

Rasmus Ischebeck

Diffraction Limited Storage Rings Joint Universities Accelerator School

Synchrotron X-Ray Sources

- 2nd Generation: storage rings built for the purpose of generating synchrotron radiation
- Generation 4a: free electron lasers
- Generation 4b: diffraction limited storage rings

• 1st Generation: storage rings built for particle physics, and used parasitically for synchrotron radiation

• 3rd Generation: optimized rings for low emittance; insertion devices (wigglers and undulators), top-up operation

Since we Have FELs, Why do we Still Need Synchrotrons?

Rasmus Ischebeck > JUAS 2019 > Synchrotron Radiation

Synchrotrons offer greater stability in pointing and pulse energy

3

"diffraction limited" means source (=electron beam) phase space << diffraction phase space \Rightarrow maximum brightness theoretically possible \Rightarrow full spatial coherence (point-like source)

Photon beam phase space = *convolution* of diffraction phase space and electron beam phase space

- emittance $\varepsilon_{x} = \sigma_{x} \cdot \sigma_{x'}$ Area:
- Aspect ratio: **beta-function** $\beta_x = \sigma_x / \sigma_{x'}$
 - $\sigma_x^2 = \varepsilon_x \cdot \beta_x$ rms size
 - [rms] divergence $\sigma_{x'}^{2} = \epsilon_{x}^{2} / \beta_{x}$

- **2-d phase space** (no correlation, $\langle xx' \rangle = 0$)

MAX-IV

Rasmus Ischebeck > JUAS 2020 > DLSRs

Swiss Light Source

Rasmus Ischebeck > JUAS 2020 > DLSRs

Theoretical Emittance scaling $\varepsilon \propto \gamma^2 C^{-3}$ $\ln\frac{\varepsilon}{\sqrt{2}} = K - 3 \cdot \ln C$ $K \approx 2 \rightarrow \approx -1$ improvement ×20

upgrade projects

Emittance

- ◆ *©* is an invariant of motion

$$\varepsilon_{\gamma x} = \varepsilon_{x} \oplus \varepsilon_{r} = \sqrt{\left(\varepsilon_{x} + \varepsilon_{r}\right)^{2} + \varepsilon_{x}\varepsilon_{r}\left(\frac{\beta_{r}}{\beta_{x}} + \frac{\beta_{x}}{\beta_{r}} - 2\right)} \xrightarrow{\beta_{x} = \beta_{r}} \varepsilon_{x} + \varepsilon_{r}$$
 (same for y)

- $\mathcal{E}_{x/v}$ electron beam emittances (at dispersion free locations) SLS: $\varepsilon_{x/v} = 5500 / 5 \text{ pm}$
- $\varepsilon_r = \lambda/4\pi$ diffraction emittance $\rightarrow 8$ pm for $\lambda = 1$ Å ($\cong 12.4$ keV)
- $\beta \sim \text{beam size}$ / beam divergence \rightarrow phase space orientation
- $\beta_{x/v}$ electron beam
 - SLS short straights: $\beta_{x/v} = 1.4 / 1.0 \text{ m}$
 - SLS [super]bends:

•
$$\beta_r$$
 diffraction

- Undulator: $\beta_r \approx L / 2\pi \rightarrow \approx 0.3 \text{ m for } L = 2 \text{ m}$
- [super]bend: $\beta_r \approx 0.014 \text{ m} / B \text{ [T]} \rightarrow \approx 0.0045 \text{ m for } B = 3 \text{ T}$
- Convoluted photon beam emittances
 - Undulator @ SLS: $\varepsilon_{\gamma x/\gamma} = 5520 / 15 \text{ pm}$
 - \Rightarrow SLS-2: $\varepsilon_{\gamma x/v} = 340$ / 450 pm Superbend @ SLS: $\varepsilon_{\gamma x/y} = 5900 / 350 \text{ pm}$

 \Rightarrow SLS-2: $\varepsilon_{x/v} = \frac{125}{8} \text{ pm}$ (?)

 $\beta_{x/v} = 0.45 / 14.0 \text{ m}$

 \Rightarrow SLS-2: $\varepsilon_{\gamma x/y} = 145 / 19 \text{ pm}$

Brightness and Coherence

$$\begin{array}{c} B(\lambda) \\ CF(\lambda) \end{array} = \frac{1}{\varepsilon_{\gamma x}(\lambda) \times \varepsilon_{\gamma y}(\lambda)} \times \begin{cases} \dot{N}(\lambda) \\ \varepsilon_{r} \end{cases}$$

Possible increase of brightness and coherent fraction for the SLS photon energy range $(0.09...45 \text{ keV} \cong 0.25...140 \text{ Å})$ [undulator beam lines only]

Rasmus Ischebeck > JUAS 2020 > DLSRs

$N(\lambda)$ spectral photon flux 2)/BW $(\lambda))^2$ BW bandwidth of experiment

Which Experiments Need Transverse Coherence?

Rasmus Ischebeck > JUAS 2019 > Synchrotron Radiation

I Have Heard that Users Perform All of These Experiments at Synchrotrons. How Do They Achieve the Required Coherence?

Electron Beam Emittance

- Horizontal emittance in electron storage ring: \downarrow radiation damping $\downarrow \Rightarrow$ equilibrium $\leftarrow \uparrow$ quantum excitation \uparrow
 - independent from initial conditions !

Electron Beam Emittance

Maximum radiation damping increase radiated power • Damping Wigglers \Rightarrow pay with RF-power

Minimum quantum excitation

keep off-momentum orbit close to nominal orbit

momentum

- \Rightarrow minimize dispersion at locations of radiation (bends)
 - strong horizontal focusing into bends.
 - Multi-Bend Achromat lattice 0 many short (= small deflection angle) bends to limit dispersion growth.
 - Longitudinal Gradient Bend

- − e.g. PETRA III: Power $1.1 \rightarrow 4.9$ MW $\Rightarrow \varepsilon_x 4.4 \rightarrow 1.0$ nm

$$\Delta p/p$$

highest radiation at region of lowest dispersion and v.v.

Electron Beam Emittance

Minimum horizontal emittance

Vertical emittance (of a flat lattice) **SLS** : 0.2 pm equilibrium emittance small by nature determined by lattice imperfections **SLS** : 1...10 pm

Rasmus Ischebeck > JUAS 2020 > DLSRs

Technological Advances

- Vacuum technology: distributed pumping
- High precision machining
- New injection schemes
- Solid-state RF systems

from left to right: Agilent, Wikimedia Commons, PSI Bildarchiv 16

Multi-Bend Achromats

New concept

- Longitudinal gradient bends (LGB): field variation $B_v = B_v(s)$
 - $\varepsilon \propto \int (dispersion^2...) \times (B-field)^3 ds$
- \rightarrow high field at low dispersion and v.v.
- Anti-bends (AB): $B_v < 0$
 - matching of dispersion to LGB (disentangle horizontal focusing from dispersion matching)
- \Rightarrow Factor \approx 5 lower emittance compared to a conventional lattice
- \Rightarrow MBA + LGB/AB : factor $\approx 25!$

AS & A. Wrulich, NIM A770 (2015) 98–112 AS, NIM A737 (2014) 148–154

18

conventional: $\epsilon = 990 \text{ pm}$

Rasmus Ischebeck > JUAS

LGB/AB: $\varepsilon = 200 \text{ pm}$

Hard X-rays ($\approx 80 \text{ keV}$) from high B-field peak (4..6 Tesla): \bullet

 ϵ -reduction due to increased radiated power from high field and from Σ deflection angle $| > 360^{\circ}$ ("wiggler lattice").

- Beam dynamics: potentials for ease of chromaticity correction
- rather relaxed optics for a low emittance lattice.
- nature)

negative momentum compaction (like proton synchrotron below transition energy) : suppression of head-tail instability at *negative* chromaticity. (chromaticity is negative by

Advanced options

- A new on-axis injection scheme
- cope with reduced aperture (physical or dynamic)
- use interplay of radiation damping and synchrotron oscillation in longitudinal phase space to inject off-energy, off-phase but on-axis. (2015)
- Round beam scheme
 - Wish from users
 - Maximum brightness & coherence
 - Mitigation of intrabeam scattering blow-up
 - "Möbius accelerator":

beam rotation on each turn to exchange

transverse planes

Rasmus Ischebeck > JUAS 2020 > DLSRs

R. Talman (Cornell Univ.), PRL 74.9

Undulator brightness

Brightness of U19 at SLS and SLS-2

Brightness scales with photon beam emittance (= electrons ⊕ diffraction)

Parameters for simple model: $N_u = 100$ periods $\lambda_u = 19$ mm period gap g: $\frac{1}{4^3/4} \lambda_u$ up to $h = 33^{rd}$ harmonic radiation into cone of $\sigma_{r'} \approx \sqrt{\frac{\lambda}{L_u}} \quad L_u = N_u \lambda_u$ $\lambda = \frac{\lambda_u}{\sqrt{\frac{1}{L_u}}} (1 + \frac{1}{2}K^2)$

$$\frac{hK_u^2}{4+2K_u^2} \quad K_u = \frac{B_o c}{(mc^2/e)} \frac{\lambda_u}{2\pi} \quad B_o \approx 3.33 \exp\left[-\frac{g}{\lambda_u} \left(5.47 - 1.8\frac{g}{\lambda_u}\right)\right]$$

Questions?

