Free-Electron Lasers

Eduard Prat, Paul Scherrer Institut JUAS, 28 January 2020

Contents

i. Introduction

ii. Basic physics principles:

- a) Electron motion
- b) Undulator radiation
- c) Interaction with radiation field
- d) Field emission
- e) SASE FELs
- f) The FEL parameter ρ
- iii. Electron beam requirements
- iv. FEL driver accelerators
- v. FEL projects around the world

I. Introduction

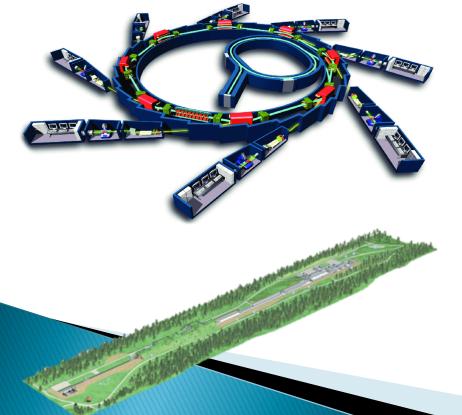
3 Types of Light Sources

Optical short pulse lasers

Pulse duration: +++ (few fs) Wavelength: - - - (~800 nm)

- \rightarrow Fastest processes can be analyzed
- → Spatial resolution limited

Synchrotrons


Pulse duration: o (few ps) Wavelength: +++ (~ 0.1 nm) → Temporal resolution limited

 \rightarrow Wavelength allows for atomic resolution

X-ray free-electron lasers

Pulse duration: +++ (few fs) Wavelength: +++ (~ 0.1 nm) \rightarrow Eastest processes can be analyzed

- \rightarrow Fastest processes can be analyzed
- \rightarrow Wavelength allows for atomic resolution

3 Types of Light Sources

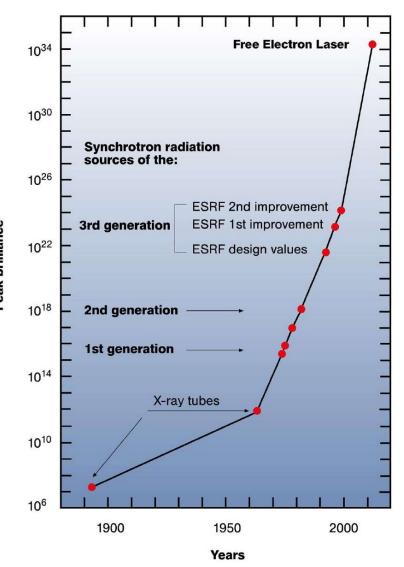
	Optical lasers	Synchrotrons	FELs
Time atomic res.	Yes	No	Yes
Spatial atomic res.	No	Yes	Yes
Pulse energy	few mJ	< nJ	few mJ
Rep rate	< 0.1 MHz	~500 MHz	~0.1 – 1 MHz
Facility cost	Moderate (≥10 MEUR)	High (≥100 MEUR) (but government funded)	Very High (≥300 MEUR) (but government funded)
User accessibility	Poor, normally buy it yourself!	Good: ~50 user facilities worldwide (~10 beamlines each)	Fair: ~5 user facilities worldwide (1-2 beamlines each)

 FELs are the only source providing atomic resolution in space and time but they are expensive → use them only when high power or ultra-short pulses are required

Synchrotrons are sufficient for most of studies on structural analysis

All light sources are necessary and complementary

Brilliance


- At the business end, the appropriate figure-of-merit for light sources is the brilliance.
- It takes into account:
 - the number of photons produced per time unit (use second)
 - the angular divergence of the photons (in mrad²)
 - the cross-sectional area of the photon beam (use mm²)
 - the number of photons falling within a certain bandwidth (BW) of the central wavelength (0.1% are customary)
- Therefore the awkward but appropriate unit for brilliance is:

```
photons / s / mm<sup>2</sup> / mrad<sup>2</sup> / 0.1% (BW)
```

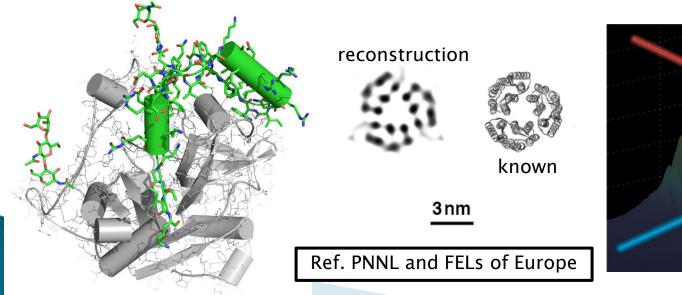
Some other terms are used in the literature

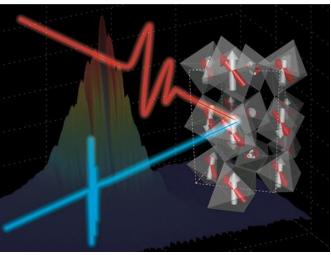
- *brightness* (should be reserved for the phase-space density of particle beams)
- *intensity* (should only be used for power per unit area!)
- *photon flux* (is the number of photons per time and area, it misses divergence and bandwidth)

Historical evolution of peak brilliance

Classification of synchrotron light sources:

- 1st generation: parasitic use of synchrotrons built for particle physics
- 2nd generation: dedicated synchrotrons / storage rings built for photon science
- 3rd generation: dedicated storage rings optimized for operation with insertion devices (wigglers and undulators)
- 4th generation: free electron lasers

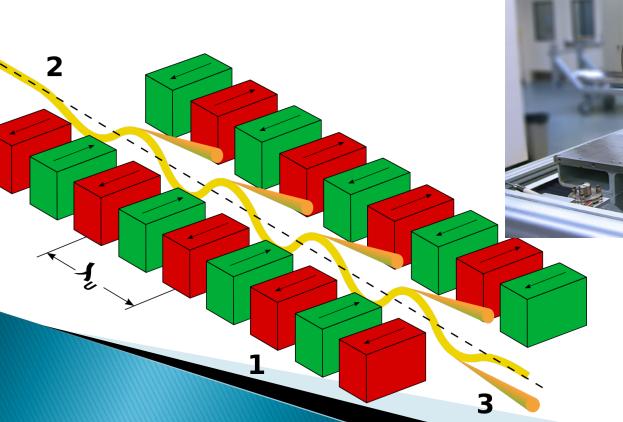

(ESRF is a reference for 3rd generation light sources)

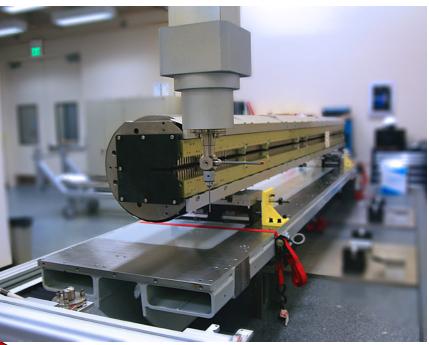

4th generation light sources: FELs

- The most brilliant light sources
- Tunable wavelength, down to 1 Angstrom
- Pulse Length less then 100 fs (sub fs demonstrated)
- High Peak Power above 1 GW
- Fully Transverse Coherence
- Longitudinal coherence (with special methods such as self-seeding)

Science with light sources

- FELs are unique light sources to observe matter on spatial AND time scales of atomic processes
- They can address fundamental research questions across the disciplines of physics, chemistry, materials and life sciences.
- Examples:
 - $\,\,\circ\,\,$ Crystallography to determine structure and dynamics of biomolecules $\rightarrow\,\,$ discovery of new drugs for challenging diseases
 - Observation of transitions in quantum materials → development of new materials for multiple applications





II. Basic physics principles Electron motion

Forcing the Electrons to Wiggle...

 ... by injecting them into a period field of an wiggler magnet (also often called undulator).

Wiggler module from the LCLS XFEL

Wiggler Field

- Defined by a transverse magnetic field which switch polarity multiple times, defining the undulator period λ_u
- On Axis–Field:

Planar Undulator

Helical Undulator

$$B = B_0 \begin{pmatrix} 0 \\ \cos(k_u z) \\ 0 \end{pmatrix}$$

$$\bigvee_{B=B_{0}} \left(\begin{array}{c} \cos(k_{u}z) \\ \sin(k_{u}z) \\ 0 \end{array} \right)$$

Motion in Planar Undulator • Lorentz Force: $F = e \cdot (v \times B)$

Dominant field in y

Dominant motion in z ($\sim \beta_z ct$)

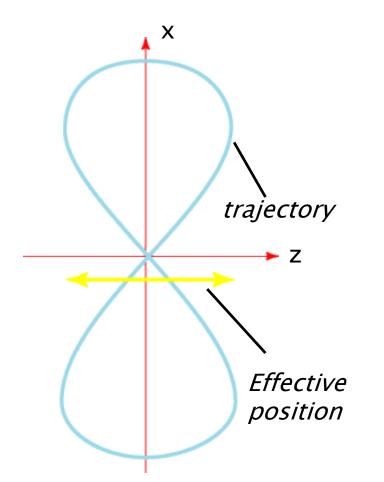
$$F_{x} = e(-v_{z}B_{y}) = -ec\beta_{z}B_{0}\cos(k_{u}z)$$
$$F_{x} = \frac{d}{dt}p_{x} = \gamma mc\frac{d}{dt}\beta_{x}$$

From these 2 equations and after some algebra the transverse and longitudinal motion of the electrons can be derived

Undulator parameter

$$K = \frac{eB_0}{mck_u}$$

 $K \approx 0.93 \cdot B_0 [T] \cdot \lambda_u [cm]$


$$\beta_x = -\frac{K}{\gamma} \sin(k_u z)$$

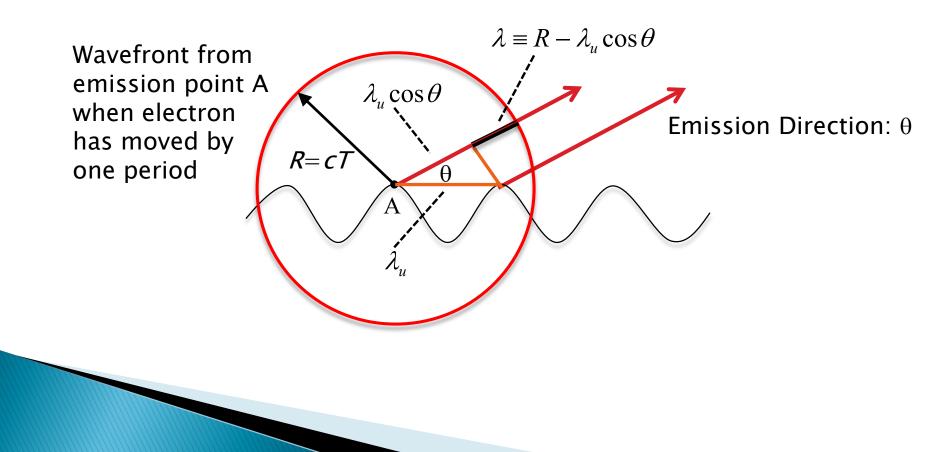
Transverse

$$\beta_z = \left< \beta_z \right> + \frac{K^2}{4\gamma^2} \cos(2k_u z)$$

Average over one period

In the Co-moving frame

- Longitudinal wiggle has twice the period.
- Causes a figure "8" motion in the co-moving frame.
- The longitudinal position is effectively smeared out


In a helical wiggle the longitudinal motion is constant

II. Basic physics principles. Undulator radiation

Resonance Condition (I)

Accelerated particles are emitting radiation

Condition to have a constructive interference between electrons and photons

Resonance Condition (II)

$$\lambda = R - \lambda_u \cos \theta \qquad \qquad \frac{1}{1-x} = 1 + x + x^2 + \dots$$
1)
$$R = cT = c \frac{\lambda_u}{\langle \beta_z \rangle c} = \frac{\lambda_u}{\langle \beta_z \rangle} = \lambda_u \frac{1}{1 - \frac{1 + K^2/2}{2\gamma^2}} \approx \lambda_u \left(1 + \frac{1 + K^2/2}{2\gamma^2}\right)$$

$$\langle \beta_z \rangle = 1 - \frac{1 + K^2/2}{2\gamma^2}$$

For small angles

2)
$$\lambda_u \cos \theta \approx \lambda_u \left(1 - \frac{\theta^2}{2} \right)$$

 $\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \theta^2 \gamma^2 \right)$$

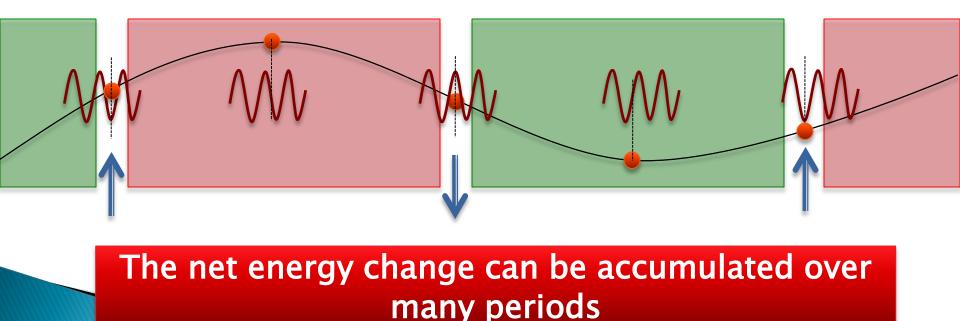
The FEL Resonant Wavelength

- The wavelength can be controlled by
 - Changing the electron beam energy,
 - Varying the magnetic field (requires K significantly larger than 1)
- Example: an undulator period of 15 mm, a K-value of 1.2 and an energy of 5.8 GeV (γ =11000) would give 1 Å radiation

The Free-Electron Lasers are based on undulator radiation in the forward direction with the resonant wavelength:

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

II. Basic physics principles. Interaction with radiation field

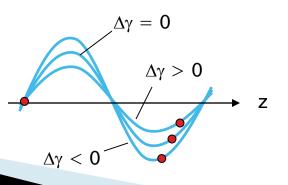

Basic ideas

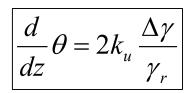
- The wiggling electrons emit radiation. Some of it copropagates along the undulator.
- The transverse oscillation allows the coupling of the electron beam with the radiation field.
- Electrons absorbing more photons than emitting become faster and tend to group with electrons, which are emitting more photons than absorbing.

The FEL exploits a collective process, which ends with an almost fully coherent emission at the resonant wavelength.

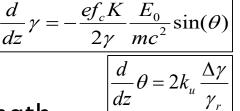
Co-Propagation of Electrons and Field

- The transverse oscillation allows to couple with a copropagating field $r_{\nu_{\perp}}$.
- The electron moves either with or against the field line
- After half undulator period the radiation field has slipped half wavelength. Both velocity and field, have changed sign and the direction of energy transfer remains.

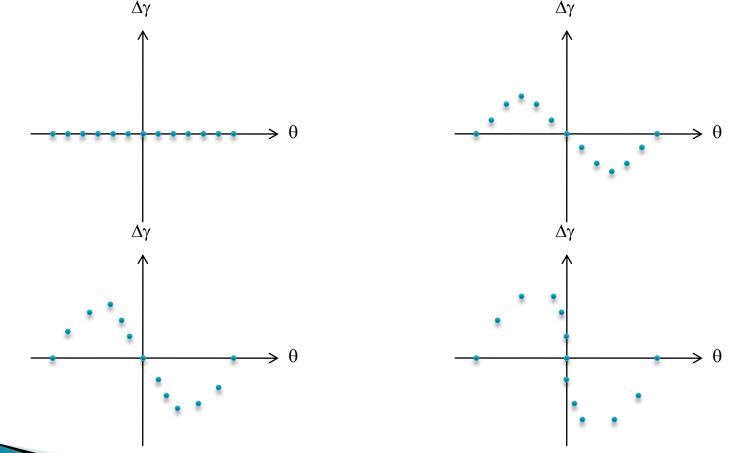

Energy Modulation & Longitudinal Motion


 \blacktriangleright The energy change of an electron depends on its phase θ

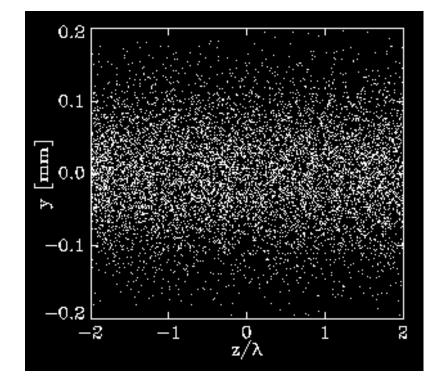
$$\frac{d}{dz}\gamma = -\frac{ef_c K}{2\gamma} \frac{E_0}{mc^2} \sin(\theta)$$


 f_c : coupling factor (<1)

- For a given wavelength λ there is one energy γ_r , where the electron stays in phase with radiation field.
- It can be proven that the condition that satisfies this is exactly the resonance condition.
- Electrons with energies above the resonant energy, move faster $(d\theta/dz > 0)$, while energies below will make the electrons fall back $(d\theta/dz < 0)$. For small energy deviations:



Motion in Phasespace


- Wavelength typically much smaller than bunch length.
- Electrons are spread out initially over all phases.

Electrons are bunched on same phase after quarter rotation

Microbunching

Transverse position

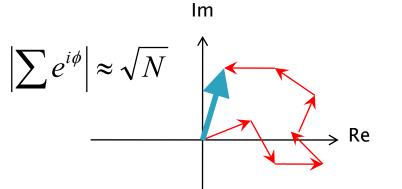
3D Simulation for FLASH FEL over 4 wavelengths

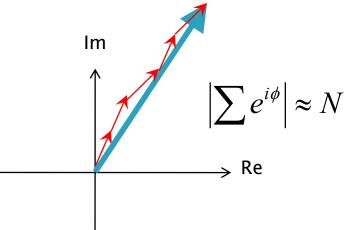
Frame moving with electron beam through 15 m undulator

Wiggle motion is too small to see. The 'breathing' comes from focusing to keep beam small.

Slice of electron bunch (4 wavelengths)

Microbunching has periodicity of FEL wavelength. All electrons emit coherently.

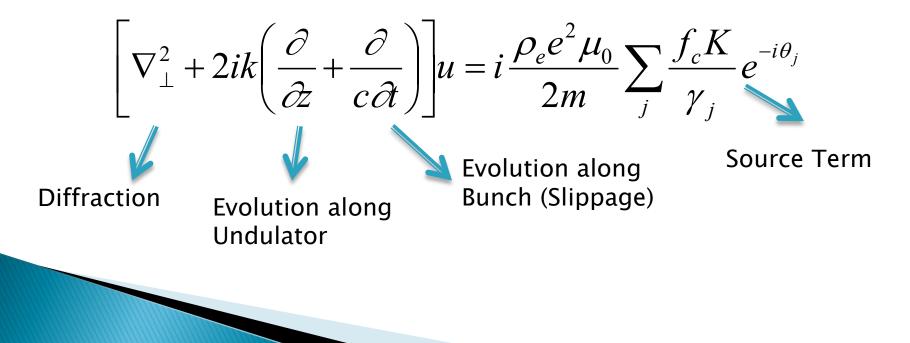

II. Basic physics principles. Field Emission


Coherent Emission

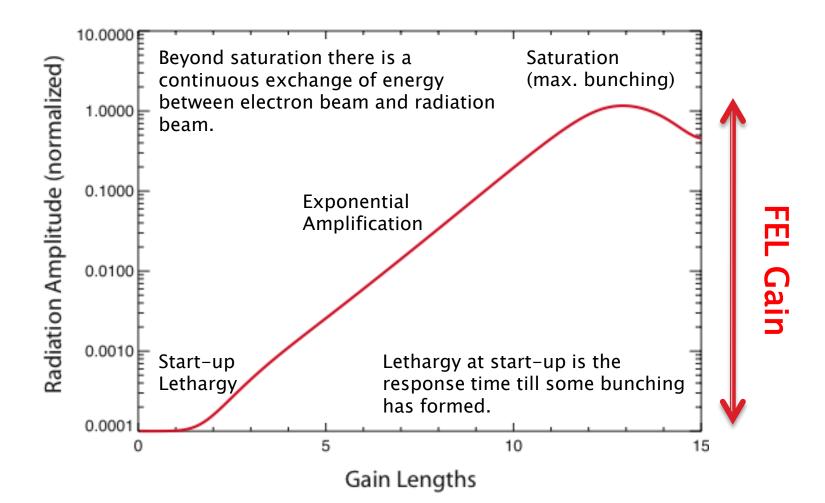
The electrons are spread out over the bunch length with its longitudinal position δz_j. The position adds a phase φ_j=kδz_j to the emission of the photon
 The total field is:

$$E(t) \propto \sum_{j} e^{i(kz_{j} - \omega t)} = e^{i(k\langle z \rangle - \omega t)} \cdot \sum_{j} e^{ik\delta z_{j}} = e^{i(k\langle z \rangle - \omega t)} \cdot \sum_{j} e^{i2\pi \frac{\delta z_{j}}{\lambda}}$$

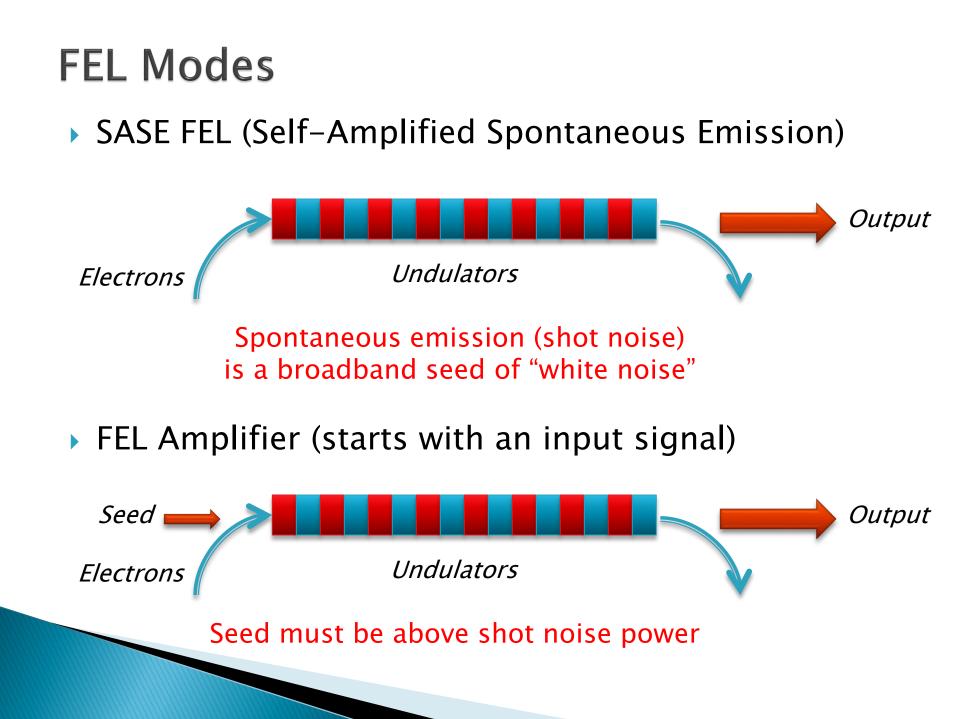
Case 1: $\delta z_j \ge \lambda$ Electrons spread over wavelength: Phasor sum = random walk in 2D Case 2: $\delta z_j <<\lambda$ Electrons bunched within wavelength: Phasor sum = Add up in same direction

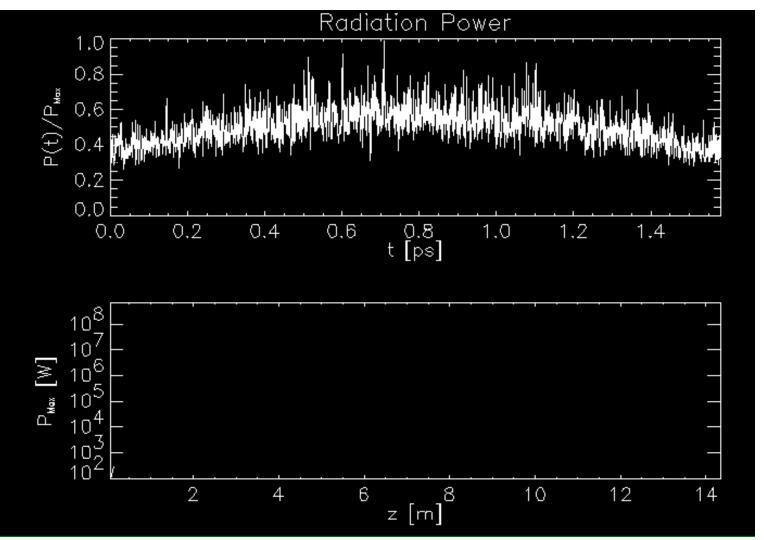

Power ~ $/E/^2$ -> Possible Enhancement: N (N \rightarrow N²)

Complete Picture: Evolving Radiation Field

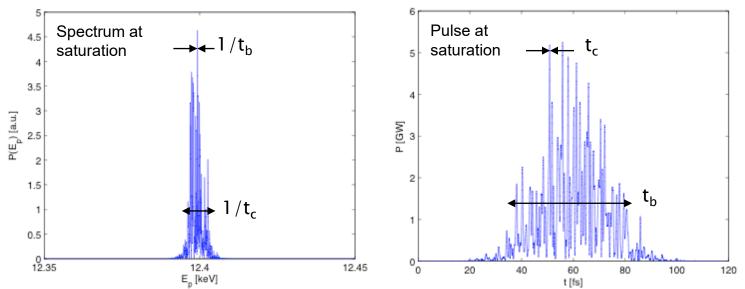

The FEL field *u* (relative to E) depends on the longitudinal position along the undulator (z), the time coordinate (t) and the transverse properties.

$$u = \frac{eE_0}{imc^2k}e^{i\phi}$$


• The change in the radiation field is given by the following equation:


The Generic Amplification Process

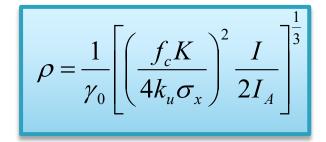
II. Basic physics principles. SASE FELs


Typical Growth of SASE Pulse

Simulation for FLASH FEL

SASE FELs

- FEL starts with the broadband signal of spontaneous radiation (almost a white noise signal)
- \blacktriangleright Within the FEL bandwidth $\Delta \omega$ the noise is amplified
- Spikes in spectrum and time profile.


SwissFEL: Simulation for 1 Angstrom radiation

Cooperation Length: $L_c = ct_c$

II. Basic physics principles. The FEL parameter ρ

The Importance of the FEL Parameter $\boldsymbol{\rho}$

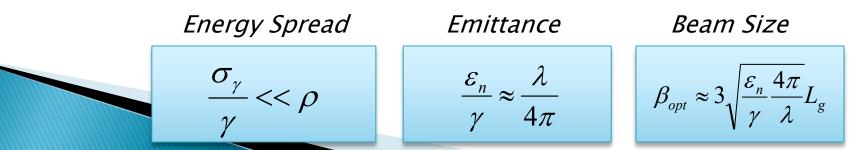
FEL parameter ρ . Typical values = $10^{-4} - 10^{-2}$

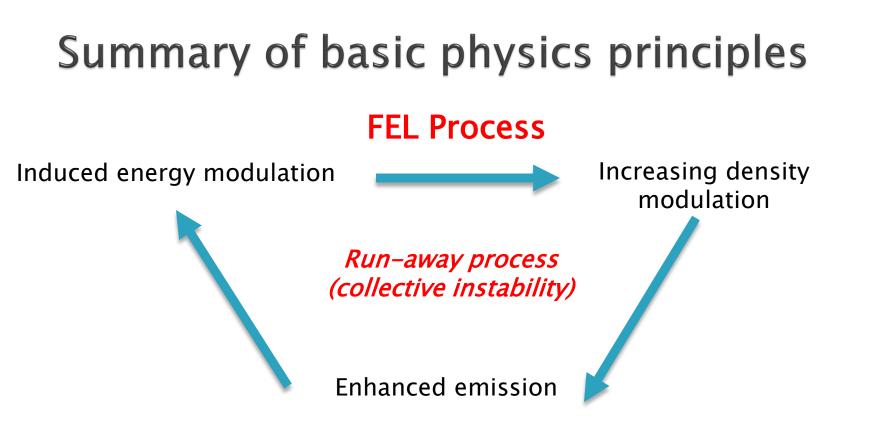
- f_c: coupling factor (~0.9 for planar undulator) I: electron peak current σ_x: transverse beam size I_A: Alfven current (~17 kA)
- Scaling of 1D theory

Gain length

Efficiency

SASE Spike Length

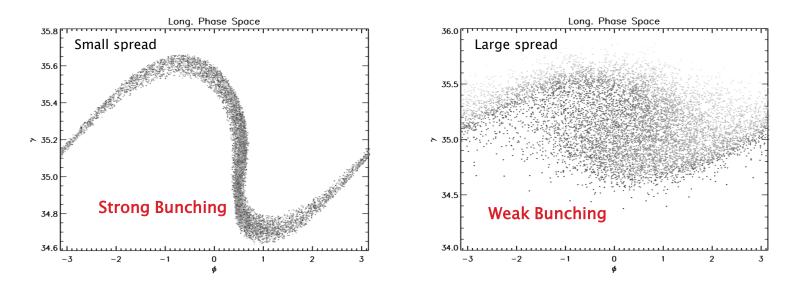

Bandwidth


$$L_g = \frac{\lambda_u}{4\pi\sqrt{3}\cdot\rho}$$

$$P_{FEL} pprox
ho P_{beam}$$

$$L_c = \frac{\lambda}{4\pi\rho}$$

$$\frac{\Delta\omega}{\omega} = 2\rho$$

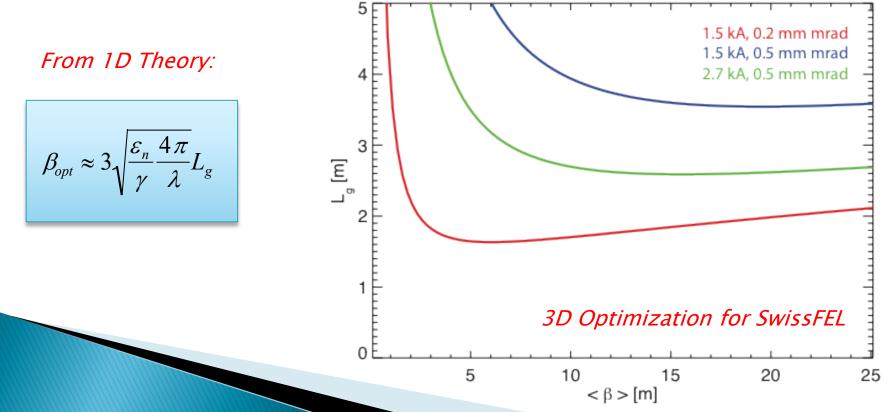


- FEL utilized the strong coherent emission in the collective instability with the tuning ability of the wavelength.
- Instability can only occur with a beam with low energy spread and emittance.

III. Electron beam requirements

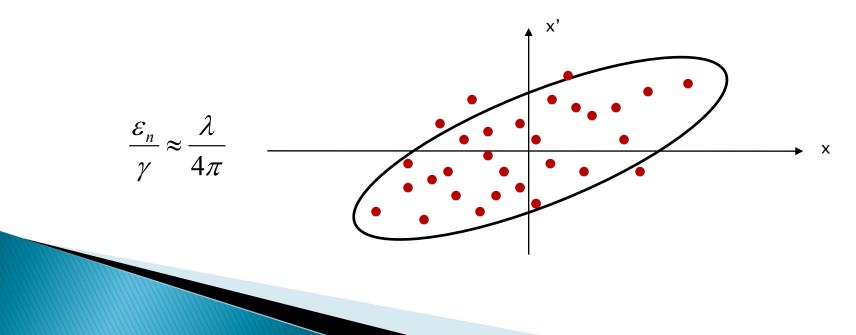
Electron Beam Requirements: Energy Spread

- Only electrons within the FEL bandwidth can contribute to FEL gain.
- FEL process is a quarter rotation in the separatrix of the FEL. If separatrix is filled homogeneously, no bunching and thus coherent emission can be achieved.



Energy Spread Constraint:

 $\frac{\sigma_{\gamma}}{\sim} <<
ho$


Optimizing the Focusing

- > Decreasing the β -function (increase focusing), increases the FEL parameter ρ .
- Stronger focusing:
 - Larger kinetic energy of betatron oscillation
 - Less kinetic energy for longitudinal motion
 - Smearing out of growing bunching

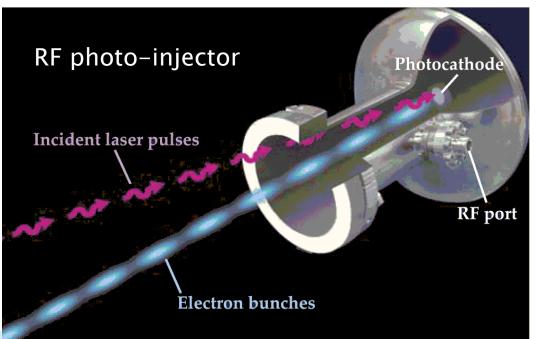
3D Effects – Emittance

- The effective "emittance" for the fundamental mode of the radiation field is $\lambda/4\pi$.
- The effective phase space ellipse should enclose all electrons, allowing them to radiate coherently into the fundamental mode.
- Electrons, outside the ellipse, are emitting into higher modes and do not contribute to the amplification of the fundamental mode.

IV. FEL driver accelerators

Linac-based FELs

 FEL performance is determined by the electron beam: the peak current, the size, the energy spread and the emittance, i.e. the electron charge density in 6D.

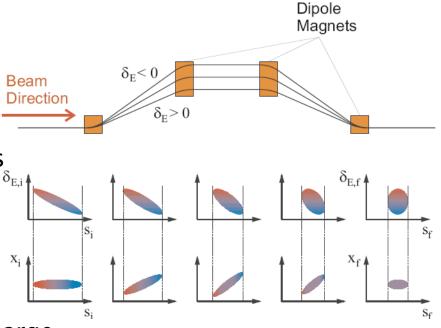

$$\rho = \frac{1}{\gamma_0} \left[\left(\frac{f_c K}{4k_u \sigma_x} \right)^2 \frac{I}{I_A} \right]^{\frac{1}{3}} \qquad \frac{\sigma_{\gamma}}{\gamma} << \rho \qquad \frac{\varepsilon_n}{\gamma} \approx \frac{\lambda}{4\pi}$$

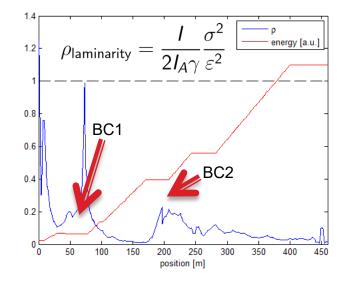
- The X-ray FEL requirements on the electron beam quality are so demanding that only linear accelerators can be used to provide the drive beam.
- Low emittance and high peak current beams are required in the undulators, but not available at feasible electron sources.
- Typically long beams are produced with low emittance and then compressed later. Compression should not dilute emittance too much (i.e. space-charge forces).

Electron sources

- RF photo-injectors are normally used to generate high-brightness electron beams
- Electrons are produced via the photo-electric effect by a laser of a proper wavelength impinging on a photocathode mounted inside an RF gun.
- Final energy of the electrons is of few-several MeV
- > Other (less bright) alternatives: thermionic or DC guns
- Emittance of the source is determined by: intrinsic emittance of the cathode, space-charge and RF effects.
- Emittance goals:
- 1. Optimize the source emittance
- Preserve emittance along the linac

C. Hernandez-Garcia, P. G. O' Shea, and M. L. Stutzman, Phys. Today 61(2), 44 (2008).


Bunch compression

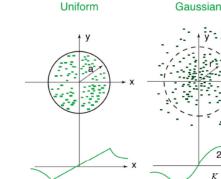

Bunch compression principle

- 1. Energy chirp generation in rf structures
- 2. Transport through magnetic chicanes

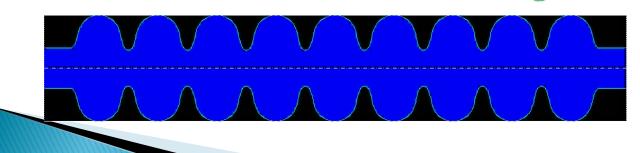
Where to compress?

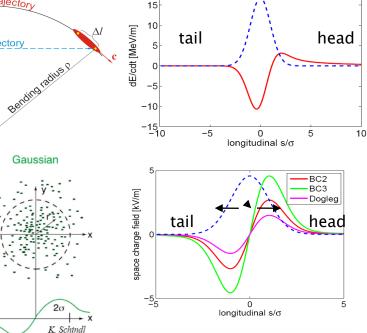
- Early compression would lead to high charge density beams at low energies which would increase the emittance.
- Late compression would require the transport of long bunches trough the linac without emitance dilution, which is difficult (RF– curvature, wake fields, ...)
- Multi-stage-compression: 2 stages in case of LCLS, FLASH, and SwissFEL

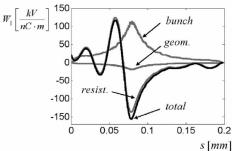
Self Interactions


High charge densities give rise to strong electro-magnetic fields generated by the electron bunches. Electrons within the bunch experience these fields.

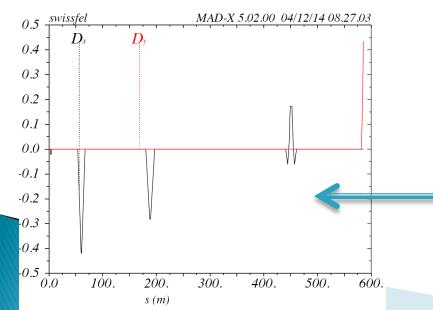
 Λl

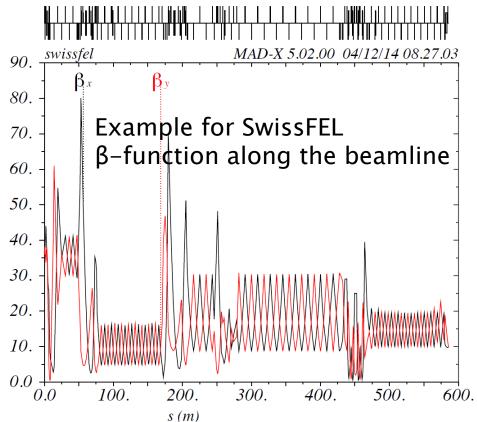

Coherent Synchrotron Radiation


Space Charge fields


Wake fields

CSR trajectory





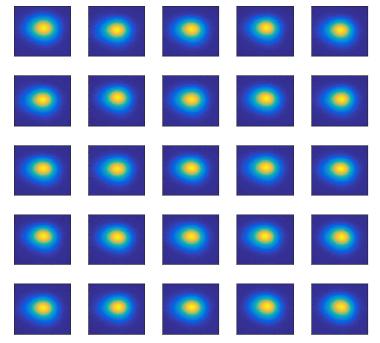
Electron beam optics

Optics design has to consider:

- Maximum/minimum beam size
- Chromaticity
- Sensitivity to quadrupole field errors
- CSR in bunch compressors
- Diagnostics: TDC measurements, emittance measurements
- Optimum beta-function in the undulator

Example for SwissFEL Dispersion along the beamline

Requirements of an FEL / Diagnostics


Diagnostics are required to characterize, setup and optimize the electron beam

Requirement	Implementation	Measurement/Verification
Electrons	Laser electron gun (photocathode + RF cavity)	e.g. Wall current monitor
Focusing (optics)	Quadrupole magnets	Screen monitor
Localization (orbit)	Steering magnets (dipoles)	Beam position monitor (BPM)
Energy	Radiofrequency cavities (3 GHz = S-band)	Spectrometer (Dipole magnet)
Peak current	 Laser pulse shape Magnetic chicane (bunch compressor) 	Beam profile measurement with RF deflector and screen monitor
Beam size / emittance	 Design electron gun "emittance compensation" 	 "Pepperpot"/slits (low energies) Beam optical methods (higher energies)

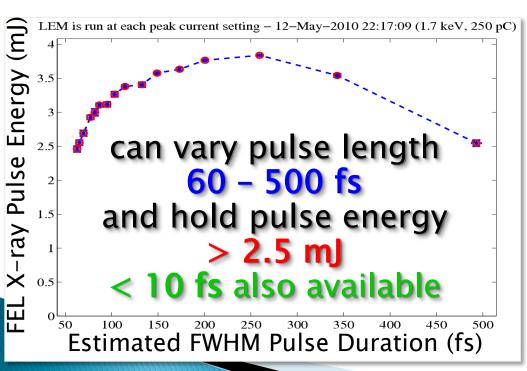
Requirements of an FEL / Stability

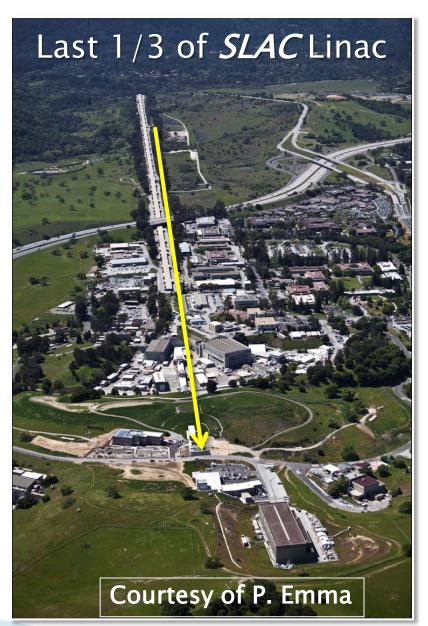
- Scientific users require extremely stable
 FEL radiation output in terms of:
 - pulse energy (~% level)
 - arrival time (~10 fs)
 - wavelength (~0.1%)
 - pointing (~10% of beam size).
- Several feedbacks are used for that:
 - Charge feedback (gun laser)
 - Trajectory feedbacks along the machine
 - Compression (current) feedbacks after each bunch compressor
 - Arrival time feedbacks
 - Electron beam energy feedbacks

- Need several diagnostics for:
 - Electron beam (BPMs, compression monitors, charge, arrival time, etc.)
 - Photon beam (spectrometer, pulse energy, arrival time, transverse profile...)

Example: shot to shot FEL spots at SwissFEL. Intensity stability of few %, pointing stability around 10% of the rms beam size

V. FEL projects around the world

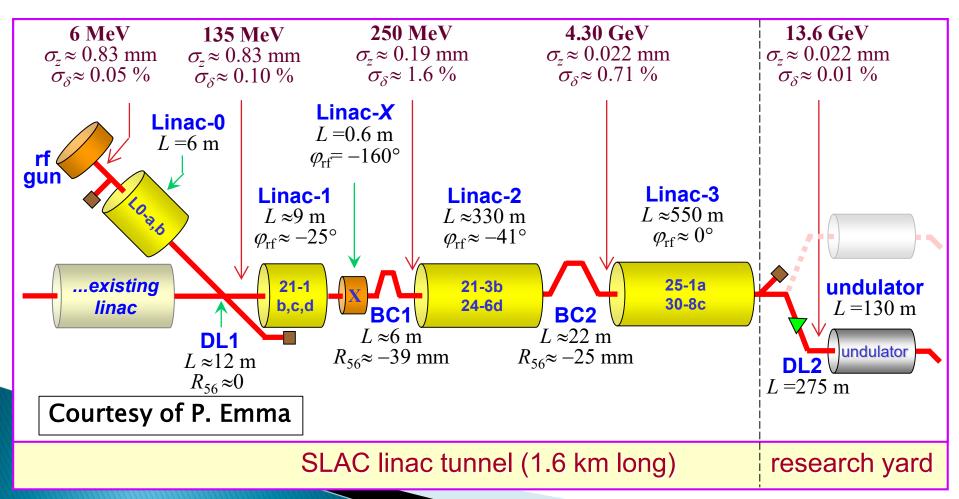

X-ray FEL Projects Around the World



- •FLASH: first soft X-ray with high repetition rate (MHz), 2007
- •LCLS: first hard X-ray, 2009
- •SACLA: compact hard X-ray, 2011
- •FERMI: first soft X-ray seeded-FEL, 2013
- •PAL-XFEL: hard X-ray with low (20 fs) timing jitter, 2016
- •E-XFEL: hard X-ray with high repetition rate, 2017
- •SwissFEL: compact hard X-ray driven by low emittance beam, 2017
- •Future facilities: LCLS2 and SHINE (high repetition rate)

LCLS (Linac Coherent Light Source)

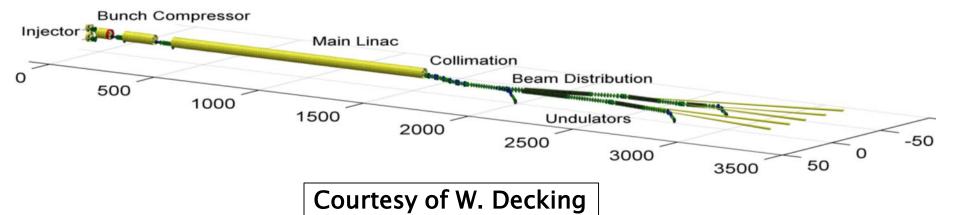
- Electron energy Photon energy X-ray pulse length Bandwidth Repetition rate Machine length
- = 3 15 GeV = 0.3 - 11 keV = 5 - 500 fsec = 0.005 - 2 % = ≤ 120 Hz ≈ 2 km



LCLS Layout


- RF electron gun
- Two bunch compressors
- Laser heater system

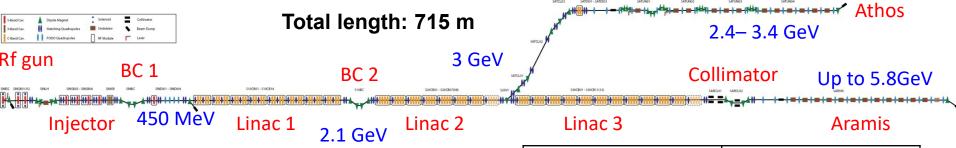
- S-band linac (2.856 GHz) to 14 GeV
- RF harmonic linearizer (11.424 GHz)
- Permanent magnet undulator


European-XFEL

- 17.5 GeV superconducting linac, almost 1 MW beam power
- 27000 pulses per second in 10 Hz burst mode
- Three moveable gap undulators for hard and soft X-rays (0.25 to 25 keV)
- Initially 6 equipped experiments
- Total length around 3 km
- Commissioning started in December 2015 / First FEL light in 2017

Courtesy of W. Decking

European-XFEL Layout


Quantity	Value
pulse repetition rate	10 Hz
beam pulse length	600 μs
bunch repetition frequency within pulse	4.5 MHz
electron bunch length after compression	2 – 180 fs (FWHM)
bunch charge	0.02 – 1 nC
slice emittance	0.4 - 1.0 mm mrad
slice energy spread	4 – 2 MeV

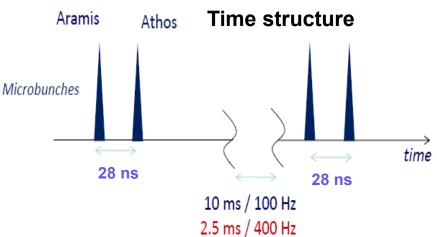
SwissFEL

- X-ray FEL project in Switzerland (Villigen) with 2 beamlines
 - Aramis (hard X-ray)
 - Athos (soft X-ray)
- Compact (~700 m) and cost-effective facility driven by electron beam with low energy (6 GeV) and ultra-low emittance.
- Budget ~300 MCHF
- First ideas more than 10 years ago.
- Construction started in 2013.
- Commissioning started in 2016.
- 2018: pilot experiments in Aramis. 2019: first user experiments.
- Athos: first FEL light by end of 2019, first users from 2021.

SwissFEL Layout

Electron source

RF gun with laser driven Cu-photocathode


RF structures

➤Gun and Injector: S-band

- ≻Linac: C-band
- X-band for phase-space linearization

Undulator beamlines: 1. Aramis: hard X-ray FEL (1-7 Å) Undulators with variable gap, period = 15mm 2. Athos: soft X-ray FEL (7-70 Å) Undulators with variable gap , period = 40mm

Ellide S	Alumis	
Wavelength	1 Å - 70 Å	
Pulse duration	1 – 20 fs	
e ⁻ Energy	5.8 GeV	
e ⁻ Bunch charge	10 – 200 pC	
Repetition rate	100 Hz	

2 bunch operation: serve 2 undulator lines simultaneously at full repetition rate

References

References

Z. Huang and K. J. Kim, "Review of X-ray Free-Electron Laser Theory". *Physical Review Special Topics – Accelerator and Beams 10*, 0.4801/1–034801/38, 2007.

K. J. Kim, Z. Huang, and R. Lindberg, *Synchrotron Radiation and Free-Electron Lasers*. Cambridge University Press, 2017.

C. Pellegrini, A. Marinelli, and S. Reiche, "The physics of x-ray free-electron lasers". *Reviews of Modern Physics 88*, 015006, 2016.

E. L. Saldin, E. A. Schneidmiller and M. V. Yurkov, *The Physics of Free–Electron Lasers*. Springer, 1999.

P. Schmüser, M. Dohlus and J. Rossbach, *Ultraviolet and Soft X-Ray Free-Electron Lasers. Introduction to Physical Principles, Experimental Results, Technological Challenges*. Springer, 2009.

P. Willmott, *An Introduction to Synchrotron Radiation. Techniques and Applications*. Wiley, 2019.

Open positions at SwissFEL

Open positions at SwissFEL

Summer-student positions for 2020 (for students that have not finished their master degree yet):

- Improvement of beam optics and emittance measurements at SwissFEL: <u>https://www.psi.ch/en/pa/job-opportunities/32394-</u> <u>trainee</u>
- Online pulse duration reconstruction from spectra analysis at SwissFEL: <u>https://www.psi.ch/en/pa/job-opportunities/32388-</u> <u>trainee</u>
- Virtual longitudinal diagnostics at SwissFEL: soon online at https://www.psi.ch/en/pa/job-opportunities

Two post-doctoral positions on "Single-particle imaging experiments at the soft X-ray beamline of SwissFEL":

- Postdoc 1 on generation and measurement of short and high-power XFEL pulses (starting Q3/Q4 2020)
- Postdoc 2 on photon pulse-duration measurements and imaging experiments (starting 2021)

Soon online at https://www.psi.ch/en/pa/job-opportunities