### **Conclusion for Beam Diagnostics Course**



## Diagnostics is the 'sensory organ' for the beam.

It required for operation and development of accelerators

#### Four types of demands leads to different installations:

- Quick, non-destructive measurements leading to a single number or simple plots.
- ➤ Instrumentation for daily check, malfunction diagnosis and wanted parameter variation.
- Complex instrumentation used for hard malfunction and accelerator development.
- > Automated measurement and control of beam parameters i.e. feedback

A clear interpretation of the results is a important design criterion. **General comments:** 

- Good knowledge of accelerators, general physics and technologies needed.
- Quite different technologies are used, based on various physics processes.
- > Each task and each technology calls for an expert.
- Accelerator development goes parallel to diagnostics development.
- ⇒ Interesting and challenging subject!

### Beam Quantities and their Diagnostics I



**LINAC & transport lines**: Single pass ↔ **Synchrotron**: multi pass

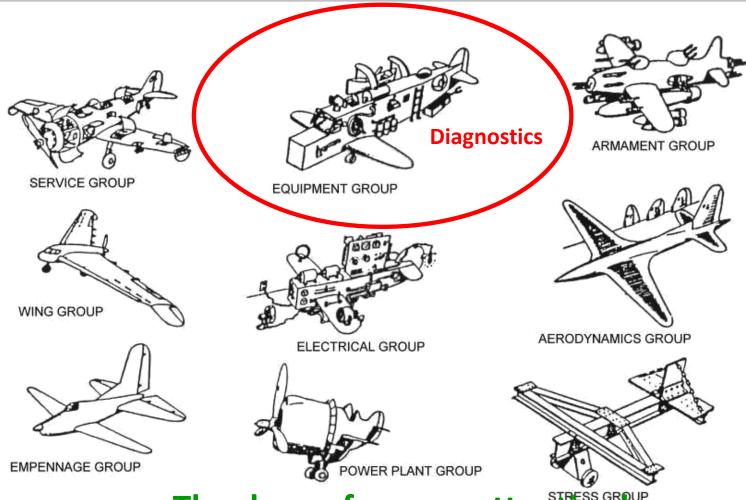
**Electrons:** always relativistic  $\leftrightarrow$  **Protons/lons:** non-relativistic for  $E_{kin} < 1$  GeV/u

**Depending on application:** Low current ↔ high current

#### Overview of the most commonly used systems:

| Beam quantity                             |         | LINAC & transfer line      | Synchrotron                |
|-------------------------------------------|---------|----------------------------|----------------------------|
| Current /                                 | General | Transformer, dc & ac       | Transformer, dc & ac       |
|                                           |         | Faraday Cup                |                            |
|                                           | Special | Particle Detectors         | Pick-up Signal (relative)  |
| Profile x <sub>width</sub>                | General | Screens, SEM-Grids         | Ionization Profile Monitor |
|                                           |         | Wire Scanners, OTR Screen  | Wire Scanner,              |
|                                           |         |                            | Synchrotron Light Monitor  |
|                                           | Special | MWPC, Fluorescence Light   |                            |
| Position x <sub>cm</sub>                  | General | Pick-up (BPM)              | Pick-up (BPM)              |
|                                           | Special | Using position measurement |                            |
| Transverse Emittance $\varepsilon_{tran}$ | General | Slit-grid                  | Ionization Profile Monitor |
| <b></b>                                   |         | Quadrupole Variation       | Wire Scanner               |
|                                           | Special | Pepper-Pot                 | Transverse Schottky        |

### **Beam Quantities and their Diagnostics II**




| Beam quantity                               |         | LINAC & transfer line                 | Synchrotron                  |
|---------------------------------------------|---------|---------------------------------------|------------------------------|
| Bunch Length $\Delta oldsymbol{arphi}$      | General | Pick-up                               | Pick-up                      |
|                                             |         |                                       | Wall Current Monitor         |
|                                             | Special | Secondary electrons                   | Streak Camera                |
|                                             |         |                                       | Electro-optical laser mod.   |
| Momentum <i>p</i> and                       | General | Pick-ups (Time-of-Flight)             | Pick-up (e.g. tomography)    |
| Momentum Spread Δp/p                        | Special | Magnetic Spectrometer                 | Schottky Noise Spectrum      |
| Longitudinal Emittance $\varepsilon_{long}$ | General | Buncher variation                     |                              |
|                                             | Special | Magnetic Spectrometer                 | Pick-up & tomography         |
| Tune and Chromaticity Q, ξ                  | General |                                       | Exciter + Pick-up            |
|                                             | Special |                                       | Transverse Schottky Spectrum |
| Beam Loss r <sub>loss</sub>                 | General | Particle Detectors                    |                              |
| Polarization P                              | General | Particle Detectors                    |                              |
|                                             | Special | Laser Scattering (Compton scattering) |                              |
| Luminocity L                                | General | Particle Detectors                    |                              |

- ➤ Destructive and non-destructive devices depending on the beam parameter.
- $\triangleright$  Different techniques for the same quantity  $\longleftrightarrow$  Same technique for the different quantities.

### **Conclusion for Beam Diagnostics Course**





# Thank you for your attention!

For a successful construction and operation of an accelerator, the understand and right balance of all disciplines is required!