

Beam Diagnostics and Instrumentation JUAS 2020, Archamps Peter Forck

Gesellschaft für Schwerionenforschnung (GSI) and University Frankfurt

Diagnostics is the 'sensory organs' for the beam.

It deals with <u>real</u> beams in <u>real</u> technical installations including all imperfections. Three types of demands lead to different installations:

- Quick, non-destructive measurements leading to a single number or simple plots Used as a check for online information. Reliable technologies have to be used *Example:* Current measurement by transformers
- Instruments for daily check, malfunction diagnosis and wanted parameter variation Example: Profile measurement, in many cases 'intercepting' i.e destructive to the beam
- Complex instruments for severe malfunctions, accelerator commissioning & development The instrumentation might be destructive and complex *Example:* Emittance determination
- General usage of beam instrumentation:
- Monitoring of beam parameters for operation, beam alignment, acc. development.....
- Instruments for automatic, active beam control

Example: Closed orbit feedback using position measurement by BPMs

Non-destructive ('non-intercepting') methods are preferred:

- The beam is not influenced
- The instrument is not destroyed

The cost of diagnostics is about 3 to 10 % of the total facility cost:

- ≥ 3 % for large accelerators **or** accelerators with standard technologies
- ≥ 10 % for versatile accelerators **or** novel accelerators and technologies.

The amount of man-power is about 10 to 20 %:

- very different physics and technologies are applied
- technologies have to be up-graded, e.g. data acquisition and analysis
- > accelerator improvement calls for new diagnostic concepts.

Electro-magnetic influence by moving charges:

→ <u>Physics</u>: classical electro-dynamics. <u>Technique</u>: U and I meas., low & high frequencies Examples: Faraday cups, beam transformers, pick-ups

- > Emission of photon by accelerated charges: (only for high relativistic electrons and p)
 - → <u>Physics</u>: classical electro-dynamics. <u>Technique</u>: optical techniques (from visible to x-ray) *Example*: Synchrotron radiation monitors
- > Interaction of particles with photons:
 - → <u>Physics</u>: optics, lasers. <u>Technique</u>: optical techniques, particle detectors *Examples:* laser scanners, short bunch length measurement, polarimeters
- > Coulomb interaction of charged particles with matter:
- → <u>Physics</u>: atomic and solid state physics. <u>Technique</u>: *I* meas., optics, particle detectors *Examples:* scintillators, viewing screens, ionization chambers, residual gas monitors
- > Nuclear- or elementary particle physics interactions:
 - → <u>Physics</u>: nuclear physics. <u>Technique</u>: particle detectors
 - *Examples:* beam loss monitors, polarimeters, luminosity monitors
- > And of cause accelerator physics for proper instrumentation layout.
- Beam diagnostics deals with the full spectrum of physics and technology,
- \Rightarrow this calls for experts on all these fields and is a challenging task!

LINAC & transport lines: single pass ↔ Synchrotron: multi pass

Electrons: always relativistic \leftrightarrow **Protons/Ions:** non-relativistic for E_{kin} < 1 GeV/u

Depending on application: low current \leftrightarrow high current

Overview of the most commonly used systems:

Beam quantity		Transfer line	Synchrotron
Current /	General	Transformer, dc & ac	Transformer, dc & ac
		Faraday Cup	
	Special	Particle Detectors	Pick-up Signal (relative)
Profile <i>x_{width}</i>	General	Screens, SEM-Grids	Ionization Profile Monitor
		Wire Scanners, OTR Screen	Wire Scanner,
			Synchrotron Light Monitor
	Special	MWPC, Fluorescence Light	
Position x _{cm}	General	Pick-up (BPM)	Pick-up (BPM)
	Special	Using position measurement	
Transverse Emittance ε_{trans}	General	Slit-grid	Ionization Profile Monitor
		Quadrupole Variation	Wire Scanner
	Special	Pepper-Pot	Transverse Schottky

Beam Quantities and their Diagnostics II

Beam quantity		Transfer line	Synchrotron
Bunch Length $\Delta \varphi$	General	Pick-up	Pick-up
			Wall Current Monitor
	Special	Secondary electrons arrival	Streak Camera
		Electro-optical laser mod.	Electro-optical laser mod.
Momentum <i>p</i> and	General	Pick-ups (Time-of-Flight)	Pick-up (e.g. tomography)
Momentum Spread △p/p	Special	Magnetic Spectrometer	Schottky Noise Spectrum
Longitudinal Emittance ε_{long}	General	Buncher variation	
	Special	Magnetic Spectrometer	Pick-up & tomography
Tune and Chromaticity Q, ξ	General		Exciter + Pick-up
	Special		Transverse Schottky Spectrum
Beam Loss r _{loss}	General	Particle Detectors	
Polarization P	General	Particle Detectors	
	Special	Laser Scattering (Compton scattering)	
Luminosity L	General	Particle Detectors	

> Destructive and non-destructive devices depending on the beam parameter.

 \succ Different techniques for the same quantity \leftrightarrow Same technique for the different quantities.

Remark: In most cases no diagnostics device installed inside the rf-cavities (except cyclotron)

Typical Installation of a Beam Instrument

IUas

Typical Installation of a Beam Instrument

Single bunch position averaged over 1000 bunches \rightarrow closed orbit with ms time steps. It differs from ideal orbit by misalignments of the beam or components. Example: GSI-synchrotron at two BPM locations, 1000 turn average during acceleration:

Closed orbit:

Beam position averaged over many turns (i.e. betatron oscillations).

The result helps to align the accelerator! Some device parameters are shown to prove functionality.

The ordering of the subjects is oriented by the beam quantities:

- Current measurement: Transformers, cups, particle detectors
- Profile measurement: Various methods depending on the beam properties
- Transverse emittance measurement: Destructive devices,

determination by linear transformations

- Pick-ups for bunched beams: Principle and realization of rf pick-ups, closed orbit and tune measurements
- Measurement of longitudinal parameters: Beam energy with pick-ups,

time structure of bunches for low and high beam energies, longitudinal emittance

Beam loss detection: Secondary particle detection for optimization and protection

It will be discussed: The action of the beam to the detector, the design of the devices, generated raw data, partly analog electronics, results of the measurements.
It will not be discussed: Detailed signal-to-noise calculations, analog electronics, digital electronics, data acquisition and analysis, online and offline software....
General: Standard methods and equipment for stable beams with moderate intensities.

Organization of the Lecture

General: Please ask questions & make comments \rightarrow all interrupts are welcome! This is your event!

Goal of the Lecture

The goal of the lecture should be:

- > Understanding the signal generation of various device
- Showing examples for real beam behavior
- > Enabling a correct interpretation of various measurements.

Backup slides