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Outline of part II
• Recall of special relativity

• Beam optics
• Lorentz force

• Particle in a magnetic field (cartesian reference system)

• Beam rigidity

• Particle in a magnetic field (curvilinear reference system)

• Dipole and quadrupole fields and their effect on particle motion

• Solution of Hill’s equation with and without dispersion

• Transport matrix for simple accelerator elements

• Drift

• Quadrupole (thick vs thin)

• Dipole (sector magnet)

• Examples of optical systems and their treatment: spectrometer

• Sector magnet

• Edge effects
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Recall of special relativity
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Short recap, more details given already in H.Henke’s lectures!



The energy-momentum relation is defined in special relativity as

𝐸2 = 𝐸0
2 + 𝑝𝑐 2

with 𝐸 total energy of a particle, 𝑝 = 𝑚𝑣 the particle momentum, 𝐸0 = 𝑚0𝑐
2 its 

rest-energy.

The relativistic mass of a particle is given by 𝑚 = 𝛾𝑚0 from which the 

momentum can be expressed as 𝑝 = 𝛾𝑚0𝛽𝑐 defining 𝛽 = Τ𝑣 𝑐 and 𝛾 =
1

1−𝛽2

Substituting we get

𝐸2 = 𝐸0
2 + 𝑝𝑐 2 = 𝐸0

2(1 + 𝛽2𝛾2) = 𝛾2𝐸0
2

which means 𝐸 = 𝛾𝐸0

Recall of special relativity

𝐸0

𝐸
𝑝𝑐
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Recall of special relativity
For a particle at rest (𝑣 = 0):

𝐸 = 𝛾𝐸0 = 𝐸0

For a particle at low velocity (𝑣 ≪ 𝑐, 𝛾 ≃ 1) we have:

𝐸 = 𝐸0
2 + 𝑝𝑐 2 = 𝐸0 1 +

𝑝

𝑚0𝑐

2

Expanding the square root in Taylor series at 2nd order:

1 + 𝑥2 ≃ 1 + 𝑥2/2

𝐸 = 𝐸0 +
1

2
𝐸0

𝑝

𝑚0𝑐

2

= 𝐸0 +
1

2
𝛽2𝛾2𝐸0 ≃ 𝐸0 +

1

2
𝑚0𝑣

2

which reduces to the classical 𝐸 = 𝐸0 + 𝑇 with kinetic energy 𝑇 = 1/2 𝑚0𝑣
2.
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with 𝑞 charge of the particle, ҧ𝑣 its velocity, and ത𝐸, ത𝐵 = 𝜇 ഥ𝐻 are 

applied external electric and magnetic fields.

• ത𝐸 field accelerates/bends towards its same direction.

• ത𝐵 field bends only following the right hand rule*!

Lorentz force

ത𝐹 = 𝑞 ത𝐸 + ҧ𝑣 × ത𝐵

• To guide charged particles we need to use electric or magnetic fields, 

i.e. apply the Lorentz force:

ҧ𝑣 × ത𝐵

ҧ𝑣

ത𝐵
In general solve ҧ𝑣 × ത𝐵 =

ො𝑥0 ො𝑦0 Ƹ𝑧0
𝑣𝑥 𝑣𝑦 𝑣𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧

* Also known as cavaturaccio’s rule in Italy (only in happy new year time)
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Source: wikipedia



Both transverse electric and magnetic fields can bend… what is better?

• At 𝑣 ≃ 𝑐 and for typical values of ത𝐵 = 1𝑇 (=1Vs/m^2), for normal 

conducting magnets, determines a force of 3𝑒8 N/q.

• Same is achievable with 300 MV/m far beyond standard RF cavities 

gradients.

Therefore: 

• High energy machines (𝑣 ≃ 𝑐) → magnetic bending/focusing

• Low energy machines (𝑣 ≪ 𝑐) → also electric bending/focusing

We will now on concentrate mainly on magnetic focusing!

Electric vs Magnetic force
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Put an eye to Maxwell’s equations

The guiding magnets/electrodes are generally flat functions (
𝑑

𝑑𝑡
= 0 → 𝜔 = 0).

Maxwell equations refer now to static fields and are decoupled!

𝛻 × ഥ𝐻 = 𝑗𝜔휀 ത𝐸 + ҧ𝐽

Gauss’ law

Gauss’ law for magnetism

Faraday’s law

Ampère-Maxwell law

𝛻 ⋅ ത𝐸 = 𝜌/휀

𝛻 ⋅ ഥ𝐻 = 0

𝛻 × ത𝐸 = −𝑗𝜔𝜇 ഥ𝐻 = 0

This can be the current

flowing into the coil of a magnet

NB: This is false if you think to the beam as a point-like current source…. You will see this in the 

space-charge course of M.Migliorati on WEEK4.
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ො𝑥0

ො𝑦0

Ƹ𝑠0

P

𝑟

We want to study the trajectory of a particle in a magnetic field 𝐵.

Let’s consider a fixed Cartesian reference system and consider a particle at 

location P = (𝑦, 𝑥, 𝑠) moving with velocity 𝑣.

Particle in a magnetic field
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ሶ𝑣 = ( ሶ𝑦, ሶ𝑥, ሶ𝑠) where dot derivative is with respect to time ( ሶ𝑦 = 𝑑𝑦/𝑑𝑡).

As ത𝐵 is constant and only over 𝑦 direction, the particle feels a Lorentz force of:

ഥ𝐹𝑙 = 𝑞 ҧ𝑣 × ത𝐵 = ො𝑦0 𝑣𝑥 𝐵𝑠 − 𝑣𝑠 𝐵𝑥
+ ො𝑥0 𝑣𝑦 𝐵𝑠 − 𝑣𝑠 𝐵𝑦
+ Ƹ𝑠0 𝑣𝑦 𝐵𝑥 − 𝑣𝑥 𝐵𝑦

The momentum ҧ𝑝 = 𝑚 ҧ𝑣 of the particle will change as:

ሶ ҧ𝑝 = 𝑚 ሶҧ𝑣 = ഥ𝐹𝑙

Comparing the two expressions we have:

ሶ𝑣𝑦 =
𝑞

𝑚
(𝑣𝑥 𝐵𝑠 − 𝑣𝑠 𝐵𝑥)

ሶ𝑣𝑥 =
𝑞

𝑚
𝑣𝑦 𝐵𝑠 − 𝑣𝑠 𝐵𝑦

ሶ𝑣𝑠 =
𝑞

𝑚
𝑣𝑦 𝐵𝑥 − 𝑣𝑥 𝐵𝑦

ҧ𝑣 × ത𝐵 =

ො𝑦0 ො𝑥0 Ƹ𝑠0
𝑣𝑦 𝑣𝑥 𝑣𝑠
𝐵𝑦 𝐵𝑥 𝐵𝑠

Particle in a magnetic field

10



We are interested to know the trajectory of the particle, i.e. how the transverse 

position changes along its motion, namely 𝑥′ = 𝑑𝑥/𝑑𝑠 and 𝑦′ = 𝑑𝑦/𝑑𝑠.

Changing the differentiation we have:

Particle in a magnetic field

ሶ𝑦 =
𝑑𝑦

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝑦′ ሶ𝑠

ሶ𝑥 =
𝑑𝑥

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝑥′ ሶ𝑠

ሷ𝑦 = 𝑦′′ ሶ𝑠2 + 𝑦′ ሷ𝑠

ሷ𝑥 = 𝑥′′ ሶ𝑠2 + 𝑥′ ሷ𝑠

Substituting we have:

ሷ𝑠 = ሶ𝑣𝑠 =
𝑞

𝑚
𝑣𝑦 𝐵𝑥 − 𝑣𝑥 𝐵𝑦

ሷ𝑦 =
𝑞

𝑚
( ሶ𝑥𝐵𝑠 − ሶ𝑠𝐵𝑥)

𝑦′′ ሶ𝑠2 + 𝑦′ ሷ𝑠 =
𝑞

𝑚
(𝑥′ ሶ𝑠𝐵𝑠 − ሶ𝑠𝐵𝑥)

𝑦′′ =
𝑞

𝑚

1

ሶ𝑠
𝑥′𝐵𝑠 − (1 + 𝑦′2)𝐵𝑥 + 𝑦′𝑥′ 𝐵𝑦

𝑣2 = ሶ𝑠2 1 + 𝑦′2 + 𝑥′2
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Particle in a magnetic field

𝑦′′ =
𝑞

𝑚

1

ሶ𝑠
𝑥′𝐵𝑠 − (1 + 𝑦′2)𝐵𝑥 + 𝑦′𝑥′ 𝐵𝑦

In analogous way we have the 𝑥′′.

𝑥′′ = −
𝑞

𝑚

1

ሶ𝑠
𝑦′𝐵𝑠 − (1 + 𝑥′2)𝐵𝑦 + 𝑦′𝑥′ 𝐵𝑥

Let us consider the simple case of a vertical 𝐵𝑦 field only:

𝑦′′ =
𝑞

𝑚

1

ሶ𝑠
𝑦′𝑥′ 𝐵𝑦 𝑥′′ =

𝑞

𝑚

1

ሶ𝑠
(1 + 𝑥′2)𝐵𝑦

Looking at horizontal plane and replacing ሶ𝑠 we have:

𝑥′′

1 + 𝑥′2 3/2
=

𝑞

𝑚

1

𝑣
𝐵𝑦 =

1

𝜌
Which describes circular trajectories of radius 𝜌. 

(see Appendix for derivation)
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Particle in constant 𝐵𝑦
We could have also derived it simply equating centripetal force to Lorentz 

force:

𝑚𝑣2

𝜌
= 𝑞 𝑣 𝐵𝑦

Rearranging we have:
𝑝

𝑞
= 𝐵𝑦𝜌

where 𝐵𝑦𝜌 (or simply 𝐵𝜌) is called beam rigidity as it reflects the stiffness of 

the circulating beam under magnetic guiding forces. 

For an ion 𝑋𝐴
𝑄

, 𝑚 ≃ 𝐴𝑚𝑢 with 𝑚𝑢 mass of the nucleon and 𝑞 = 𝑄𝑒 with 𝑄

charge state of the ion.

𝜌
𝑣

𝑞
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Beam rigidity

The higher the momentum the higher the magnetic field to keep the beam on 

the same radius of curvature.

If higher momentum is wanted within technological By limits, then a larger 

circumference is needed -> staged accelerators chains.

We can make explicit the radius and derive a common handy formulation:

1

𝜌
[𝑚−1] = 0.2998

𝑄

𝐴

𝐵[𝑇]

𝑝𝑢[
𝐺𝑒𝑉
𝑐 /𝑛]
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For more details and examples see also A.Latina (week 2) and E.Métral (week 4) 

lectures on transverse and longitudinal beam dynamics!



So far we have derived the trajectory of a particle in a simple Cartesian

system, which is ok to describe trajectory in a simple ring for example.

But the reality is much more complex…. Just have a look at the CERN

accelerator complex to have an idea!

Following the particle

Better to have a reference system which is following the beam, i.e. a 

curvilinear reference system.

15



Suppose a particle moves on a plane following a reference trajectory. We 

define a right hand reference system as ො𝑦0, ො𝑥0, Ƹ𝑠0.

First let’s start with the axis:

ሶො𝑥0 =
ሶ𝑠

𝜌
Ƹ𝑠0, ሶƸ𝑠0 = −

ሶ𝑠

𝜌
ො𝑥0, ሶො𝑦0 = 0

where ሶ𝑠 is the velocity of the particle 

projection on the reference trajectory.

Particle in a magnetic field

ത𝑅 = 𝑦ො𝑦0 + 𝑥 ො𝑥0

ҧ𝑣 = ሶത𝑅 + ሶ𝑠 Ƹ𝑠0 = ሶ𝑦 ො𝑦0 + ሶ𝑥 ො𝑥0 + ሶ𝑠 1 +
𝑥

𝜌
Ƹ𝑠0

ሶ ҧ𝑣 = ሷ𝑦 ො𝑦0 + ሷ𝑥 −
ሶ𝑠2

𝜌
1 +

𝑥

𝜌
ො𝑥0 +

2 ሶ𝑥 ሶ𝑠

𝜌
+ ሷ𝑠 1 +

𝑥

𝜌
Ƹ𝑠0

Ƹ𝑠0

𝑥 ො𝑥0

𝑦 ො𝑦0

ത𝑅 P

𝜌𝑠
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Following the same steps done for the Cartesian case we have:

Particle in a magnetic field

𝑦′′ +
ሷ𝑠

ሶ𝑠2
𝑦′ =

𝑞

𝑚

1

ሶ𝑠
𝑥′𝐵𝑠 − 1 +

𝑥

𝜌
𝐵𝑥

𝑥′′ +
ሷ𝑠

ሶ𝑠2
𝑥′ −

1

𝜌
1 +

𝑥

𝜌
= −

𝑞

𝑚

1

ሶ𝑠
𝑦′𝐵𝑠 − 1 +

𝑥

𝜌
𝐵𝑦

Let’s specialize these equations to some common magnets in accelerators.

ሶ𝑦 =
𝑑𝑦

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝑦′ ሶ𝑠

ሶ𝑥 =
𝑑𝑥

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝑥′ ሶ𝑠

ሷ𝑦 = 𝑦′′ ሶ𝑠2 + 𝑦′ ሷ𝑠

ሷ𝑥 = 𝑥′′ ሶ𝑠2 + 𝑥′ ሷ𝑠

ሷ𝑠 = ሶ𝑣𝑠 =
𝑞

𝑚
𝑣𝑦 𝐵𝑥 − 𝑣𝑥 𝐵𝑦

𝑣2 = ሶ𝑠2 1 + 𝑦′2 + 𝑥′2

As before:
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Dipole

A dipole is a type of magnet that generates constant magnetic field 

across the poles.

The magnetic field is confined in the iron core and generated by the 

current flowing in the coils.
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The field across the gap can be computed using Ampère low on the 

surface 𝑆:

ර
𝜕S

ഥ𝐻 ⋅ 𝑑𝑙 = න
𝑆

ҧ𝐽 ⋅ 𝑑𝑆

𝐻𝐸𝑙 + 𝐻0ℎ = 𝑛𝐼

𝜇𝑟𝜇0𝐻𝐸 = 𝜇0𝐻0

𝐻

𝜕𝑆𝜇𝑟 ≫ 1

𝐻0𝐻𝐸

𝑛𝐼

2

𝑛𝐼

2

ℎ

𝜇1 ഥ𝐻𝑛,1

𝜇2 ഥ𝐻𝑛,2

ത𝑛

Recalling the boundary condition for the magnetic field

Iron based magnet cores have 𝜇𝑟 of several thousands

𝐻𝐸 =
1

𝜇𝑟
𝐻0 ∼ 0

𝐻0ℎ = 𝑛𝐼 𝐵0 =
𝜇0𝑛𝐼

ℎ

And we define the bending strength as: 𝑘0 =
𝑞𝐵0
𝑝

=
1

𝜌
[𝑚−1]

We have therefore:

or
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Quadrupole

In a similar way we can compute the field for a quadrupole:

න
0

1

𝐻𝑟𝑅𝑑𝑟 = න
0

𝑅 1

𝜇0
𝑔𝑟𝑑𝑟 =

𝑔𝑅2

2𝜇0
= 𝑛𝐼

Since 𝜇𝑟𝐸 ≫ 1 we neglect the contribution of 𝐻𝐸 and 

the 2 → 0 as the field is perpendicular to the path.

𝑔 =
2𝜇0𝑛𝐼

𝑅2

And we define the focusing strength as: 𝑘1 =
𝑞𝑔

𝑝
[𝑚−2]

ර
𝜕S

ഥ𝐻 ⋅ 𝑑𝑙 = න
𝑆

ҧ𝐽 ⋅ 𝑑𝑆

𝟎

𝟏

𝟐
𝐻𝑟

𝑭𝒚

NB: a quadrupole focuses in one plane and defocuses in the other!

𝑭𝒙
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Effect on particle motion

𝐵𝑦 = −𝑩𝟎 − 𝒈𝑥

𝐵𝑥 = +𝒈𝑦
𝐵𝑠 = 0

Consider a particle between dipole and quadrupole:

𝑥′′ +
ሷ𝑠

ሶ𝑠2
𝑥′ −

1

𝜌
1 +

𝑥

𝜌
=
𝑞

𝑝

𝑣

ሶ𝑠
1 +

𝑥

𝜌
−𝐵0 − 𝑔𝑥

Let’s consider only the linear terms of the particle motion:

ሷ𝑠 ≃ 0 (particle do not accelerate)
𝑣

ሶ𝑠
≃ (1 + 𝑥/𝜌) (small angles with respect to the trajectory)

𝑥′′ −
1

𝜌
1 +

𝑥

𝜌
=
𝑞

𝑝
1 +

𝑥

𝜌

2

−𝐵0 − 𝑔𝑥

Ƹ𝑠0

𝑥 ො𝑥0

𝑦 ො𝑦0

ത𝑅 P

𝜌𝑠 +𝒈

−𝒈

−𝑩𝟎

Recall the paraxial 

approximation!
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Effect on particle motion

𝑝 ≃ 𝑝0 + 𝛿𝑝 (small particle momentum deviations)

1

𝑝
≃

1

𝑝0
−
𝛿𝑝

𝑝0
2 =

1

𝑝0
1 −

𝛿𝑝

𝑝0

𝑥′′ −
1

𝜌
1 +

𝑥

𝜌
=

𝑞

𝑝0
1 −

𝛿𝑝

𝑝0
1 +

𝑥

𝜌

2

−𝐵0 − 𝑔𝑥

Expanding and keeping only the linear terms we have:

𝑥′′ −
1

𝜌
+

𝑥

𝜌2
= 1 −

𝛿𝑝

𝑝0
1 +

𝑥

𝜌

2

−
1

𝜌
− 𝑘1𝑥 =

1

𝜌

𝛿𝑝

𝑝0
− 𝑘1𝑥 −

1

𝜌

𝑥′′ −
1

𝜌
1 +

𝑥

𝜌
=
𝑞

𝑝
1 +

𝑥

𝜌

2

−𝐵0 − 𝑔𝑥
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Effect on particle motion

For the vertical plane we have:

Which leads to:

𝑦′′ − 𝑘𝑦𝑦 = 0

𝑦′′ =
𝑞

𝑝0
1 −

𝛿𝑝

𝑝0
1 +

𝑥

𝜌

2

𝑔𝑦 =
𝑞𝑔𝑦

𝑝0
= 𝑘1𝑦

𝑥′′ + 𝑘1 +
1

𝜌2
𝑥 =

1

𝜌

𝛿𝑝

𝑝0

Finally we have:

𝑥′′ + 𝑘𝑥𝑥 =
1

𝜌

𝛿𝑝

𝑝0
with 𝑘𝑥 = 𝑘1 +

1

𝜌2

with 𝑘𝑦 = 𝑘1

This is called the 

Hill’s equation
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Solution of Hill’s equation

𝑥′′(𝑠) + 𝑘(𝑠)𝑥(𝑠) = 0

The general solution can be expressed as:

𝑥 𝑠 = 𝐶 𝑠 𝑥0 + 𝑆 𝑠 𝑥0
′

𝐶(𝑠) is solution of the homogeneous equation with 𝐶(𝑠0) = 1 and 𝑆(𝑠0) = 0.

For this choice, 𝐶 𝑠 , 𝑆 𝑠 are called cosine-like, sine-like functions or principal 

trajectories.

𝑆(𝑠) is solution of the homogeneous equation with 𝐶′(𝑠0) = 0 and 𝑆′(𝑠0) = 1.

𝑥
𝑥′

=
𝐶(𝑠) 𝑆(𝑠)

𝐶′(𝑠) 𝑆′(𝑠)

𝑥0
𝑥0
′

In a compact form we can write, for 𝑥 and 𝑥′:

𝑥′ 𝑠 = 𝐶′ 𝑠 𝑥0 + 𝑆′ 𝑠 𝑥0
′

Transfer map

In a generic trajectory, the focusing strength are function of the path variable 𝑠:

This reminds me 

something

I tell you: I’ve never 

seen it before
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Solution of Hill’s equation with dispersion

𝑥′′(𝑠) + 𝑘(𝑠)𝑥(𝑠) =
1

𝜌

𝛿𝑝

𝑝0

To the homogeneous Hill’s equation we need to add a particular solution. 

We introduce the dispersion 𝐷(𝑠) as:

𝑥 𝑠 = 𝐶 𝑠 𝑥0 + 𝑆 𝑠 𝑥0
′ + 𝐷 𝑠 𝛿𝑝/𝑝

We look for a solution of 𝐷(𝑠) with 𝐷0 = 0 and 𝐷0
′ = 0 with this shape:

𝐷 𝑠 = 𝑆(𝑠)න
0

𝑠 1

𝜌(𝜎)
𝐶(𝜎)𝑑𝜎 − 𝐶(𝑠)න

0

𝑠 1

𝜌(𝜎)
𝑆(𝜎)𝑑𝜎

Let’s check it verifies the Hill’s equation:

𝑥′ 𝑠 = 𝐶′ 𝑠 𝑥0 + 𝑆′ 𝑠 𝑥0
′ + 𝐷′ 𝑠 𝛿𝑝/𝑝
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How to compute the quantity 𝑆′𝐶 − 𝐶′𝑆 ?

This means 𝑆′𝐶 − 𝐶′𝑆 is a constant and to satisfy the initial conditions it is = 1

𝐷 = 𝑆න
0

𝑠 1

𝜌
𝐶𝑑𝜎 − 𝐶 න

0

𝑠 1

𝜌
𝑆𝑑𝜎

𝐷′ = 𝑆′න
0

𝑠 1

𝜌
𝐶𝑑𝜎 +

𝑆′𝐶

𝜌
− 𝐶′න

0

𝑠 1

𝜌
𝑆𝑑𝜎 −

𝐶′𝑆

𝜌

𝐷′′ = 𝑆′′න
0

𝑠 1

𝜌
𝐶𝑑𝜎 − 𝐶′′න

0

𝑠 1

𝜌
𝑆𝑑𝜎 +

1

𝜌
(𝑆′𝐶 − 𝐶′𝑆)

𝑑

𝑑𝑠
𝑆′𝐶 − 𝐶′𝑆 = 𝑆′′𝐶 − 𝐶′′𝑆

𝐷′′ = 𝑆′′න
0

𝑠 1

𝜌
𝐶𝑑𝜎 − 𝐶′′න

0

𝑠 1

𝜌
𝑆𝑑𝜎 +

1

𝜌

Solution of Hill’s equation with dispersion
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= −𝑘𝑆𝐶 + 𝑘𝐶𝑆 = 0 as 𝑆 and 𝐶 satisfy the Hill’s equation



In turns we substitute 𝐷′′ and 𝐷 into Hill’s equation to get:

which verifies the validity of our assumption.

𝑆′′න
0

𝑠 1

𝜌
𝐶𝑑𝜎 − 𝐶′′න

0

𝑠 1

𝜌
𝑆𝑑𝜎 +

1

𝜌
+ 𝑘 𝑆න

0

𝑠 1

𝜌
𝐶𝑑𝜎 − 𝐶න

0

𝑠 1

𝜌
𝑆𝑑𝜎 =

1

𝜌

න
0

𝑠 1

𝜌
𝐶𝑑𝜎 (𝑆′′ + 𝑘𝑆) − න

0

𝑠 1

𝜌
𝑆𝑑𝜎 (𝐶′′ + 𝑘𝐶) = 0

Solution of Hill’s equation with dispersion
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𝐷′′ 𝑠
𝛿𝑝

𝑝
+ 𝑘 𝑠 𝐷 𝑠

𝛿𝑝

𝑝
=
1

𝜌

𝛿𝑝

𝑝

as 𝑆 and 𝐶 satisfy the Hill’s equation



In a compact form we can write, for 𝑥, 𝑥′ and 𝛿𝑝/𝑝:

𝑥
𝑥′

𝛿𝑝/𝑝
=

𝐶 𝑆 𝐷
𝐶′ 𝑆′ 𝐷′
0 0 1

𝑥0
𝑥0
′

𝛿𝑝0/𝑝

Nested in we recognize the ABCD matrix used in light optics, together with a 

dispersive term which accounts for off-momentum particles.

Solution of Hill’s equation with dispersion
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Particle in a drift

Let’s consider a drift of length 𝐿. We have 
1

𝜌
= 0,𝐾 = 0

𝑀𝑥,𝑦 =
1 𝐿 0
0 1 0
0 0 1

29

𝑥′′ = 0

𝑥(𝑠 = 0) = 𝑥0
𝑥′ 𝑠 = 0 = 𝑥0

′

𝑥 = 𝑥0 + 𝑥0
′𝐿

𝑥′ = 𝑥0
′

𝐿0 𝑠

𝑥, 𝑦

𝐷 𝑠 = 𝐷′ 𝑠 = 0 as 
1

𝜌
= 0



Particle in a quadrupole

Let’s consider a  focusing quadrupole of length 𝐿: 
1

𝜌
= 0, 𝒌𝒙 > 𝟎

𝑴𝒙 =

cos 𝑘𝑥𝐿
1

𝑘𝑥
sin 𝑘𝑥𝐿 0

− 𝑘𝑥 sin 𝑘𝑥𝐿 cos 𝑘𝑥𝐿 0

0 0 1

30

𝑭𝒙

𝑥′′(𝑠) + 𝑘𝑥𝑥(𝑠) = 0

𝑥(𝑠 = 0) = 𝑥0
𝑥′ 𝑠 = 0 = 𝑥0

′

𝑥 = 𝑥0 cos 𝑘𝑥𝐿 + 𝑥0
′

1

𝑘𝑥
sin 𝑘𝑥𝐿

𝑥′ = −𝑥0 sin 𝑘𝑥𝐿 𝑘𝑥 + 𝑥0
′ cos 𝑘𝑥𝐿

which, in matrix form is:

𝐷 𝑠 = 𝐷′ 𝑠 = 0 as 
1

𝜌
= 0



Particle in a quadrupole

Let’s consider a defocusing quadrupole of length 𝐿: 
1

𝜌
= 0, 𝒌𝒚 < 𝟎

𝑴𝒚 =

cosh |𝑘𝑦|𝐿
1

|𝑘𝑦|
sinh |𝑘𝑦|𝐿 0

|𝐾| sinh |𝑘𝑦|𝐿 cosh |𝑘𝑦|𝐿 0

0 0 1

31

𝑦′′(𝑠) + 𝑘𝑦𝑦(𝑠) = 0

𝑦(𝑠 = 0) = 𝑦0
𝑦′ 𝑠 = 0 = 𝑦0

′

𝑦 = 𝑦0 cosh 𝑘𝑦𝐿 + 𝑦0
′

1

𝑘𝑦
sinh 𝑘𝑦𝐿

𝑦′ = −𝑦0 sinh 𝑘𝑦𝐿 𝑘𝑦 + 𝑦0
′ cosh 𝑘𝑦𝐿

which, in matrix form is:

𝐷 𝑠 = 𝐷′ 𝑠 = 0 as 
1

𝜌
= 0

𝑭𝒚



Particle in a thin quadrupole
If 𝐿 → 0 we can obtain the thin lens approximation:

𝑴𝒙 =

1 0 0

−
1

𝑓
1 0

0 0 1

, 𝑴𝒚 =

1 0 0

+
1

𝑓
1 0

0 0 1

where we define the focal length as 𝑓 = lim
𝐿→0

1

𝐾 𝐿
with dimensions of [𝑚].

Thin quadrupole magnet              thin magnetic lens

32

Like glass lenses in optics, charged particle focusing and defocusing lenses

can be used to form images of an object (electron microscope), to transport a

beam from one point to another, or to focus a beam onto a small target.



Particle in a FODO lattice
An arrangement of focusing defocusing thin quadrupole lenses allows to 

transport particles in a stable manner.

The principle is exactly the same as the one studied in light optics with the 

condition of having 𝐿 ≤ 4𝑓 for stability.

You can look back at this picture, imagining the yellow trace to be a beam 

envelope: that’s not the reality but quite close.

𝐿 < 4𝑓
𝐿

𝑭 𝑭 𝑭 𝑭 𝑭𝑫𝑫𝑫𝑫
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Particle in a sector magnet

𝑀𝑥 =

cos𝜑 𝜌 sin𝜑 𝜌 (1 − cos𝜑)

−
1

𝜌
sin𝜑 cos𝜑 sin𝜑

0 0 1

A sector magnet allows a pure rotation of the particle, i.e. the particles 

enter/exit the magnet perpendicular to the input/output surfaces. 

We have 
1

𝜌
≠ 0, 𝐾 = 0 .

With 𝜑 = 𝐿/𝜌.

• Note the weak focusing term −
1

𝜌
sin 𝜑 = −

𝐿

𝜌2

• In vertical plane can be considered as a simple drift of length 𝐿.

• Dispersion terms appear → spectrometry!
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𝜑

𝜌

90∘90∘



𝜑

𝜌

90∘90∘

Sector magnet as a spectrometer

A sector magnet is the simplest spectrometer system thanks to the ability of 

differentiating particles with different momentum deviations*.

To find the image made from the magnet we can use what we learnt from 

optics: we need to find effective focal length and principal planes: 

*some authors report 1/2 multiplying the dispersion matrix elements → this comes from 
𝑑𝑝

𝑝
∼

1

2

𝑑𝐾

𝐾
for low velocity (𝛾 ∼ 1) 

𝑥
𝑥′

𝛿𝑝/𝑝
=

cos𝜑 𝜌 sin𝜑 𝜌 (1 − cos𝜑)

−
1

𝜌
sin𝜑 cos𝜑 sin𝜑

0 0 1

𝑥0
𝑥0
′

𝛿𝑝0/𝑝

𝑝𝑖 =
1 − 𝐴

𝐶

𝑝𝑜 =
1 − 𝐷

𝐶

𝑓𝑒𝑓𝑓 = −
1

𝐶

→

𝑝𝑖 = 𝜌
cos𝜑 − 1

sin𝜑
= −𝜌 tan

𝜑

2
𝑝𝑜 = 𝑝𝑖

𝑓𝑒𝑓𝑓 =
𝜌

sin𝜑

𝑝𝑜 𝑝𝑖
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Sector magnet as a spectrometer
Next we apply the image relation to find the focusing point of an object 

placed in front of the spectrometer

It can be shown (Barber’s rule) that object, origin and image are on the same line.

To obtain the final transfer matrix we do:

1

𝑑𝑜
+
1

𝑑𝑖
=

1

𝑓𝑒𝑓𝑓

𝑀 = −
𝑑𝑖
𝑑𝑜

𝑀𝜃 = −
𝑑𝑜
𝑑𝑖

𝑇 =
1 𝑑𝑖 0
0 1 0
0 0 1

cos𝜑 𝜌 sin𝜑 𝜌 (1 − cos𝜑)

−
1

𝜌
sin𝜑 cos𝜑 sin𝜑

0 0 1

1 𝑑𝑜 0
0 1 0
0 0 1

𝑑𝑖 ≫ 𝑝𝑖

This we knew it already
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𝜑

𝜌

90∘90∘
𝑝𝑜 𝑝𝑖

=

𝑀 0 𝜌 1 − cos𝜑 + 𝑑𝑖 sin𝜑

−
1

𝑓𝑒𝑓𝑓
𝑀𝜃 sin𝜑

0 0 1

≃

𝑀 0 𝑑𝑖 sin𝜑

−
1

𝑓𝑒𝑓𝑓
𝑀𝜃 sin𝜑

0 0 1



Sector magnet as a spectrometer

The dispersion terms produce a spread in the output image. Let’s consider a source 

with angular spread 𝜶, width 𝒘 and natural velocity spread 𝜹:

A different mass would produce a different momentum error 𝝂 which we would like to 

distinguish from the natural velocity spread of the beam. Equating to the spot size give us 

the spectrometer resolution:

𝑥
𝑥′

𝛿𝑝/𝑝
=

𝑀 0 𝑑𝑖 sin𝜑

−
1

𝑓𝑒𝑓𝑓
𝑀𝜃 sin 𝜑

0 0 1

𝑤
𝛼
𝛿

The final spot size is given by: 𝛿 𝑑𝑖 sin 𝜑 + 𝑤𝑑𝑖/𝑑𝑜

𝜈𝑡ℎ 𝑑𝑖 sin𝜑 = 𝛿 𝑑𝑖 sin 𝜑 +
𝑤𝑑𝑖
𝑑𝑜

→ 𝜈𝑡ℎ = 𝛿 +
𝑤

𝑑𝑜 sin 𝜑

If 𝑑𝑜 = 𝑑𝑖 = 2𝑓𝑒𝑓𝑓 we have: 𝜈𝑡ℎ = 𝛿 +
𝑤

2𝜌

Mass resolution is:

• limited by beam momentum spread

• independent of angle 𝜑
• can improve if  𝜌 larger
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𝑑𝑝

𝑝
=
𝑑𝑚

𝑚
+
𝑑𝑣

𝑣
= 𝜈 + 𝛿



Exercise
Consider a spectrometer made by a sector magnet of angle 𝜑 = 90∘ and 5𝜋 meters

long. Consider a source of particles with a natural momentum spread of 0.1%.

Q1: If we place the source at 15 m from the entrance of the sector bend, where

should the detector be located? Sketch it into a drawing.

Q2: If we require a spectrometer resolution of 0.2% what should be the size of the

beam outgoing from the source?

Q3: What is the size of the detector opening in order to be 10 times above the

resolution limit?

Q4: Make a drawing of the trajectory of 2 particles with reference mass and velocity

(i.e. reference momentum) leaving the center of the source with zero and positive

angle.

Q5: Same as Q4 but consider 2 particles with lower mass.
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A sector magnet provides no focusing in 𝑦 plane, while it is desirable to have focusing in both planes

(reduce detector aperture, more intensity, etc..).

• A magnet with tilted entrance/exit faces can provide this.

• It can be seen as the superposition of a sector with a wedge of angle 𝛿 (suppose equal on both sides).

As the magnetic field is effectively less towards the outside, the particle will be less deflected. 

Conversely it is larger towards the inside and the particle will experience additional bending. 

Overall there is a defocusing effect in horizontal plane.

The change of path is

Δ𝐿 = 𝑥 tan 𝛿

The angle acquired is 𝛼 ≃
Δ𝐿

𝜌
=

𝑥 tan 𝛿

𝜌

Edge effects

wedge

39

𝜑

𝜌

𝛿 > 0

𝛼

𝑥

Δ𝐿
Δ𝐿

𝛼



Writing the transfer matrix of the wedge we have:

Which is a thin defocusing lens of focal length 𝑓𝑥,𝑒𝑓𝑓 = −𝜌/ tan 𝛿

𝑀𝑥
𝑤𝑒𝑑𝑔𝑒

=

1 0 0
tan 𝛿

𝜌
1 0

0 0 1

Since 𝛻 ⋅ 𝐵 = 0 at the wedge, an opposite magnetic field acts in the vertical plane → focusing!.

𝑀𝑦
𝑤𝑒𝑑𝑔𝑒

=

1 0 0

−
tan 𝛿

𝜌
1 0

0 0 1

Edge effects
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wedge

𝛿 > 0

𝛼

𝑥

Δ𝐿



In the end the magnet is equivalent to a sector magnet followed/preceded by 

thin lenses of focal length 𝑓 = 𝜌/ tan 𝛿, focusing in 𝑦 and defocusing in 𝑥.

𝑀𝑥 =

1 0 0
tan 𝛿

𝜌
1 0

0 0 1

⋅

cos𝜑 𝜌 sin𝜑 𝜌 1 − cos𝜑

−
1

𝜌
sin𝜑 cos𝜑 sin𝜑

0 0 1

⋅

1 0 0
tan 𝛿

𝜌
1 0

0 0 1

,

𝑀𝑦 =

1 0 0

−
tan 𝛿

𝜌
1 0

0 0 1

⋅
1 𝐿 0
0 1 0
0 0 1

⋅ −

1 0 0
tan 𝛿

𝜌
1 0

0 0 1

In 𝑦 plane:

In 𝑥 plane:

Edge effects

41



With this system it is possible to achieve stigmatic imaging, i.e.  simultaneous 

focusing of both planes in the same position.

For the vertical plane:

Edge effects
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𝑑𝑖𝑑𝑜
𝐿 = 𝜑𝜌

Fringe field lens Fringe field lens

Placing the particle source at 𝑑𝑜 = 𝑓𝑒𝑓𝑓 =
𝜌

tan 𝛿
the particles will drift straight in

the magnet (see practical drawing in slide 27, part I).

The second lens will then focus back in 𝑑𝑖 = 𝑓𝑒𝑓𝑓 where we can place the

detector.



Edge effects
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𝜑

𝜌

With this system it is possible to achieve stigmatic imaging, i.e.  simultaneous 

focusing of both planes in the same position.

For the horizontal plane:



Edge effects
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𝜑

𝜌

With this system it is possible to achieve stigmatic imaging, i.e.  simultaneous 

focusing of both planes in the same position.

Exercise:

Show that for 𝜑 = 90∘ and tan 𝛿 = 0.5 (i.e. 𝛿 ∼ 26.6∘) the magnet 

focalizes at the same locations both vertical and horizontal planes.

For the horizontal plane:
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Summary of relativistic relations

𝐸0 = 𝑚0𝑐
2

𝐸 = 𝐸0 + 𝑇
𝐸 = 𝛾𝑚0𝑐

2

𝑚 = 𝛾 ∙ 𝑚0

𝛽 = Τ𝑣 𝑐

𝛾 =
𝐸

𝐸0
=
𝐸0 + 𝑇

𝐸0

𝛽 = 1 −
1

𝛾2

𝛾 =
1

1 − 𝛽2
𝐸0

𝐸
𝑝𝑐

W.Herr, special relativity, CAS 1/06/2016, Hamburg, Germany 
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Circle differential equation

48

𝑥 − 𝑐1
2 + (𝑠 − 𝑐2)

2= 𝜌2

Start from:

𝑥 − 𝑐1 𝑥′ + (𝑠 − 𝑐2) = 0

Differential twice w.r.t. 𝑠:

𝑥′
2
+ 𝑥 − 𝑐1 𝑥′′ + 1 = 0

From which we find 𝑐1 and 𝑠 − 𝑐2:

𝑥 − 𝑐1 = −
1 + 𝑥′

2

𝑥′′
𝑠 − 𝑐2 = 𝑥′

1 + 𝑥′
2

𝑥′′

Substituting back:

1 + 𝑥′
2

𝑥′′

2

+ 𝑥′2
1 + 𝑥′

2

𝑥′′

2

= 𝜌2

𝑥′
2
+ 𝑥 − 𝑐1 𝑥′′ + 1 = 0

𝑥′′
2

1 + 𝑥′2
3 =

1

𝜌2
𝑥′′

1 + 𝑥′2
3
2

=
1

𝜌



Exercise 1
Consider the LEIR (Low Energy Ion Ring) at CERN. This is the first 

synchrotron of the CERN 𝑃𝑏208
+54 ion chain to the LHC. 

The kinetic energy given from Linac 3 is 4.2 MeV/n and the rest energy of the 

nucleon is 0.938 GeV.
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Exercise 1

Compute the relativistic 𝛾 and 𝛽 factors, the total momentum in 

MeV/c/n.

After acceleration the beam is extracted at 72.2 MeV/n kinetic energy. 

What is now the 𝛽 factor and momentum?  

50



Exercise 2

Following the specifications of Exercise 1, compute the beam rigidity at 

LEIR injection and extraction energies. 

What happens if instead of 𝑃𝑏208
+54, we want to accelerate 𝑋𝑒129

+39?

51



52


