orbit (=0 in case of "Matrix Inversion" using all Eigenvalues)

72 monitors / 36 correctors

72

II SV >I-

72

=> Minimization of the RMS orbit (monitor averaging)
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" Problem 3

Linear imperfections and correction, JUAS, January 2020

SNS: A proton ring with kinetic energy of 1 GeV and a circumference of 248 m
has 18, 1 m-long focusing quads with gradient of 5 T/m. In one of the quads, the
horizontal and vertical beta function are 12 m and 2 m respectively. The rms beta
function in both planes on the focusing quads is 8 m. With a horizontal tune of 6.23
and a vertical of 6.2, compute the expected horizontal and vertical orbit distortions
on a single focusing quad given by horizontal and vertical misalignments of

1 mm in all the quads. What happens to the horizontal and vertical orbit distortions
if the horizontal tune drops to 6.1 and 6.017

30 .
B
ﬂ\ ;\ 3
® / R S. Henderson et al. (2005)
10 \% "Wﬂlﬁn
of I |

f [m]

'|
H |

[ T ' T o R =
7 [m]
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'Problem 4

The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108
focusing and 108 defocusing quadrupoles of length 3.22 m and a gradient of 15 T/m,
with a horizontal and vertical beta of 108 m and 30 m in the focusing quads (30 m
and 108 m for the defocusing ones). The tunes are Q,=20.13 and Q,=20.18. Due to a
mechanical problem, a focusing quadrupole was sinking down in 2016, resulting in an
increasing closed orbit distortion compared to a reference taken earlier in the year.

By how much the quadrupole had shifted down when the maximum vertical closed
orbit distortion amplitude in defocusing quadrupoles reached 4 mm?

Why was there no change of the horizontal orbit measured?

How big would have been the maximum closed orbit distortion amplitude if it would

have been a defocusing quadrupole?

Difference orbit wrt reference (18 08 2016)

‘7 OpenYASP DV SPSRING / SPS.USER.LHC4 / LHC 25ns SLOW 2INj Q20 2015 V1 = = ¢ e E
Bviews | | m| == 5] E More | b4 &
CO @ 12500 ms -P 451150 GeV/c - 5C# 9 - SPS.USERLHC4 - 18/08/16 12-01-41 s s s i i s s s e g g
g-Mean = -0.424 / RMS = 0,791 / RMS-dp = 0.755 / Dp = -0,1029
— 44
£
E 2
g 0’"-l|-“|---“”-|-|--.-'---I""--—"-."'1.-'“I|--I||r"|||'*'||Il||l|l|l--l---ll -y |-'I|l"-||l'--r||-"-|-
24
x . .
=] horizontal BPMs (at focusing quadrupoles)
o 20 40 50 50 100
Monitor H
CO @ 12500 ms -P 451150 Gev/c - SC#9 - SPRUSERLHCY - 18/08/16 12-00-41 55 i iiiiiin s s s i s s s s i s o |
5-{Mean = 0.180 / RMS = 2.483 / Dp = -0.1029
£ ]
£ L Il h . b i dll 1L e, 0,0 L il
) ' Ty Iv <,Ja | T * ) I ol [ L
o ert| | BPMs (at de ocusmg quadrupoles)

=1

100
Monitor V

Maximum closed orbit distortion

4.5



N A

s Beam orbit stability is very critical
Injection and extraction efficiency of synchrotrons
Stability of collision point in colliders
Stability of the synchrotron light spot in the beam lines of light sources

x Consequences of orbit distortion

Miss-steering of beams, modification of dispersion function, resonance
excitation, aperture limitations, lifetime reduction, coupling, modulation
of lattice functions, poor injection/extraction efficiency

s Sources for closed orbit drifts

Long term (years - months): ground settling, season changes

Medium term (days - hours): sun and moon, day-night variations
(thermal), rivers, rain, wind, refills and start-up, sensor motion, drift of
electronics, local machinery, filling patterns

Short term (minutes - seconds): ground vibrations, power supplies,
experimental magnets, air conditioning, refrigerators/compressors

Linear imperfections and correction, JUAS, January 2020
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= Up to now all particles had the same momentum p,

= What happens for off-momentum particles, i.e. particles with
momentum p,+Ap?

Po+Ap

Consider a dipole with field B and Po

bending radius P

Recall that the magnetic rigidity is Bp = £o
and for off-momentum particles q
+ A Ap A
B(p+Ap) = 220 = 20 = 20
q p Po

Considering the effective length of the dipole unchanged

A A A
Hp:lzconst.:>pA9—|—0Ap:O:>—9:__'O:__p
0 P Do

Off-momentum particles get different deflection (different orbit)
Apl
AG = =L
Po 65
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Dispersion equation

1 Ap
p(s) p

" + K, (s)x =

The solution is a sum of the homogeneous (on-momentum) and the

iInhomogeneous (off-momentum) equation solutions
z(s) =z (s)+ xr(s)

In that way, the equations of motion are split in two parts

1 A
o7+ Ky (s)xy = - 2P
p(s) p
The dispersion function can be defined as D, (s) = z7(s)
Ap/p

= The dispersion equation is

Dy (s) + Ku(s)Do(s) = ——

= Consider the equations of motion for off-momentum particles
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¥ Closed orbit including dispersion @

Design orbit is defined by main dipole field

On-momentum particles oscillate around the closed orbit (which is
different compared to the design orbit in case of imperfections)

Off-momentum particles oscillate around the chromatic closed orbit,
defined by the dispersion function times the momentum offset added to
the on-momentum closed orbit

z = zc0(s) +x5(s) + Dx(s)0p/p
r' = x60(s) + 25(s) + D (s)op/p

on-momentum 4 ¢ off-momentum
particle at a given particle at a given
s-location s-location -~

j LCo
T3, x’ﬁ give ellipse

Linear imperfections and correction, JUAS, January 2020
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Ap/p [ppm]

100

The LHC circumference is oscillating periodically due to Earth tides,
caused by sun and moon, which move the Earth surface up and down
(the Moon contributes ~2/3, the Sun contributes ~1/3)

A change of beam energy of 0.014% is observed (through radial beam
excursion for given RF frequency), corresponding to a change of
circumference of 1.1 mm

Very important for experiments for calibrating collision events!

— predicted

— observed
1 I 1 1 1 I 1 1 1 I 1 1 1

11-Nov 12-Nov 13-Nov

14-Nov

15-Nov

16-Nov

17-Nov

Earth Rotation
Axis ‘ 0

; | ] Moon
e T [ & "4 _ acliptic-

E. Todesco and J. Wenninger, PR-AB 20, 081003 (2017)
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= Outline

s Optics function distortion (gradient error)
Imperfections leading to optics distortion
Tune-shift and beta distortion due to gradient errors
Gradient error correction

Linear imperfections and correction, JUAS, January 2020
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lllustration of optics distortion @

= |ldeal machine toy model with regular FODO lattice and
guadrupole error at the end of circumference

Particle injected with offset performs betatron oscillations but gets
additional focusing from quadrupole error

There is a tune-shift (additional de-/focusing)
Beam envelope is distorted around the machine ... “beta-beating”

o

S A I S O N A A

? | I | | | | | | | | | I | | | | phase space at end of machine

S 10

§ === closed orbit —— particle trajectories Lo particle

2’ vl - design orb.it

9) 5 | @® closed orbit

< 0.5} /)

S = /

£ E 0.0} ,I?’

(0]

=

= Q: 4.35 =LR

L turns: 100

3 _10 , . localised quadrupole error at end of machike: 0.025/m -15F
= 0 2 4 6 8 10 12 1a———16 -20-15-10 -5 0 5 10 15 20
§ FODO cell # X [mm]

=

£
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%" Gradient error and optics distortion (&Y

s Optics functions perturbation can induce aperture restrictions

s Tune perturbation can lead to reduced beam stability (dynamic
aperture)
s Broken super-periodicity = excitation of all resonances
In a ring made of N identical cells, only resonances with integer multiples
of N can be excited
s Sometimes control of optics is critical for machine performance
Beta functions at collision points or at collimators (e.g. LHC)

m Sources
Errors in quadrupole strengths (random and systematic)
Injection elements
Higher-order multi-pole magnets and errors

= Observables
Tune-shift
Beta-beating
Excitation of integer and half integer resonances 71
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¥ Gradient error

Linear imperfections and correction, JUAS, January 2020

Consider the transfer matrix for 1-turn

My — (COS(27TQ) + a sin(27Q)

— 0 Sin(27Q) cos(2mQ) — ap sin(27Q)

By sin(2wQ) )

Consider a gradient error in a quad. In thin element approximation the
guadrupole matrix without and with error are

o = (—Kol(s)ds (1)) and m = (-(Ko(s)1+ §K)ds 2)

The new 1-turn matrix is M = mmglj\/lo = ( ! 0) Mg

which yields

M= <—5de(cos

cos(2mQ) + g sin(27Q)
(27Q) + o sin(27Q)) — 7o sin(27Q)

—0Kds 1

Bo sin(27Q)
cos(27Q) — (6 K dsBy + ) sin(27Q)
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% . Gradient error and tune-shift @

Linear imperfections and correction, JUAS, January 2020

Can also be written as a new matrix with a new tune x = 27 (Q + Q)

« _ [cos(x) + agsin(x) Bo sin(x)
M _( —7o sin(x) cos(x) — ag Sin(x)>

The traces of the two matrices describing the 1-turn should be equal
trace (M™) = trace (M)
which gives 2 cos(27Q) — 6 Kdsfp sin(2m1Q) = 2 cos(2m(Q + 6Q))

Developing the right hand side
cos(27(Q + 0Q)) = cos(27Q) cos(2mIQ)) — sin(27 Q) sin(270Q))

J
Y Y
=]

and finally 4wo(Q) = 0K dsp I
For a quadrupole of length | the tune shiftis 6(Q) = e / 0K Bypds
7

For distributed quadrupole errors

1

0Q) = yp 7{5K(8)5(8)d8
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Consider the unperturbed transfer matrix for one turn
A — (au CL12>

My = (Z; %2) _B-A with ‘;21 Z”
5= )

Introduce a gradient perturbation between the two matrices

x X
Mi = (it ) =5 (sicas 1)
Recall that mi5 = §y sin(27 Q) and write the perturbed term as
a) miy = (Bo +08)sin(2m(Q + 6Q)) = miz + 63sin(27Q) + 2m6Q Gy cos(2mQ)

where we used sin(276Q) ~ 2716@) and cos(2miQ) ~ 1

Linear imperfections and correction, JUAS, January 2020
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“%, Gradient error and beta distortion @

Linear imperfections and correction, JUAS, January 2020

On the other hand

a19 — \/ﬂoﬁ(sl)sinw, b12 = \/ﬁgﬁ(sl)sin (27TQ — ’QD)

b) mi(2 — 1111G12 + 51261221— a12b125de = MmMi12 — a126125Kd3

~
12

Equating the two terms
a) = b)

03 sin(27Q) + 2wdQ By cos(2wQ)) = —PoP(s1) sinysin(27Q) — )6 K ds
0B sin(27Q) + %5Kd8505(81) cos(2mQ)) = —FoB(s1) siny sin(27Q — )oK ds

using cos A — cos B = —2sin 448 sin 4=8 and integrating yields

2 2
5_ﬁ - 1
By 2sin(27Q
for distributed errors around the machine

S s+C
556((3)) B _QSin(127rQ) / B(s1)0K (s1) cos(|2¢(s1)) — 2¢(s)| — 2mQ)dsy

s1+1
] / B(s)0K (s) cos(2¢ — 2mQ)ds
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Optics distortion vs. tune

- Quadrupole errors have biggest impact close to integer and half
integer tunes = envelope (or beam size) becomes unstable

-1 Optics distortion propagates with twice the tune (check the plot)

0 1 s1+l1
ﬁ_f T 2sin(27Q) / B(s)0K (s) cos(2¢) — 2mQ)ds

phase space at end of machine

o

I

o

N

=

S

c 1'5 N ! ! | ! I .I’ 1 ]
o » particle i

%) 1ol e designorbit| =« ¢ |
& ' ® closed orbit | « &

o « &

5 _ 05 o .' ..- -
© i « &

s o 3

:6 E 00 B : .. 1
o ~ i

-c L]

= —05} o 19 |
i & @

(0] * o

= .'

S —10} s |
(&) Qe

-40—J i)

— ' [

8— =15 ] -'I-. ! | ! ! ! n
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&

@
§

Q = n (integer) Q =n/2 (half integer)
—> kicks from quadrupoles add —> kicks from quadrupoles add up
up  (same as for kicks from (while kicks from dipoles cancel)
dipoles)

Therefore integer tunes and half integer tunes need to be avoided
for machine operation to avoid beam envelope becoming unstable
due to quadrupole errors

Recall: for integer tunes dipole errors drive the closed orbit unstable,
but for half integer tunes they have minimum effect
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Let’s take a look at the LHC ...

Example: one quadrupole gradient is incorrect

Nominal optics
Perturbed optics

o

B[m]

5000 10000 15000 20000 25000
s [m]

Zoom into a subsection
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The local beam optics perturbation
... hote the oscillating pattern

= 700 ¢
= = Nominal optics
600 — .
- Perturbed optics
500 —
400 —
300 —

200

100

8000 8500 9000 9500 10000 10500 11000 11500 12000 12500 13000
s [m]

0
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Optics distortion characteristics @

Linear imperfections and correction, JUAS, January 2020

The error is easier to analyse and diagnose if one considers the ratio of
the betatron function perturbed/nominal.

The ratio reveals an oscillating pattern called the betatron function
beating (‘beta-beating’). The amplitude of the perturbation is the same
all over the ring!

1.4

1.3

B ratio

1.2

1.1

1.0 [

09 [+

0.8

0.7

||II‘||L.£H—|—| | ||||||I|IIII|||%IIII
—_—
_;
__._:—ﬂ-'_'_'_:-._
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I
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%%, Optics distortion characteristics @

The beta-beating pattern comes out even more clearly if we replace
the longitudinal coordinate with the betatron phase advance

The result is very similar to the case of the closed orbit kick, the error
reveals itself by a kink!

If you watch closely you will observe that there are two oscillation
periods per 2n (360 deg) phase. The beta-beating frequency is twice
the frequency of the orbit!

1.4

p ratio

1.3

1.2

||||I
I
I —

1.1

1.0

0.9
0.8

0.7

U

D.B 11 | | I I | | I I | | I I | I T | | I I | | | | I I | | I I

2 21 22 23 24 25 26 27 28 29 30
Betatron phase [2n] 81
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225 A11 25 : 75 75 215 2
5 (m) 5 (m)

Consider 18 focusing quads in the SNS ring with 0.01 T/m gradient error. In
this location B8 = 12 m. The length of the quads is 0.5 m and the magnetic
rigidity is 5.6567 Tm

o 1 0.01
= 1he tune-shiftis éQ = —18 .12 5 =0.01
@ A7 8 5.656705 0.015

For a random distribution of errors the beta beating is

o8 __ 1 2 42\1/2
B0 rms 2v/2|sin(27Q)| (Z Ok: ;)

)

= Optics functions beating > 20% by random errors (1% of gradient) in high
dispersion quads of the SNS ring ... defines correctors strengths
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&

0.05 . ‘ \ ;
0.04r
0.03r
0.021
5 ‘
© 0.01f .
-]
'8 N _
e 0 \
3
©-0.01 F M| J\t
_C
o
-0.02 .
-0.03
—— correction OFF
-0.04 | — correction ON 7
_0.05 L L L L
50 100 150 200
BPM number

Consider 128 focusing arc quads in the ESRF storage ring with
0.001 T/m gradient error. In this location 5= 30 m. The length of the

quads is around 1 m. The magnetic rigidity of the ESRF is 20 Tm.
1 0.001

The tune-shift is 6Q = 4—128 : 3071 — 0.014
s
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%, Gradient error correction

s Quadrupole correctors
Individual correction magnets
Windings on the core of the quadrupoles (trim windings)
Pairs of correctors at well-chosen locations for minimizing resonance

= Methods & approaches
Compute tune-shift and optics function beta distortion

Move working point close to integer and half integer resonance to
Increase sensitivity

Minimize beta wave or quadrupole resonance width with trim windings
Individual powering of trim windings can provide flexibility and beam
based alignment of BPM

s Modern methods of response matrix analysis (LOCO) can fit
optics model to real machine and correct optics distortion

Linear imperfections and correction, JUAS, January 2020
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R. Bartolini, LER2010 J. Safranek et al.
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A8, /8,

A,:’;fu / ,:3.,,

-0.5

-1.0 |

1.0 |

At B*=40cm, the bare machine has a beta-beat of more than 100%

After global and local corrections, B-beating was reduced to few %

before and after local correction
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R. Tomas et al. 2016
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"%, PSB half integer resonance correction

= Compensation of quadrupole errors at half integer Q,=4.5
PSB has 16-fold symmetry

2 families of normal quadrupole correctors

= +QNO4 and —QNO12 with Ap, = 2.25 * 2x

= +QNO8 and —QNO16 with Ap, = 2.25 * 2x

Due to opposite polarity within each family, their contribution on

beta-beating adds up (beta-beat frequency is twice the tune!) while
there is no change of tune (same change of focusing & defocusing)

The two families are orthogonal with respect to the half integer
resonance driving term (every phase achievable)

QNO8L3 () + 0.3 o T . . ‘ aNOT3 aNO16
0.2l I I
_oaf
QNOA4L3 ‘5 0.0 H
ONO12L3 —0.1
02} IJ h}
0 3 | Q |O4 1 C)l 08 |

0.0 05 1.0 1.5 20 25 3.0 35 4.0 45
¢ [27] 87
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s Experimental datal! F. Asvesta, CERN

dynamic resonance crossing

0055300 350 400 450 500 550 600"
Time (ms)

1.2 4.7

V)]
: = 14.5
3 5 0.8f ||~ bare machine
5 — — correction 144
U)" 8 0-6 [ o,
= N ‘ 14.3
5 © 0.4
- 4.2
: S
= 0.2 a1
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s, Outline

= Coupling error
Coupling errors and their effect
Coupling correction

Linear imperfections and correction, JUAS, January 2020

89



"%, Coupling

Linear imperfections and correction, JUAS, January 2020

contains a skew component

tilted quadrupole
_ 4y

oupling may result from rotation of a quadrupole, so that the field

normal quadrupole

skew quadrupole

A systematic vertical offset in a sextupole has the same effect as a
skew quadrupole. For a displacement of ¢y the field becomes

B, = 2Bsxy = 2Bsxy + 2Box0y

A

B, = B2(-T2 — ??2) = —2Boyoy + B2($2 — y2) — 32(59)2

skew quadrupole
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(;ff(?)) - (SE;

@/’(é))) - (

to get a total 4x4 matrix

Cy(s)
C(s)

Yo

\ v

with skew quadrupoles these
matrix elements are non-zero
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."s, Effect of coupling

= Betatron motion is coupled in the presence of skew
guadrupole components in the machine

The field is (By, By) = ky(z,y) and Hill’s equations are coupled

The motion is still linear with two new eigen-mode tunes, which are
always split. For a thin skew quadrupole with kg the induced tune split

IS
0Q) o ‘ks’\/ﬁmﬁy

Coupling coefficients represent the strength of coupling

1 7 — — ™S8
0% = |% 7{ sy (5)y/ B () By (s)e! (Ve 0w = (QEQy=as)2ms/C)
... complex number characterizing the difference resonance
Qa: — Qy =N

s As the motion is coupled, vertical dispersion and optics
function distortion appears

Linear imperfections and correction, JUAS, January 2020
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AQmin
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0.34

0.33 1

0.32 r

0.31 r

0.3

0.29
-0.02

0

Any quadrupole strength

Coupling makes it impossible to approach the tunes below
|IC™|, where C~ is again the coupling coefficient
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Tune measurement in the CERN PS

0.25+

0.2

= o
@

£
2 0157

quadrupole setting

during storage time

0.25+
= 0.24
0.15+

0.1

programmed Q,

programmed Q,
changed dynamically nos L

programmed Q,

programmed Q,

Jeal

tune peaks from both planes
visible in Fourier spectra of

= horizontal and vertical motion

Coupling makes it impossible to approach the tunes below
AQmin = |C™ |, where C'~ is again the coupling coefficient

The coupling coefficient C'~ can be measured very easily by trying to
approach the tunes and measure the minimum distance
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&, Linear coupling correction @

N b,

= Coupling correctors
Introduce skew quadrupoles into the lattice

If skew quadrupoles are not available, one can make vertical closed
orbit bumps in sextuple magnets (used in JPARC main ring until
installation of skew quadrupole correctors)

s Methods & approaches
Correct globally/locally coupling coefficient (or resonance driving term)
Correct optics distortion (especially vertical dispersion)

Move working point close to coupling resonances and repeat

s Remarks

Correction especially important for beams with unequal emittances “flat
beams” (coupling leads to emittance exchange)

The (vertical) orbit correction may be critical for reducing coupling (e.g.
due to feed-down sextupoles)

Linear imperfections and correction, JUAS, January 2020
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. Chromaticity from quadrupoles @

Linear equations of motion depend on the energy (term proportional to

dispersion) 50
Chromaticity is defined as:  §z,y = 5 jy
p/p
G G ok )
Recall that the gradientis k = — = € > = ¢—p
Bp p k p

This leads to dependence of tunes and optics function on the particle’s
momentum due to the momentum dependent focusing of quadrupoles

For a linear lattice the tune shift is:

3Qu = 1= P BBy (5)ds = —fﬁwcsk ds—q:”pfﬁw

So the natural chromaticity is: £, , = T ]{ﬁx,yk(s)ds

Natural chromaticity is always negative
(since quadrupoles have to provide overall focusing)

Linear imperfections and correction, JUAS, January 2020

| — _ &,
Sometimes the normalized chromaticity is quoted |z,y = 0 d o
T,y
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chromaticity this leads to a tune spread

Example for SNS ring

= In the SNS ring, the natural chromaticity is —7
(in both planes)

» Consider that momentum spread dp/p = £1%
= Tune-shift for off-momentum particles

5Qm,y — £$,y5p/p = +0.07

Sextupoles

6.5

6.4 -

6.3

6.2

6.1t

A beam consists of particles with momentum spread and through

7

A
M

A

)

| ] LIl ] el
6.0 6.1 62 63 64 65

To correct chromaticity need focusing for off-momentum particles
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Chromaticity from sextupoles @

The sextupole field component in the x-plane is: B, = Byz?

)
In a location with non-zero dispersion the closed orbitis * = x, + Dx?p
S 2 op 2 (0P :
Then the field is B, = Boxy + 2B D, —x9 + Ba D, | —
— J p J
Y Y
With ko — 2By quadrupole dipole
Bp op

sextupoles introduce an equivalent focusing correction 0k = koD, —
The sextupole induced chromaticity is

1
S
Sy = P Beha(9)Da(s)ds

The total chromaticity is the sum of the natural and sextupole induced
chromaticity

Linear imperfections and correction, JUAS, January 2020

= Fim P B (K(s) — ha(s)Da(5))ds
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B (ﬂpfp.,= 0)
™ = [ {Ap/p, =)

Sextupole in location with dispersion: closed orbit offset for off-
momentum particles from dispersion results in feed-down in sextupole
giving quadrupole effect (focusing or defocusing depending on sign of
momentum)

Aplp >0 focal length——+
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", Chromaticity correction
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Install sextupoles in areas with high-dispersion and high beta

Two families are able to control horizontal and vertical chromaticity
(if installed in locations with different beta-functions in the two planes)

Tune them to achieve desired chromaticity values
Sextupoles introduce non-linear fields (can lead to chaotic motion)
Sextupoles introduce tune-shift with amplitude

Example:
=« The SNS ring has natural chromaticity of —7

= Placing two sextupoles of length 0.3 m in locations where =12 m, and the
dispersion D,=4 m

» For getting O chromaticity, their strength should be

74 _3

ko = ~ 3
2T 19.4.2.03 ™

or a gradient of B,=17.3 T/m?
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B, lm]
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Two families of sextupoles not enough for correcting off-momentum
optics functions’ distortion and second order chromaticity

Possible solutions:

» Place sextupoles accordingly to eliminate second order effects (difficult)

» Large optics function distortion for momentum spreads of £0.7%,when using
only two families of sextupoles = more families (4 in the case of the SNS

ring) and optimize their settings to minimize off-momentum optics beating
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&, Problem5
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The SPS is a 400 GeV proton synchrotron with a FODO lattice consisting of 108
focusing and 108 defocusing quadrupoles of length 3.22 m and a gradient of 15
T/m, with a horizontal and vertical beta of 108 m and 30 m in the focusing quads
(30 m and 108 m for the defocusing ones). The tunes are Q,=20.13 and Q,=20.18.

= Find the tune change for systematic gradient errors of 1% in the focusing and
0.5% in the defocusing quads.

= What is the natural chromaticity of the machine (without gradient errors)?

e B AL
120 Sps v v
100y
80
E
> 60F
@';x
40 \/
201 0
o--— . _
0 200 400 600 800 1000
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“%, Problem 6
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LEIR: Consider a heavy-ion synchrotron with 5 families of quadrupoles (no

FODO structure) and the optical functions from the plot and table below.

= What is the natural chromaticity of the machine? (quad length /,=0.5m for all
families, dipole length / =6.44m)

= What is the optimum placement for the sextupole magnets to correct the

chromaticity? Give their estimated k, value to get

E
:
=
e
ki (m?) | Bx(m) | By (m) | D, (m)
0.9041 | 7.9 7.9 -10.9
1.1303 | 5.3 180 |-7.3
QF2 |[0.3088 | 7.2 108 |0
QD2 |-1.3181 |54 145 |0
QF3 | 07167 |74 7.6 0

t
T,y

% =07 (assume [ =)

20
15 W

— By
— D,

AT Y Ty
=7\ L

s (m)

0
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- Summary

Linear imperfections such as magnet misalignments and field errors
are unavoidable in a real accelerator, but they can be corrected to
some extent as summarized in this table:

Error

Effect

Cure

fabrication imperfections

transverse misalignments
dipole kicks

qguad field errors
quadrupole tilts
chromaticity

power supplies

unwanted multipolar components

feed-down effect

orbit distortion / residual dispersion
tune shift, beta-beating

couplingx -y

tune spread

closed orbit distortion / tune shift /
modulation

better fabrication / multipolar
correctors coils

better alignment / correctors
corrector dipoles

trim special quadrupoles
better alignment / skew quads
sextupoles

improve power supplies and their
calibration
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