Beam Loss Monitors

When energetic beam particles penetrates matter, secondary particles are emitted:

this can be e^- , γ , protons, neutrons, excited nuclei, fragmented nuclei...

- ⇒ Spontaneous radiation and permanent activation is produced.
- ⇒ Large variety of Beam Loss Monitors (BLM) depending on the application.

Protection: Sensitive devices e.g. super-conducting magnets to prevent quenching (energy absorption by electronic stopping)

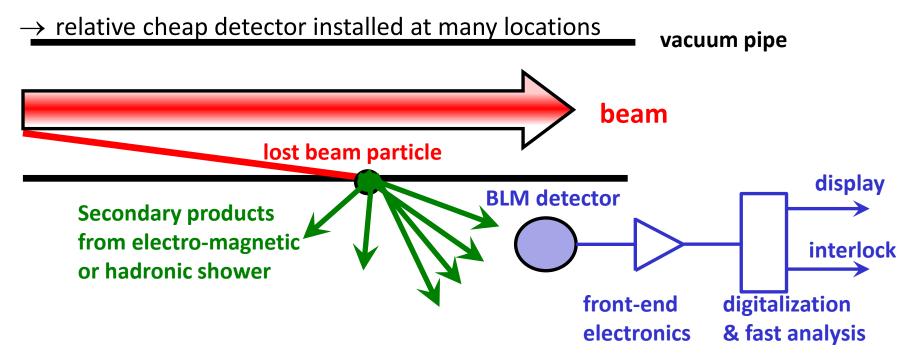
→ interlock signal for fast beam abortion.

Beam diagnostics: Alignment of the beam to prevent for activation

→ optimal transmission to the target.

Accelerator physics: using these sensitive particle detectors.

- > Several devices are used, depending on particle rate and required time resolution
- ➤ Some applications for usage

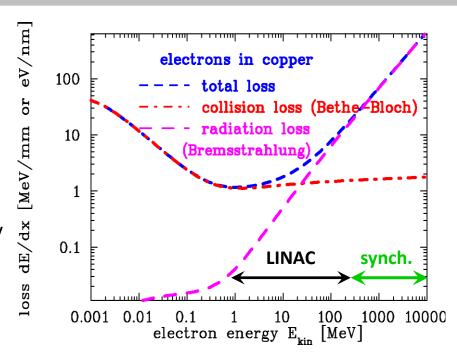

Basic Idea of Beam Loss Monitors

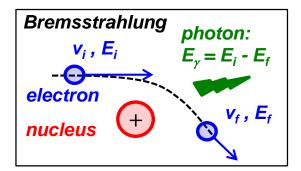
Basic idea for Beam Loss Monitors B LM:

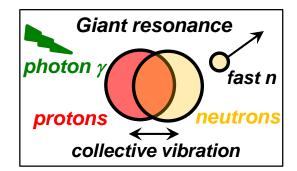
A loss beam particle must collide with the vacuum chamber or other insertions

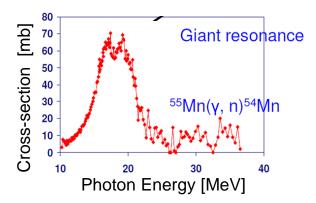
- \Rightarrow Interaction leads to some shower particle:
 - e⁻, γ, protons, neutrons, excited nuclei, fragmented nuclei
- → detection of these secondaries by an appropriate detector outside of beam pipe

Secondary Particle Production for Electron Beams

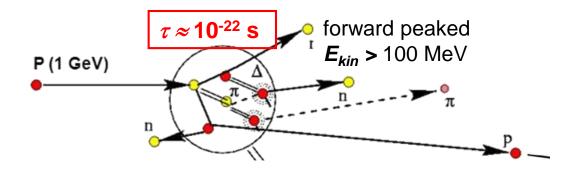

Processes for interaction of electrons For E_{kin} < 10 MeV:


 \Rightarrow only electronic stopping (x-rays, slow e⁻).


For E_{kin} > 100 MeV:


Bremsstrahlungs-photon dominated

- $\Rightarrow \gamma \rightarrow e^+ + e^- \text{ or } \mu^{\pm}... \rightarrow \text{electro-magnetic shower}$
- \Rightarrow excitation of nuclear giant resonance $\mathbf{\textit{E}}_{res} \approx 6 \text{ MeV}$
 - \rightarrow decay to neutrons via (γ, n) , (γ, p) or (γ, np)
 - → fast neutrons emitted
 - → neutrons: Long ranges in matter due to lack of ele.-mag. interaction.

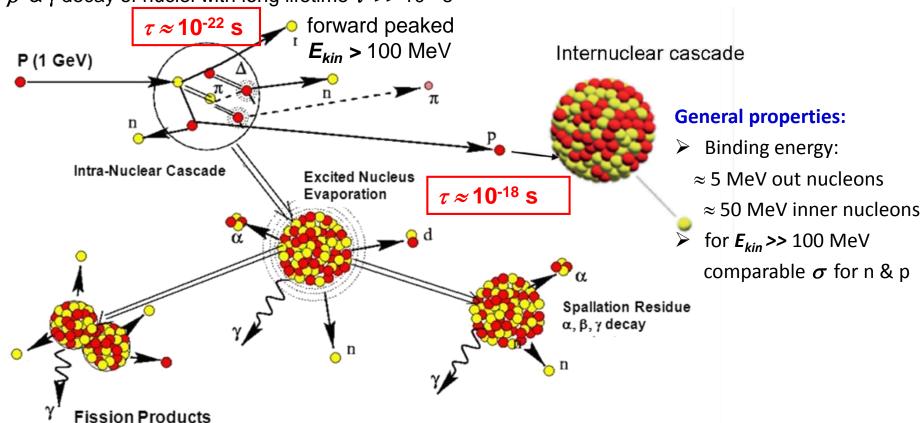


Nuclear Physics Processes for Protons

Nuclear reactions via spallation for protons with $E_{kin} \ge 1$ GeV (simplified):

- Pre-equilibrium phases: π-exchange within ≈ 10⁻²² s with E_{kin} > 20 MeV ⇒ hadronic shower
- ➤ Inter-nuclear cascade: Evaporation of n, p, d, α within $\approx 10^{-18}$ s with $E_{kin} \approx 1 10$ MeV
- Fission for heavy nuclei

General properties:


- Binding energy:
 - ≈ 5 MeV out nucleons
 - ≈ 50 MeV inner nucleons
- > for E_{kin} >> 100 MeV comparable σ for n & p

Nuclear Physics Processes for Protons

Nuclear reactions via spallation for protons with $E_{kin} \ge 1$ GeV (simplified):

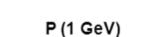
- ➤ Pre-equilibrium phases: π -exchange within $\approx 10^{-22}$ s with $E_{kin} > 20$ MeV \Rightarrow hadronic shower
- ► Inter-nuclear cascade: Evaporation of n, p, d, α within $\approx 10^{-18}$ s with $E_{kin} \approx 1 10$ MeV
- Fission for heavy nuclei
- $rac{1}{2}$ β & γ decay of nuclei with long lifetime $\tau >> 10^{-9}$ s

Result on long term t > 1 ms: Radioactive nuclei = activation

D. Kiselev, CAS 2011

Nuclear Physics Processes for Protons

Nuclear reactions via spallation for protons with $E_{kin} \ge 1$ GeV (simplified):

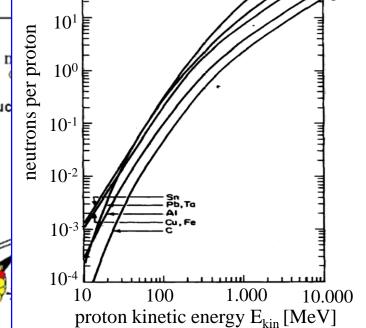

> Pre-equilibrium phases: π-exchange within $\approx 10^{-22}$ s wit

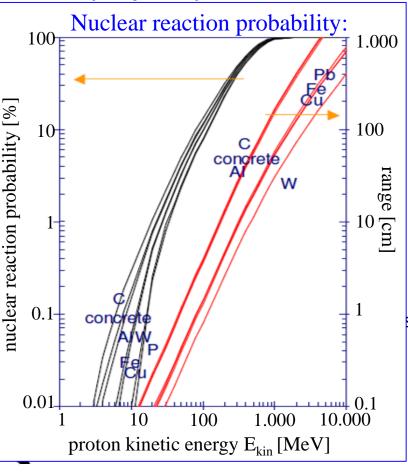
Neutron yield per proton:

► Inter-nuclear cascade: Evaporation of n, p, d, α within \approx

 10^{2}

- Fission for hea
- β & γ decay of



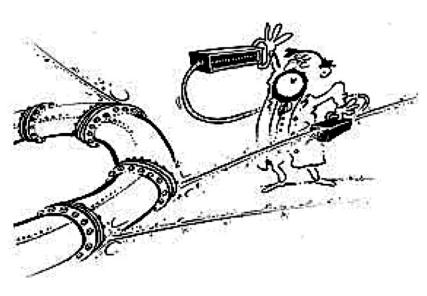


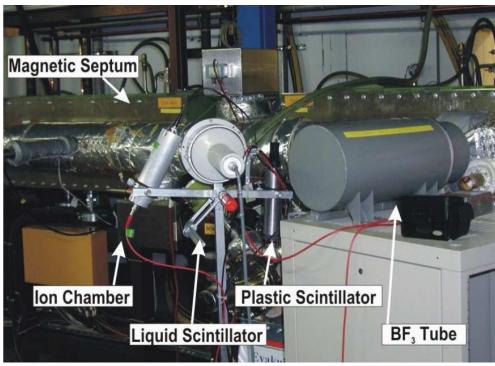
Intra-Nuc

Fission Products

Thick target:

Penetration depth comparable to range


Result on long term t > 1 ms: Radioactive nuclei = activation R.H. Thomas, in Handbook on Acc. Phy. & Eng.



Outline:

- > Physical process from beam-wall interaction
- ➤ Different types of Beam Loss Monitors

 different methods for various beam parameters
- **➤** Machine protection using BLMs
- > Summary

Scintillators as Beam Loss Monitors

Plastics or liquids are used:

- detection of charged particles by electronic stopping
- detection of neutrons
 by elastic collisions n on p in plastics
 and fast p electronic stopping.

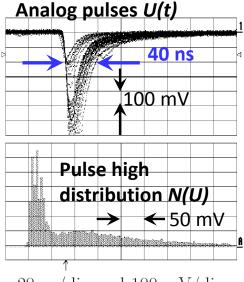
Scintillator + photo-multiplier:

counting (large PMT amplification) or analog voltage ADC (low PMT amp.).

Radiation hardness:

plastics 1 Mrad = 10^4 Gy

liquid $10 \text{ Mrad} = 10^5 \text{ Gy}$

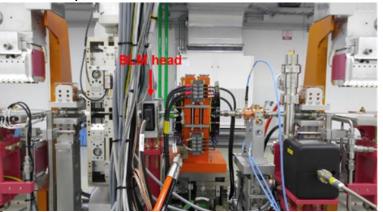

Example: Analog pulses of plastic scintillator:

 \Rightarrow broad energy spectrum

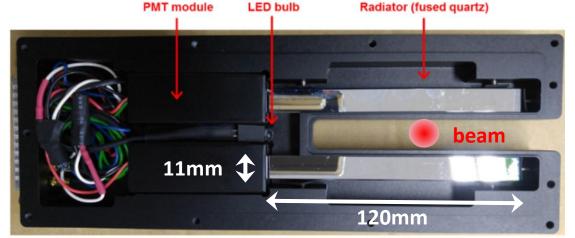
due to many particle species and energies.

20 ns/div and 100 mV/div

Cherenkov Light Detectors as Beam Loss Monitors

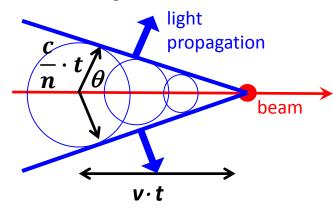


Cherenkov detectors:


Passage of a charged particle v faster than propagation of light $v > c_{medium} = c/n$

Technical: Quartz rod *n*=1.5 & photomultiplier

Example: Korean XFEL behind undulator



Cherenkov light emission:

For $\mathbf{v} > \mathbf{c}_{medium} = \mathbf{c} / \mathbf{n}$ light wave-front like a wake broadband light emission

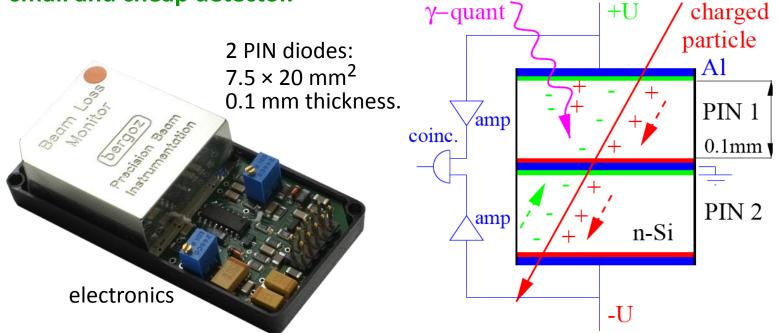
Advantage:

- ightharpoonup Detection of fast electrons only not sensitive to γ & synch. photons
- No saturation effects
- Prompt light emission

Usage: Mainly at FELs for short and intense pulses

H. Yang, D.C. Shin, FEL Conf. 2017

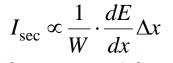
PIN-Diode (Solid State Detector) as BLM

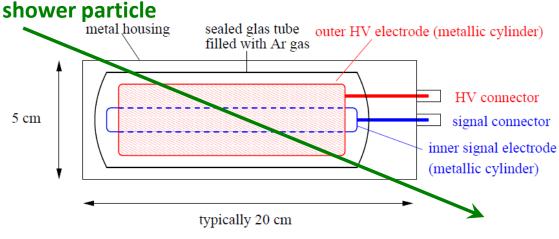


Solid-state detector: Detection of charged particles.

Working principle

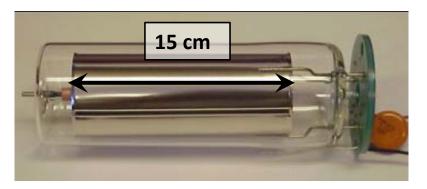
- ➤ About 10⁴ e⁻-hole pairs are created by a Minimum Ionizing Particle (MIP).
- > A coincidence of the two PIN reduces the background due to low energy photons.
- > A counting module is used with threshold value comparator for alarming.


→ small and cheap detector.



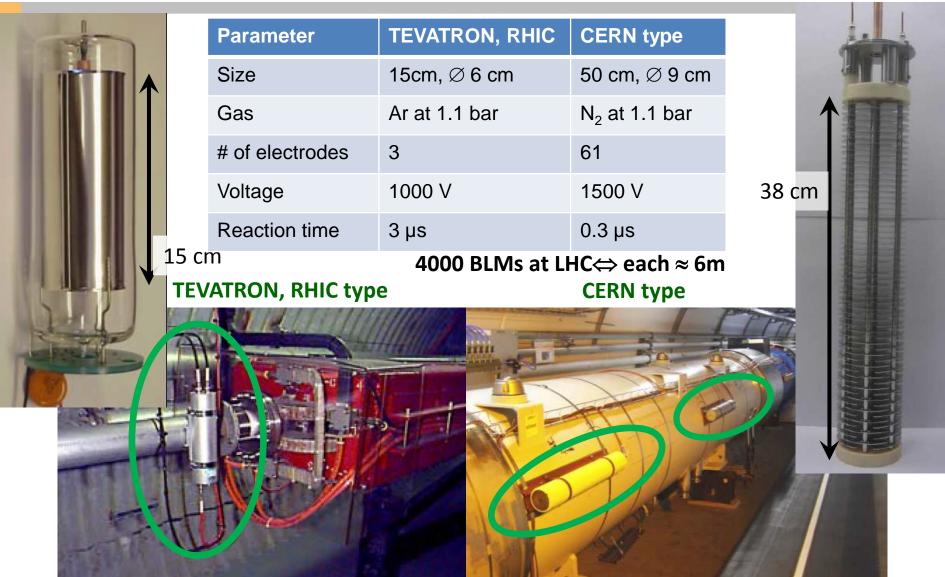
Ionization Chamber as BLM

Energy loss of charged particles in gases → electron-ion pairs → current meas.


W is average energy for one e^- -ion pair:

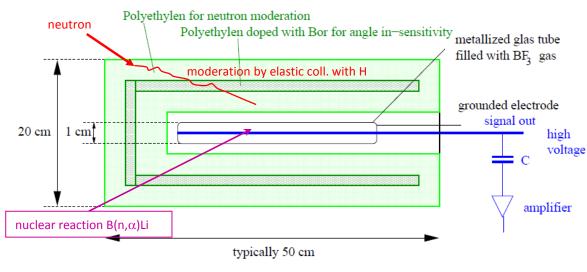
Gas	Ionization Pot. [eV]	W-Value [eV]
Ar	15.7	26.4
N_2	15.5	34.8
O_2	12.5	30.8
Air		33.8

Sealed tube Filled with Ar or N₂ gas:


- Creation of Ar⁺-e⁻ pairs, average energy W=32 eV/pair
- Measurement of this current
- > Slow time response due to \approx 10 µs drift time of Ar⁺.

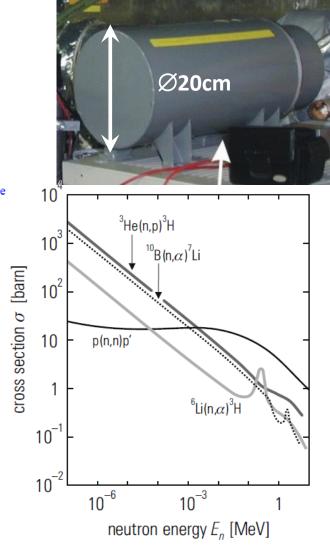
Per definition: Direct measurement of dose!

Ionization Chamber as BLM: TEVATRON and CERN Type



BF₃ Proportional Tubes as BLM

Detection of neutrons **only** with a 'REM-counter':

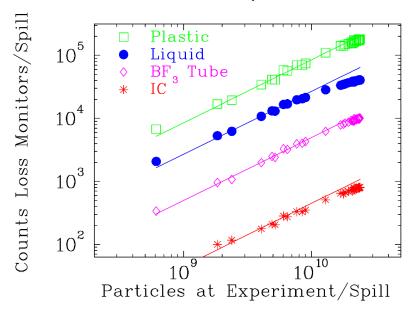

Physical processes of signal generation:

- 1. Slow down of fast neutrons by elastic collisions with p
- 2. Nuclear reaction inside BF₃ gas in tube:

$$^{10}B + n \rightarrow ^{7}Li + \alpha$$
 with $Q = 2.3$ MeV.

3. Electronic stopping of 7 Li and α leads to signal.

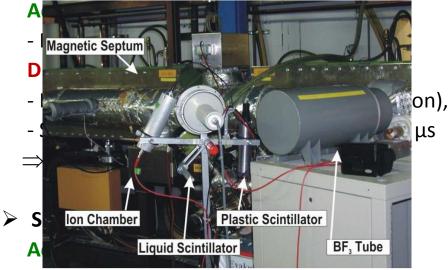
Remark: 'REM-counters' are frequently used for neutron detection outside of the concrete shield & in nuclear power plants c


C. Grupen, Introduction to Radiation Protection

Comparison of different Types of BLMs

Different detectors are sensitive to various physical processes very different count rate, but basically proportional to each other

Example: Beam loss 800 MeV/u O⁸⁺ for different BLMs at GSI-synchr.:



- ⇒ Linear behavior for all detectors
- ⇒ Quite different count rate:

$$r_{\rm IC} < r_{\rm BF3} < r_{\rm liquid} < r_{\rm plastic}$$

Typical choice of the detector type:

Ionization Chamber:

- Fast current reading or particle counting
- Can be fabricated in any shape, cheap

Disadvantage:

- Need calibration in many cases
- Might suffer from radiation
- ⇒ Often used at electron accelerators

Outline:

- **→** Physical process from beam-wall interaction
- ➤ Different types of Beam Loss Monitors different methods for various beam parameters
- ➤ Machine protection using BLMs interlock generation for beam abort
- > Summary

Machine Protection Issues for BLM

Losses lead to permanent activation \Rightarrow maintenance is hampered and to material heating (vacuum pipe, super-cond. magnet etc.) \Rightarrow destruction.

Types of losses:

- > Irregular or fast losses by malfunction of devices (magnets, cavities etc.)
 - → BLM as online control of the accelerator functionality and **interlock generation**.
- > Regular or slow losses e.g. by lifetime limits or due to collimator
 - \rightarrow BLM used for alignment.

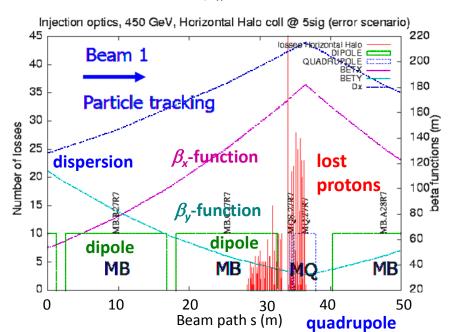
Demands for BLM:

- > High sensitivity to detect behavior of beam halo e.g. at collimator
- Large dynamic range:
 - → low signal during normal operation, but large signal in case of malfunction
 - \rightarrow detectable without changing the full-scale-range e.g. scintillators from 10² 1/s up to 10⁷ 1/s in counting mode.

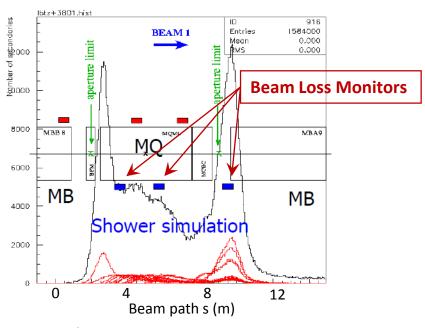
Monitoring of loss rate in control room **and** as interlock signal for beam abortion.

Application: BLMs for Quench-Protection

Super-conducting magnets can be heated above critical temperature T_c by the lost beam


- ⇒ breakdown of super-conductivity = 'quenching'.
- \Rightarrow Interlock within 1 ms for beam abortion generated by BLM.

Position of detector at quadruples due to maximal beam size.


High energy particles leads to a shower in forward direction \rightarrow Monte-Carlo simulation.

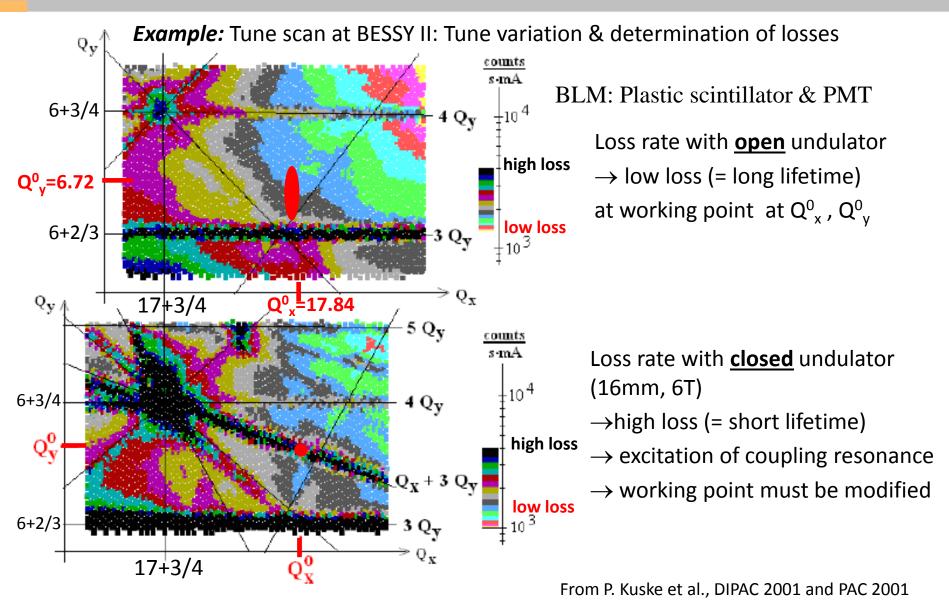
Example: Simulation of lost protons at LHC at 450 GeV

 \rightarrow at focusing quad. **D** & β_x maximum

Example: Simulation of shower particles

B. Dehning, JAS 2014, CERN-2016-002

Application: BLMs for optimal Tune Alignment


Example: Loss rate at a scraper inside the synchrotron as a function of the tune (i.e. small changes of quadrupole setting):

Beam blow-up by weak resonances can be avoided by proper tune value → very sensitive device for optimization.

Application: BLMs for optimal Tune Alignment

Summary Beam Loss Monitors

Measurement of the lost fraction of the beam:

- detection of secondary products
- > sensitive particle detectors are used outside the vacuum
- cheap installations used at many locations

Used as interlock in all high current machines for protection.

Additionally used for sensitive 'loss studies'.

Depending on the application different types are used:

Frequently used:

- > Scintillators: very sensitive, fast response, largest dynamics, not radiation hard
- > PIN diode: insensitive, fast response, not radiation hard, cheap
- > IC: medium sensitive, slow response, radiation hard, cheap, absolute measurement of dose

Used for special application:

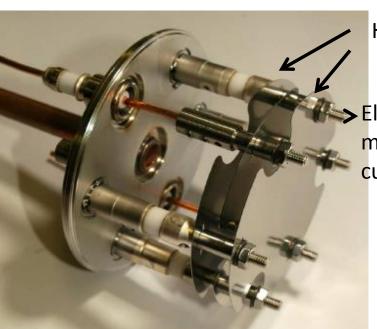
- > (Electron Multiplier: medium sensitive, fast response, radiation hard)
- > BF₃ tube: only neutrons, slow response, radiation hard, expensive
- > Optical fibers: insensitive, very slow, radiation hard, very high spatial resolution.

Backup slides

The long, cable-based Ionization Chamber

An air-filled ionization chamber IC can be realized Air-filled co-ax cable e.g. Andrew HJ4.5-50 $\varnothing_{\text{outer}}$ = 20mm by a cheap, air-filled co-axial cable: vacuum pipe beam lost beam particle Co-ax cable: Long IC-BLM secondary signal $= c_{cable}$ air-filled Δt leads to position U ≈ 1 kV

Realization: long cable along beam line \Rightarrow spatial resolution via time-of-flight measurement: determination of signal arrival at both ends leads to Δt


typical signal resolution of time-of-flight $\Delta t \approx 10$ ns \Rightarrow position resolution $\Delta x = c_{cable} \cdot \Delta t = 1.5$ m Advantage of long IC: cheap, good spatial resolution

Secondary Electron Monitor as BLM

Ionizing radiation liberates secondary electrons from a surface. Working principle:

- Three plates mounted in a vacuum vessel (passively NEG pumped)
- \triangleright Outer electrodes: biased by $U \approx +1 \text{ kV}$
- Inner electrode: connected for current measurement (here current-frequency converter)
- → small and cheap detector, very insensitive.

HV electrodes

Electrode for measured current

Detector with intrinsic amplification: Secondary electron multiplier

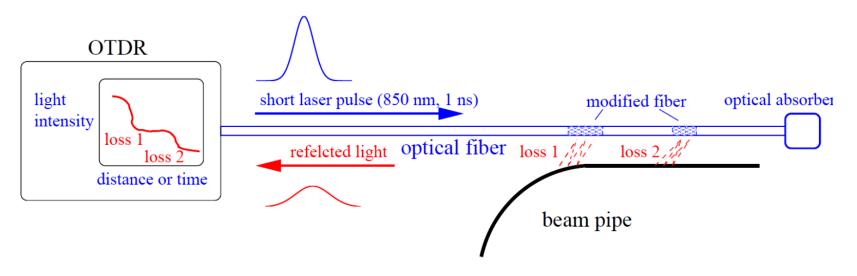
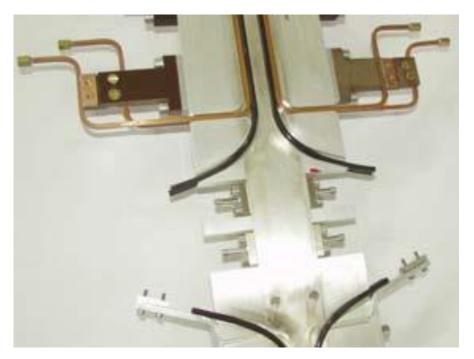

i.e. a 'photo-multiplier without

photo-cathode'

Optical Fibers as BLM

Modification of fiber material is used as a measure of dose.


- several km long fibers (cheap due to use in tele-communication)
- > 1 ns infra-red laser pulse
- ightharpoonup OTDR (optical time domain reflector): time and amplitude of reflected light \Rightarrow location of modification.

Example for Optical Fibers BLM

Advantage of optical fibers: Good spatial resolution with one detector

- → Installation parallel to beam pipe
- → low distance to loss
- ⇒ high solid angle for small volume

Alternative detection principle: Cherenkov light by fast transversing particle

