Superconductivity Practical Days at CERN

4-5th March 2020

Jerome Fleiter, Iole Falorio CERN TE/MSC/SCD

Few Definitions to start

Superconductivity

"Superconductivity is a phenomenon occurring in certain materials at very low temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect).

from Wikipedia

Superconductor

A conductor that exhibit superconducting properties. It is an assembly of low resistive metal and superconducting material.

Cryogenics

Cryogenic: for Greek "kryos", which means cold or freezing, and "genes" meaning born or produced. "In physics, cryogenics is the study of the production and the behaviour of materials at very low temperature (<-150-180°C)"

from Wikipedia

Main properties of superconductors

For T<T_c

Meissner effect

Temperatur Onne's measurement on mercury (1911) Discovered by Meissner and Oschenfeld <u>Perfect conductivity + perfect diamagnetism = $\frac{(1933)}{\text{superconductors}}$ </u>

Type 1 Superconductors

- 1933:Meissner effect discovered: magnetic field is expelled from Type 1 superconductors for T<T_c and B<B_{c1}.
- **B**_{c1} is the critical field.
- For **B**>**B**_{c1} material is in normal state
- For T>T_c material is in normal state

Material	$T_{c}(\mathbf{K})$	$\mu_0 H_0 (\mathrm{mT})$	
Aluminum	1.2	9.9	
Cadmium	0.52	3.0	
Gallium	1.1	5.1	
Indium	3.4	27.6	
Iridium	0.11	1.6	
Lanthanum α	4.8		
β	4.9		
Lead	7.2	80.3	
Lutecium	0.1	35.0	
Mercury a	4.2	41.3	
β	4.0	34.0	
Molybdenum	0.9		
Osmium	0.7	~ 6.3	
Rhenium	1.7	20.1	
Rhodium	0.0003	4.9	
Ruthenium	0.5	6.6	
Tantalum	4.5	83.0	
Thalium	2.4	17.1	
Thorium	1.4	16.2	
Tin	3.7	30.6	
Titanium	0.4		
Tungsten	0.016	0.12	
Uranium a	0.6		
β	1.8		
Zinc	0.9	5.3	
Zirconium	0.8	4.7	

<u>Superconductors = zero resistance+ perfect diamagnetism</u>

for T<Tc and B<Bc

Type 2 Superconductors

- 1952: Abrikosov Vortices: In the mixed state, $B_{c1} < B < B_{c2}$ magnetic flux penetrates the superconductor as a small independent vortices. In the vortex core the material is in normal state.
 - For **B**<**B**_{c1} => perfect diamagnet, no vortices
 - For $B_{c1} < B < B_{c2}$, mixed state magnetic flux penetrates locally the material as vortex with a flux quanta $\Phi_0 = h/2e = 2 .10^{-15}$ Wb.
 - For $\mathbf{B} > \mathbf{B}_{c2}$ material is fully penetrated, no more superconducting

Flux pinning

- In the **mixed state** the transport current (use to generate the field in a electromagnet) interact with each of the vortices: **F**= **J x B**
- The motion of the vortex cause energy dissipation that may induce a lost of Sc state
- To **transport current**, the **vortex** must be **pinned** to the microstructure of the **material**.
- Some defects, dislocation, impurities act as pinning centers, exerting a pinning force (f_p)on the vortex.
- The maximum current (Jc) than can be transported without losses by a superconductor is defined as $Jc = f_p/B$

JUAS 2020

Example of Type II Sc materials 6

Tc (K)

Bc(T)

15

2.1

2.35

24.3

32.4

44

38

Critical surface of Superconductors

A Type II material is superconductor below the critical surface defined by:

- Critical temperature (T_c) intrinsic of material
- Critical field (B_c) intrinsic of material
- Critical current density (J_c) extrinsic (pinning centers induced during fabrication)

For a given temperature (**T**₀) $J_c(B) = \frac{A}{B}b^p(1-b)^q$

JUAS 2020

 $b = B/B_{c2}(T_0)$

Critical surface of LTS vs HTS

Various Superconducting materials

Low Temperature Superconductors (LTS)T_c<39K

Pure metals

material	T_c, K	$H_c, {\sf Oe}$	year
AI	1.2	105	1933
In	3.4	280	
Sn	3.7	305	
Pb	7.2	803	1913
Nb	9.2	2060	1930

Alloys and Intermetallic compounds

	Tc (K)	Bc(T)
NbTi	10	15
V₃Ga	14.8	2.1
NbN	15.7	1.5
V₃Si	16.9	2.35
Nb₃Sn	18	24.3
Nb ₃ Al	18.7	32.4
Nb ₃ (AlGe)	20.7	44
Nb ₃ Ge	23.2	38

High Temperature Superconductors (HTS) T_c>39K Cuprates

Compound		<i>Т</i> _с (К)
YBa ₂ Cu ₃ O ₇	Y(123)	93
Bi ₂ Sr ₂ CaCu ₂ O ₈	Bi(2212)	92
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀	Bi(2223)	110
TIBa ₂ Ca ₂ Cu ₃ O ₁₀	TI(1223)	122
HgBa ₂ Ca ₂ Cu ₃ O ₁₀	Hg(1223)	133

Superconductivity applications

- Generate high DC field: (MRI, NMR, particle Physics)
- Current limiters
- Electronics, detectors (SQUIDS)
- Power transmission
- Magnetic levitation (Maglev)
- Current leads
- RF cavities

Superconducting devices @CERN

Superconductivity = a core technology of LHC

• LHC ring magnets (Nb-Ti):

- 1232 main dipoles: **8.3 T** x 15 m
- 392 Lattice quadrupoles **223 T/m (7 T)** x 4m
- Zoo of 7600 others

• LHC detector magnets (Nb-Ti):

- ATLAS: Toroid 4 T, 25 x20 m
- CMS solenoid: 4 T, 12 x15 m

• LHC current leads (HTS BSCCO)

- ~1000, rated for I ∈[0.6,13 kA]
- **RF cavities** (N_b coating)

Superconductor for accelerator magnets

- Superconductor = numerous small superconducting filaments embedded in a low resistance matrix
- Small filaments to reduce the hysteresis losses
- Low resistance matrix to carry the large current for the few millisecond after a quench (see next slide)

Accelerator magnets use large current cable

- Large stored magnetic energy
- Use of large current cable to reduce inductance (10-20 kA)
- Wires are assembled in **Rutherford cables (18-50 strands**)
- This allows for:
 - short piece length of conductor
 - Low inductance magnet
 - Made the winding stage shorter
 - Allow for reliability (current sharing)
 - Reduce the dumping time (for a given voltage (kV)

Superconducting strands (for magnets)

Relevant parameters for accelerator magnets (Nb-Ti, Nb₃Sn..)

- Large overall current density ~400–500 A/mm²
- Cu fraction of about 50% with RRR >100
- Small filaments to reduce magnetization and flux jumps
- Twist of the filaments
- Sufficient mechanical properties (axial and transverse)
- Long piece length (~1 km)

R

- Good uniformity of electrical performances

Practical superconductors

- Nb-Ti
- Nb₃Sn
- **REBCO**

. . .

• BSCCO

$$B_{0max} = 16 T$$

 $B_{0max} > 30T$
 $B_{0max} > 30T$

-9T

Beam energy: E [TeV]~0.3 B[Tesla] R[km]

Magnet need powering! HTS CLs

HTS IN THE LHC MACHINE

A. Ballarino About <u>3 MA</u> of rated current through 1800 circuits 3286 current leads

	Quantity	Current rating (A)		141
	64	13000		ANAL
$=12500 \text{ A/cm}^2$ @ 77 K self fiel	d 298	6000	HTS	
		600		
	2104	60-120		ier i

Cryogens for superconductor

Today we will use HTS material with nitrogen. In accelerator LTS are operated in Helium bath. This will be most likely the case for HTS (larger Bc2)

Properties of Liquid Nitrogen (1/2)

- ≻Nitrogen=78% of atmosphere
- Colorless, odorless, non-toxic. The liquid is similar in appearance to water.
- Boiling point (1 atm): 77 K (-196 °C). It is colder than liquid oxygen (boiling point = -183 °C): oxygen in the air condenses out.
- ≻Critical temperature: 126 K (-147 °C).
- Latent heat of vaporization: 197 J/g. 1 W boils off 22.5 cc/hour.
- ≻Volume of expansion liquid to gas (15 °C, 1 atm): 682. Closed containers very likely burst.

Gaz N₂

Standard liquid nitrogen dewars:150-200 liters....136m³ of gas JUAS 2020

Properties of Liquid Nitrogen (2/2)

Nitrogen (liquid and gas) is colorless. <u>But</u> it appears as a cloudy white vapor when exposed to air.

Why does liquid nitrogen smoke?

The vapor spreads itself out through the air and condenses the water out of it. The water droplets scatter light and produced the smoking effect.

Leidenfrost effect: on a smooth surface with a temperature much higher than the nitrogen boiling point, the liquid vaporizes quickly and lifts itself above the surface. If the surface is irregular, this effect doesn't occur and the vaporization is even more rapid.

Mechanical properties at cold

Most of the common materials becomes brittle at cryogenic temperature. What happens to a rose when immersed in liquid nitrogen?

Dewar for Liquid Nitrogen

>LN₂ is stored in <u>vacuum insulated</u> storage vessels (dewars), with a vacuum space and a special thermal insulation. However, leaks into the vessel cause the cryogenic liquid to vaporize and build up pressure. In optimum conditions, the liquid-to-gas conversion rate per day is about 2.3 %.

≻Pressure relief valve to protect the vessel against over-pressure.

≻Level gauge.

≻Rupture disk.

Annular Space

Dealing with LN2: safety first

Like other cryogens, may be harmful if not handled properly!

- The extremely low temperature of the liquid nitrogen (LN_2) can cause severe <u>burn-like damage to</u> <u>the skin</u> either by contact with the fluid, surfaces cooled by the fluid or evolving gas.
- Skin can freeze and adhere to LN₂ cooled surfaces causing tearing on removal. Thermal gloves must be worn when handling objects cooled by LN₂ (transfer lines, test materials,...). DO NOT touch cold surfaces with bare hands to avoid severe cold-burns !
- **<u>Boiling and splashing</u>** will always occur when filling a warm container. Protection glasses must be worn.
- <u>Oxygen condenses</u> and collects on objects cooled in LN2 (nitrogen smokes, but you should not do it in his presence !).
- Many materials (common glass, plastics, iron...) become brittle and may shatter when cooled in LN2.
- Nitrogen can easily replace air in poorly ventilated areas (<u>risk of asphyxiation</u>).

Superconductivity Practical Days at CERN

We will work with **cryogenics and superconductivity** to understand and verify the unique properties of superconductors

YBCO 123 bulk BSCCO and YBCO tape SmCo, NeFeB magnets Liquid nitrogen

Levitation Flux pinning Zero resistance Jc,Tc,Hc

Experiments

Experiments will be performed with HTS superconductors and liquid nitrogen

- 1.Levitation experiment,
- 2.Flywheel demonstration.
- 2. Critical temperature experiment
- 3.Zero resistance experiment
- 4. Critical current experiment

≻YBCO 123 Tape. Tc= 92 K.

Properties of Superconductors

Zero resistance

Perfect conductors

Exclusion of magnetic field

Perfect diamagnets

Onne's measurement on mercury (1911)

Discovered by Meissner and Oschenfeld (1933)

The magnetic behavior of a superconductor follows the Faraday-Lenz's law of electromagnetism. A superconductor reacts to <u>changes</u> in externally applied magnetic field. Circulating currents are induced to oppose the build-up of magnetic field in the conductor.

<u>Perfect conductivity + perfect diamagnetism = superconductors</u> JUAS 2020

Meissner effect

Zero field-cooled method: the materials are first cooled and then placed in an external magnetic field.

Meissner effect

Field-cooled method: the materials are in the presence of an external magnetic field at room temperature. After they are cooled.

Levitation experiment

Levitation experiment

Levitation experiment

We will perform two experiments:

Field-cooled conditions: the field is applied to the superconductor at room temperature, before cooldown in liquid nitrogen.

Zero field-cooled

conditions: the superconductor is cooleddown in zero field conditions. Only when the temperature is below Tc, the field is applied.

Levitation experiment

Field-cooled Levitation experiment

The magnet is put, at room temperature, on the top of the superconductor (no levitation).

The assembly is cooled with LN_2 to 77 K. The YBCO becomes superconducting and the magnet jumps up in the air.

The magnet levitates stably in mid air and can be moved in the vertical position only by applying a strong force. It will rotate in the air when kicked with a non-magnetic material. Observe also stability in the horizontal plane due to the magnetization of the residual flux.

Appreciate the intensity of the max levitation force !

Critical temperature experiment

Measurement of critical temperature by using the Meissner effect.

The critical temperature is defined as the temperature measured on the superconductor when the permanent levitating on it comes to complete rest on the superconductor's surface.

In reality, the critical temperature is defined as the temperature below which a material exhibits superconductivity at zero magnetic field strength.

Zero resistance direct current experiment

A superconducting tape and a pure silver tape are connected in series, Measure the voltages (resistances) as the specimens are inserted into liquid nitrogen and cooled to 77 K.

ρ_{Ag}(293 K)~1.46·10⁻⁶ Ω·m ρ_{Ag}(77 K) ~0.2· ρ_{Ag}(293 K) A <u>see-through glass walled</u> <u>dewar</u> is used for the LN_2 .

HTS:BSCCO 2223 multi-filamentary tape in silver alloy matrix. JUAS 2020

DC Critical current experiment

Critical current (I_c): current at which a specified electric field criterion E_c , or resistivity criterion ρ_c is achieved in the specimen. Losses through a Type II superconductors (H_{c1} <H<H_{c2}) depend on the sample geometry and on the vortex pinning.

32

Critical current experiment

Critical current experiment self-field and with perpendicular field

 $E_c = 1 \ \mu V/cm$ Measure I_c in liquid nitrogen.

f=filling factor= A_{HTS} /Atot f=1%

Derive **J**_{eng} (Engineering critical current density=current over the total cross section of the tape) and **J**_{ph} (Physical critical current density=current in the HTS).

T=77 K

YBCO tape: 4mm wide 0.1 mm thick

Critical current experiment: anisotropy

Thanks for your attention

A few reference books

M.N. Wilson, *Superconducting Magnets*, Clarendon Press Oxford.K.-H. Mess, P. Schmüser, S. Wolff, Superconducting Accelerator Magnets, World Scientific.

H.A. Brechna, Superconducting Magnet Systems, Springer Verlag.

Y. Iwasa, Case Studies in Superconducting Magnets, Plenum Publ. Corp.
K. D. Timmerhaus, T.M.Flynn, Cryogenic Process Engineering, Plenum

Press, New York.

T.P. Sheahen, *Introduction to High-Temperature Superconductivity*, Plenum Press, New York.

G.Burns, High-Temperature Superconductivity, Academic press, Inc.