Measurement of Beam Profile

The beam width can be changed by focusing via quadruples.

Transverse matching between ascending accelerators is done by focusing.

→ Profiles have to be controlled at many locations.

Synchrotrons: Lattice functions β (s) and D(s) are fixed \Rightarrow width σ and emittance ε are:

$$\sigma_x^2(s) = \varepsilon_x \beta_x(s) + \left(D(s) \frac{\Delta p}{p}\right)^2$$
 and $\sigma_y^2(s) = \varepsilon_y \beta_y(s)$ (no vertical bend)

LINACs: Lattice functions are 'smoothly' defined due to variable input emittance.

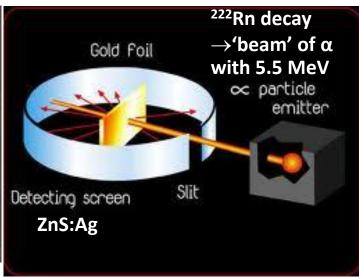
Typical beam sizes:

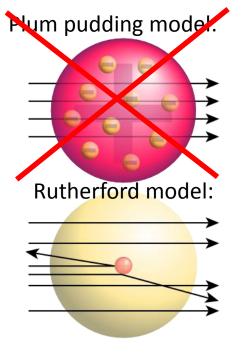
e-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm

A great variety of devices are used:

- Optical techniques: Scintillating screens (all beams), synchrotron light monitors (e-), optical transition radiation (e-), residual gas fluorescence monitors (protons), ionization profile monitors (protons).
- > Electronics techniques: Secondary electron emission (SEM) grids, wire scanners (all)


Outline:


- Scintillation screens:emission of light, universal usage, limited dynamic range
- Optical Transition Radiation
- > SEM-Grid
- **➤** Wire scanner
- Ionization Profile Monitor and Beam Induced Fluorescence Monitor
- **≻**Synchrotron Light Monitors
- Summary

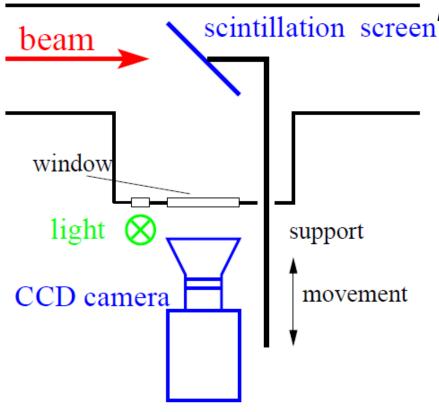

Early Usage of Scintillation Screen by E. Rutherford

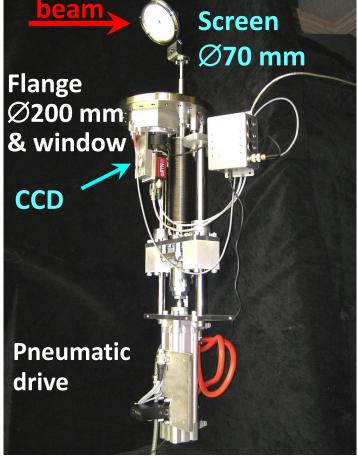
Scintillation screens are used from the 'early days' on e.g. by Ernest Rutherford in 1911:

Rutherford or 'Geiger-Marsden Experiment':

➤ Nuclei are made of point-like charges

ZnS:Ag


- \triangleright light emitter excited by the energy release by charged particle \rightarrow sintillation
- > today known as Phosphor P11 and is used in TV tubes etc.


Scintillation Screen

Particle's energy loss in matter produces light

→ the most direct way of profile observation as used from the early days on!

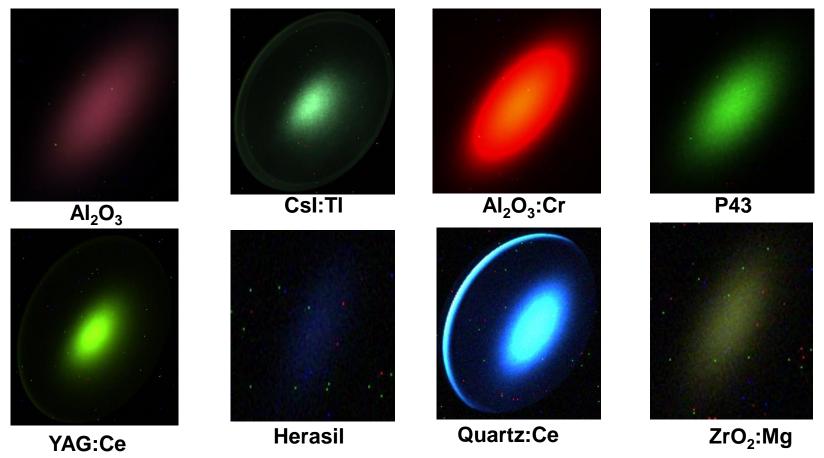
Example of Screen based Beam Profile Measurement

Advantage of screens:

- ➤ Direct 2-dim measurement
- ➤ High spatial resolution
- ➤ Cheap realization

Observation with a CCD or CMOS camera with digital output or video & frame grabber.

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen


Scintillation Screen (beam stopped) D. [BeamMew]HITRAP TRIDF2_2008.10.07_17.29.20.468.png successfully written

Light output from various Scintillating Screens

Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u

- > Very different light yield i.e. photons per ion's energy loss
- ➤ Different wavelength of emitted light

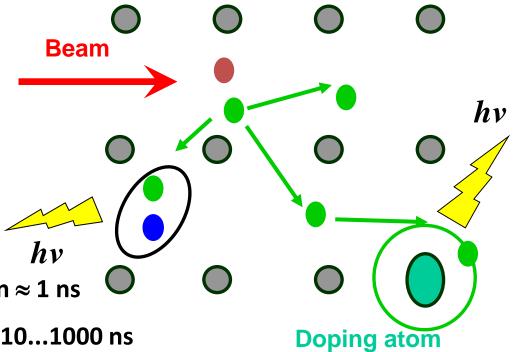
Excurse: Physics of Scintillating Mechanism

Interaction steps within the scintillation process

- beam interaction
- → hot electrons + deep holes
- \triangleright multiplication within \approx 0.01 ps:

electron – electron scattering

 \triangleright thermalization within \approx 1 ps:

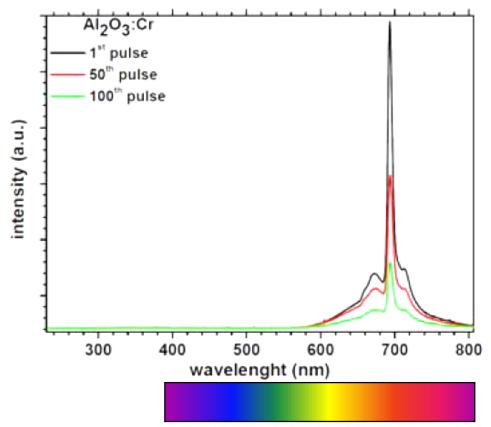

electron - phonon coupling

capture at doped atom and/or

electron - hole pair creation within ≈ 1 ns

> emission of photons within ≈ 10...1000 ns

 λ and au depend strongly on dopant atom or color center nature



Wavelength Spectrum for Scintillation Screens

Wavelength spectrum of Al₂O₃:Cr (Chromox)

→ Emission is dominated by Chromium dopant

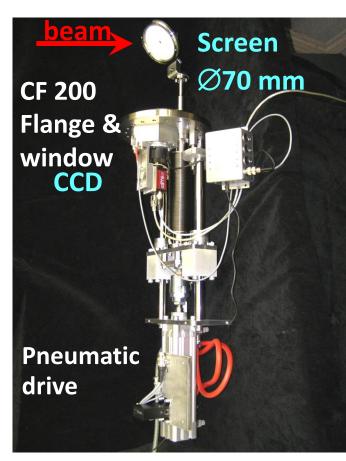
Other materials have different spectra

- → Optimization to sensitivity of detector
- → but others material properties have to obeyed and weighted

Beam parameters: 238 U $^{28+}$, 4.8 MeV/u, **5 · 10**¹⁰ ppp in 500 μs, ~450 μA

[E. Gütlich (GSI) et al., BIW 2010]

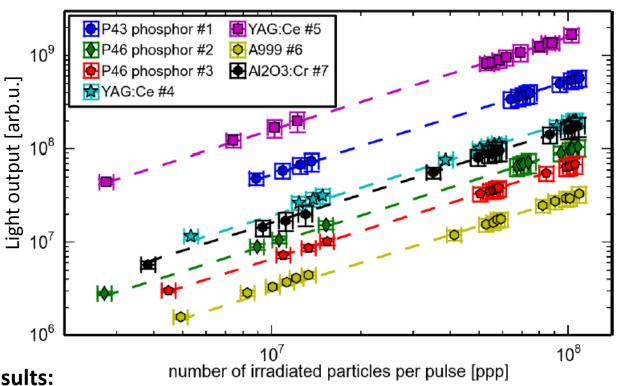
Material Properties for Scintillating Screens


Some materials and their basic properties:

Name	Туре	Material	Activ.	Мах. λ	Decay
Chromox	Cera- mics	Al ₂ O ₃	Cr	700nm	≈ 10ms
Alumina		Al ₂ O ₃	Non	380nm	≈ 10ns
YAG:Ce	Crystal	Y ₃ Al ₅ O ₁₂	Ce	550nm	200ns
LYSO		Lu _{1.8} Y _{.2} SiO ₅	Ce	420nm	40ns
P43	Powder of gains Ø≈10μm on glass	Gd ₂ O ₃ S	Tb	545nm	1ms
P46		$Y_3AI_5O_{12}$	Ce	530nm	300ns
P47		Y ₃ Si ₅ O ₁₂	Ce&Tb	400nm	100ns

Properties of a good scintillator:

- > Large light output at optical wavelength
 - → standard CCD camera can be used
- \triangleright Large dynamic range \rightarrow usable for different ions
- \triangleright Short decay time \rightarrow observation of variations
- ➤ Radiation hardness → long lifetime
- \triangleright Good mechanical properties \rightarrow typ. size up to \emptyset 10 cm (Phosphor Pxx grains of $\emptyset \approx 10 \ \mu m$ on glass or metal).


Standard drive with P43 screen

Example: Light Output from various Screens

Example: Beam images for various scintillators irradiated by Uranium at ≈ 300 MeV/u at GSI

From P. Forck et al., IPAC'14, A. Lieberwirth et al., NIM B 2015

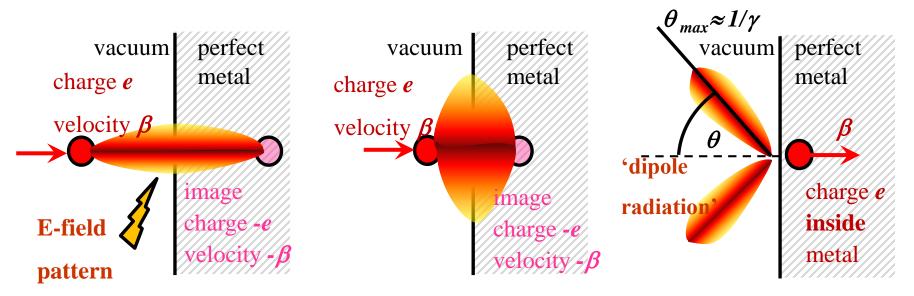
Results:

- Several orders of magnitude different light output
- $\triangleright \Rightarrow$ material matched to beam intensity must be chosen
- Well suited: powder phosphor screens P43 and P46
- \rightarrow cheap, can be sedimented on large substrates of nearly any shape
- Light output linear with respect to particles per pulse

Outline:

- Scintillation screens:emission of light. universal usage, limited dynamic range
- ➤ Optical Transition Radiation: crossing material boundary, for relativistic beams only
- > SEM-Grid
- Wire scanner
- > Ionization Profile Monitor and Beam Induced Fluorescence Monitor
- > Synchrotron Light Monitors
- > Summary

Excurse: Optical Transition Radiation: Depictive Description


Optical Transition Radiation OTR for a single charge *e***:**

Assuming a charge *e* approaches an ideal conducting boundary e.g. metal foil

- image charge is created by electric field
- dipole type field pattern

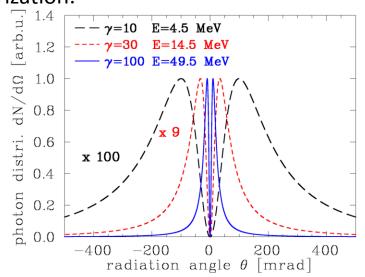
dipole type

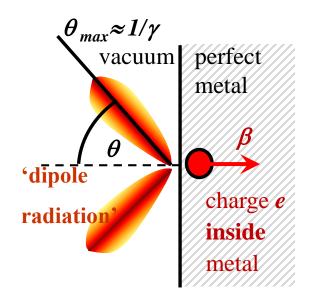
- \succ field distribution depends on velocity $oldsymbol{eta}$ and Lorentz factor γ due to relativistic trans. field increase
- \triangleright penetration of charge through surface within t < 10 fs: sudden change of source distribution
- emission of radiation with dipole characteristic

Physics: sudden change charge distribution rearrangement of sources ⇔ radiation

Other physical interpretation: Impedance mismatch at boundary leads to radiation

Excurse: Optical Transition Radiation: Depictive Description


Optical Transition Radiation OTR can be described in classical physics:


approximated formula for normal incidence & in plane polarization:

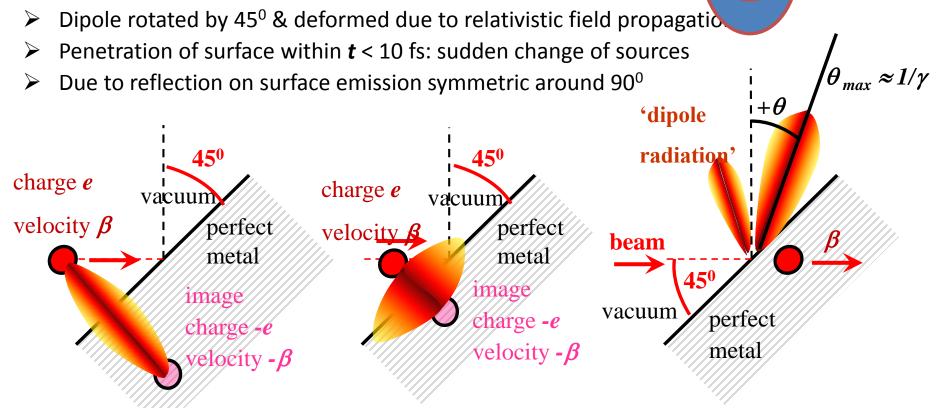
$$\frac{d^2W}{d\theta \,d\omega} \approx \frac{2e^2\beta^2}{\pi \,c} \cdot \frac{\sin^2\theta \cdot \cos^2\theta}{\left(1 - \beta^2 \cos^2\theta\right)^2}$$

W: radiated energy

 ω : frequency of wave

Angular distribution of radiation in optical spectrum:

- \triangleright lope emission pattern depends on velocity or Lorentz factor γ
- \triangleright peak at angle $\theta \approx 1/\gamma$
- \triangleright emitted energy i.e. amount of photons scales with $W \propto \beta^2$
- \triangleright broad wave length spectrum (i.e. no dependence on ω)
- → suited for high energy electrons


Physics: sudden change charge distribution rearrangement of sources ⇔ radiation

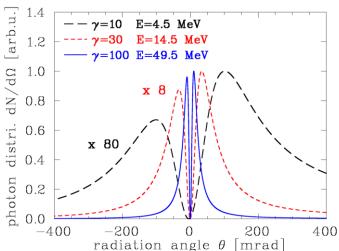
Excurse: Optical Transition Rad. with 45° incidence: Depictive Description Uas

OTR with 45° beam incidence and observation at 90°:

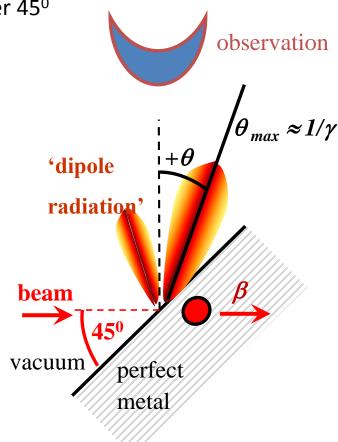
A charge **e** approaches an ideal conducting boundary under 45^o

Image charge is created by electric field

observation


Optical Transition Radiation with 45° incidence: Depictive Description

OTR with 45° beam incidence and observation at 90°:


A charge *e* approaches an ideal conducting boundary under 45^o

$$\frac{d^2W}{d\theta \,d\omega} \approx \frac{2e^2\beta^2}{\pi \,c} \cdot \left(\frac{\sin\theta}{1 - \beta\cos\theta} + \frac{\cos\theta}{1 - \beta\sin\theta}\right)^2$$

- emission pattern depends on velocity
- \triangleright peak at angle $\theta \approx 1/\gamma$
- ightharpoonup emitted energy scales with $oldsymbol{W} \propto oldsymbol{eta}^2$
- > symmetric with respect to θ for $\gamma > 100$

Remark: polarization of emitted light:

- in scattering plane → parallel E-vector
- → perpendicular plane → rectangular E-vector.

Optical Transition Radiation OTR

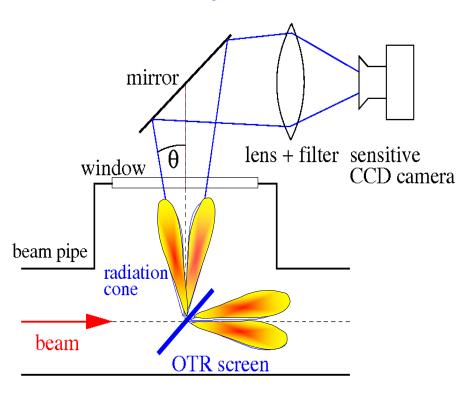
Optical transition radiation is emitted by charged particle passage through a material boundary.

Electrodynamics field configuration changes during the passage:

- → Polarization of the medium
- → emission of energy

Description by

classical electrodynamics & relativity:


$$\frac{d^2W}{d\Omega d\omega} \approx \frac{2e^2\beta^2}{\pi c} \cdot \frac{\theta^2}{\left(\gamma^{-2} + \theta^2\right)^2}$$

W: energy emitted in solid angle arOmega

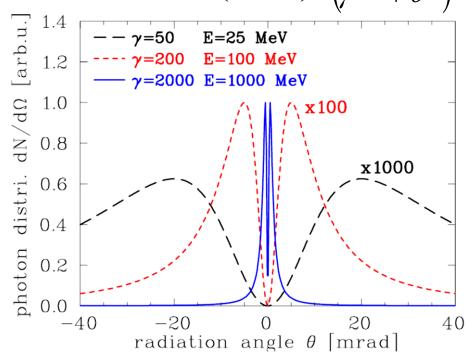
 θ : angle of emission

y: Lorentz factor

 ω : angular frequency intervall E_{ph} = $2\pi h\omega$

- ➤ Insertion of thin Al-foil under 45°
- Observation of low light by CCD.

Optical Transition Radiation: Angular Photon Distribution



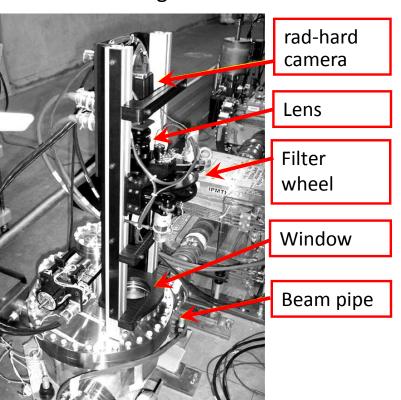
Photon distribution within a solid angle $d\Omega$ and

$$\frac{dN_{photon}}{d\Omega} = N_{beam} \cdot \frac{2e^2\beta^2}{\pi c} \cdot \log\left(\frac{\lambda_{begin}}{\lambda_{end}}\right) \cdot \frac{\theta^2}{\left(\gamma^{-2} + \theta^2\right)^2}$$

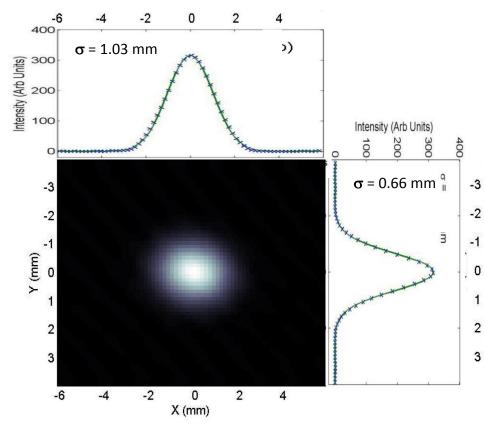
Wavelength interval λ_{begin} to λ_{end}

- ightharpoonup Detection: Optical 400 nm < λ < 800 nm using image intensified CCD
- \triangleright Larger signal for relativistic beam $\gamma >> 1$
- \triangleright Angular focusing for $\gamma >> 1$
- ⇒ well suited for e beams
- \Rightarrow p-beam only for E_{kin} >10 GeV (γ >10)

Remark:


- → **Profile** by focusing to screen
- → **Beam angular distribution** by focusing on infinity due to emission dependence on beam angular distribution.

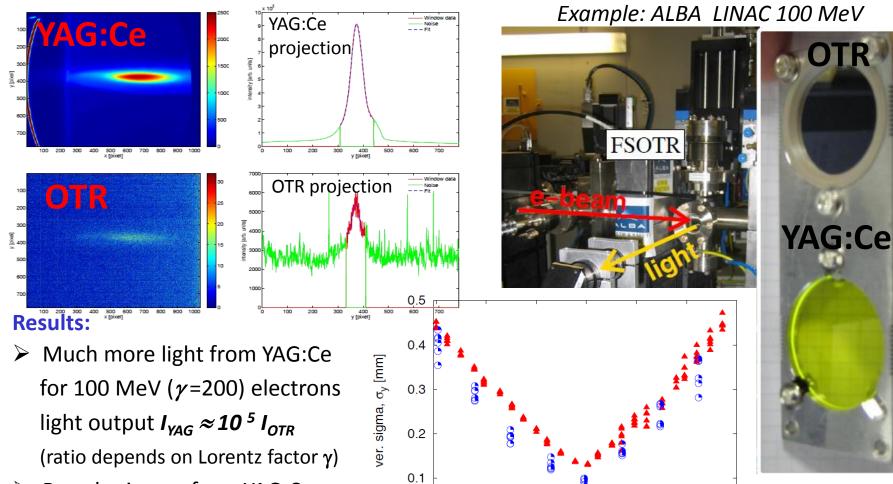
OTR-Monitor: Technical Realization and Results



Example of realization at TERATRON:

Insertion of foil e.g. 5 μ m Kapton coated with 0.1 μ m Al Advantage: thin foil \Rightarrow low heating & straggling 2-dim image visible

Results at FNAL-TEVATRON synchrotron with 150 GeV proton Using fast camera: Turn-by-turn measurement



From V.E. Scarpine (FNAL) et al., BIW'06

Optical Transition Radiation compared to Scintillation Screen

Installation of OTR and scintillation screens on same drive:

Broader image from YAG:Ce due to finite YAG:Ce thickness

Courtesy of U. Iriso et al., DIPAC'09

1.6

1.8

quad current, iq [A]

YAG

2.4

2.6

2.2

Comparison between Scintillation Screens and OTR

OTR: electrodynamic process \rightarrow beam intensity linear to # photons

Scint. Screen: complex atomic process → saturation possible

OTR: thin foil Al or Al on Mylar, down to 0.25 µm thickness

→ minimization of beam scattering (Al is low Z-material)

Scint. Screen: thickness ≈ 1 mm inorganic, fragile material, not radiation hard

OTR: low number of photons \rightarrow expensive image intensified CCD

Scint. Screen: large number of photons \rightarrow simple CCD sufficient

OTR: complex angular photon distribution \rightarrow resolution limited

Scint. Screen: isotropic photon distribution \rightarrow simple interpretation

OTR: large γ needed \rightarrow e⁻-beam with $E_{kin} > 100$ MeV, proton-beam with $E_{kin} > 100$ GeV

Scint. Screen: for all beams

Remark:

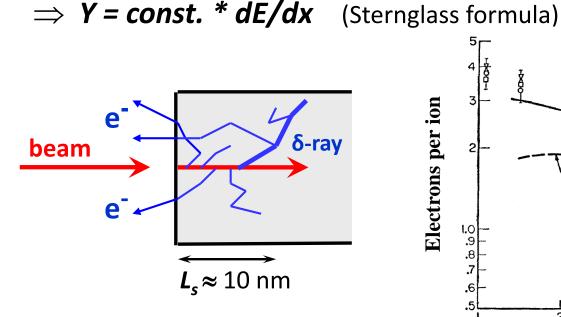
OTR: Reamrk: beam angular distribution measurable → beam emittance

Scint. Screen: no information concerning the beam angular distribution

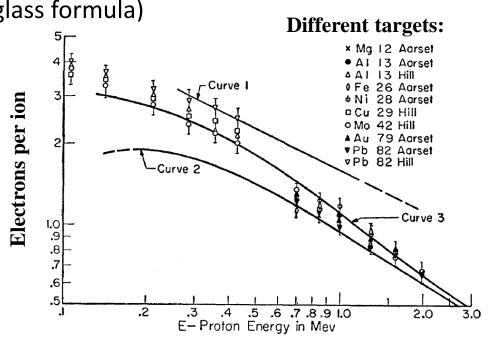
Outline:

- Scintillation screens:emission of light. universal usage, limited dynamic range
- ➤ Optical Transition Radiation: crossing material boundary, for relativistic beams only
- SEM-Grid: emission of electrons, workhorse, limited resolution
- Wire scanner
- > Ionization Profile Monitor and Beam Induced Fluorescence Monitor
- > Synchrotron Light Monitors
- > Summary

Excurse: Secondary Electron Emission by Ion Impact


Energy loss of ions in metals close to a surface:

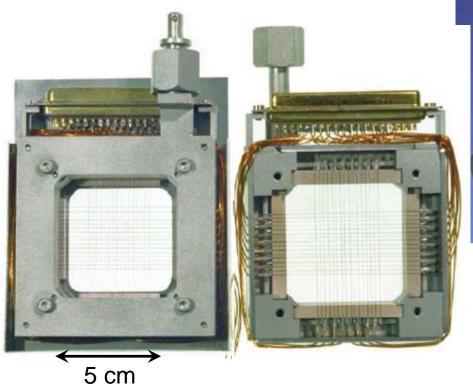
Closed collision with large energy transfer: \rightarrow fast e with $E_{kin} >> 100 \text{ eV}$


Distant collision with low energy transfer \rightarrow slow e⁻ with $E_{kin} \le 10 \text{ eV}$

- \rightarrow 'diffusion' & scattering with other e: scattering length $L_s \approx 1$ 10 nm
- \rightarrow at surface \approx 90 % probability for escape

Secondary **electron yield** and energy distribution comparable for all metals!

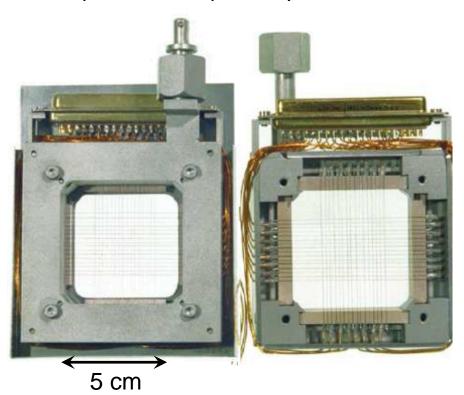
From E.J. Sternglass, Phys. Rev. 108, 1 (1957)


Secondary Electron Emission Grids = SEM-Grid

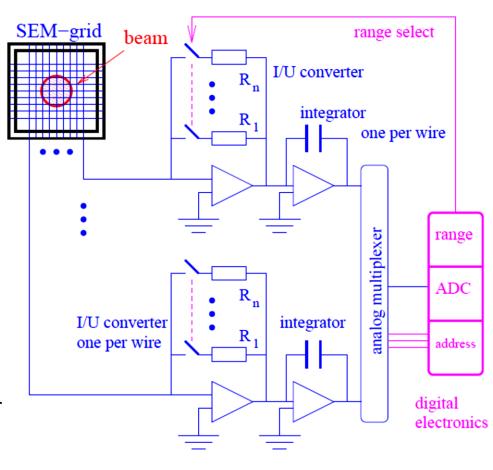
Beam surface interaction: e^- emission \rightarrow measurement of current.

Example: 15 wire spaced by 1.5 mm:

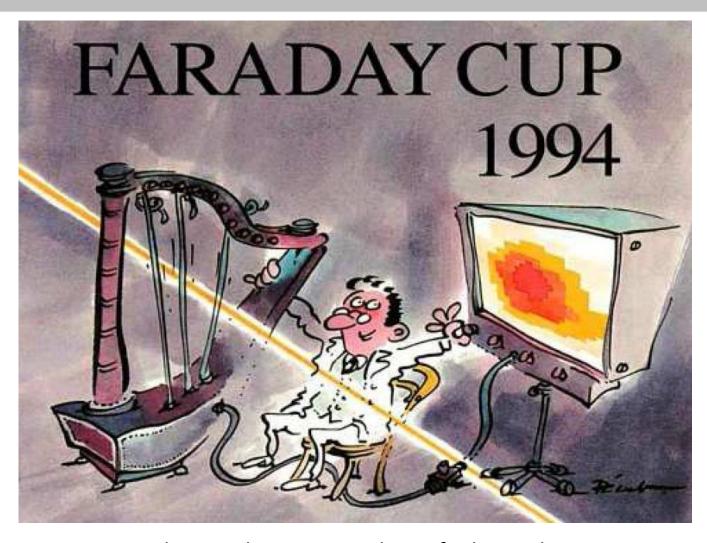
Parameter	Typ. value		
# wires per plane	10100		
Active area	(520 cm) ²		
Wire Ø	25100 μm		
Spacing	0.32 mm		
Material	e.g. W or Carbon		
Max. beam power	1 W/mm		


Secondary Electron Emission Grids = SEM-Grid

Beam surface interaction: e^- emission \rightarrow measurement of current.

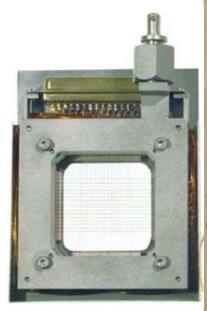

Example: 15 wire spaced by 1.5 mm:

SEM-Grid electroics scheme:

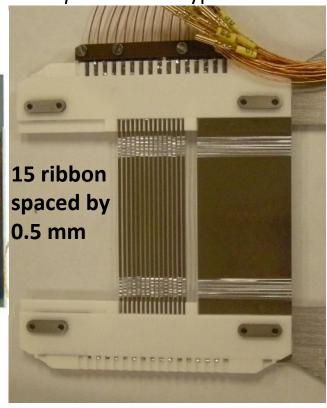

Each wire is equipped with one I/U converter different ranges settings by R_i

 \rightarrow very large dynamic range up to 10⁶.

The Artist's view of a SEM-Grid = Harp


The Faraday Cup is an award granted every second year for beam diagnostics inventions.

Properties of a SEM-Grid



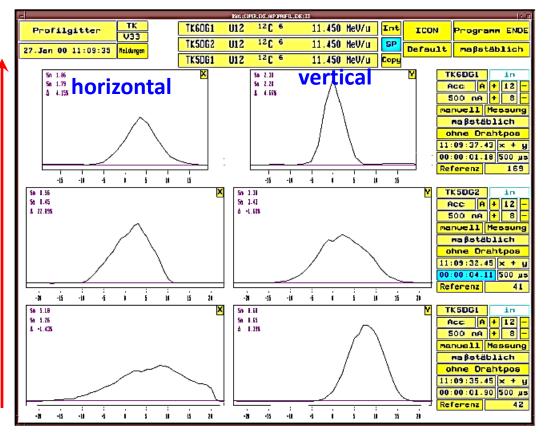
Secondary e- emission from wire or ribbons, 10 to 100 per plane.

Parameter	Typ. value		
# wires per plane	10100		
Active area	(520 cm) ²		
Wire ∅	25100 μm		
Spacing	0.32 mm		
Material	e.g. W or Carbon		
Max. beam power	1 W/mm		
Sensitivity (I/U conv.)	1 nA/V		
Dynamic range	1:10 ⁶		
Integration time	1ms to 1 s		

Example: Ribbon type SEM-Grid

Care has to be taken to prevent over-heating by the energy loss!

Low energy beam: Wires with ratio of spacing/width: $\simeq 1$ mm/0.1mm = $10 \rightarrow$ only 10 % loss. High energy $E_{kin} > 1$ GeV/u: typ. 25 µm thick ribbons & 0.5 mm width \rightarrow negligible energy loss.


Example of Profile Measurement with SEM-Grids



Even for low energies, several SEM-Grid can be used due to the ≈80 % transmission

⇒ frequently used instrument beam optimization: setting of quadrupoles, energy....

Example: C^{6+} beam of 11.4 MeV/u at different locations at GSI-LINAC

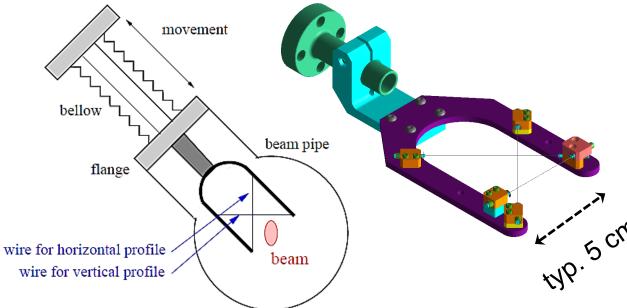
beam-

direction

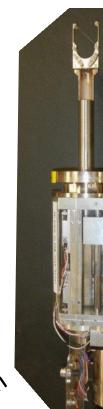
Outline:

- Scintillation screens:emission of light. universal usage, limited dynamic range
- ➤ Optical Transition Radiation: crossing material boundary, for relativistic beams only
- > SEM-Grid: emission of electrons, workhorse, limited resolution
- Wire scanner: emission of electrons, workhorse, scanning method
- Ionization Profile Monitor and Beam Induced Fluorescence Monitor
- > Synchrotron Light Monitors
- > Summary

Slow, linear Wire Scanner

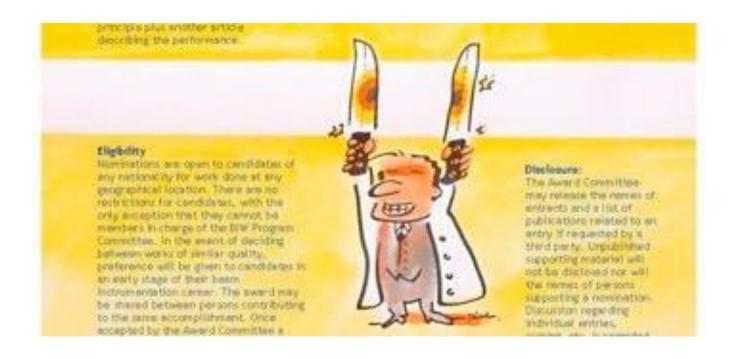

Idea: One wire is scanned through the beam! Slow, linear scanner are used for:

low energy protons


 \triangleright high resolution measurements e.g. at e⁺-e⁻ colliders by de-convolution $\sigma^2_{beam} = \sigma^2_{meas} - d^2_{wire}$

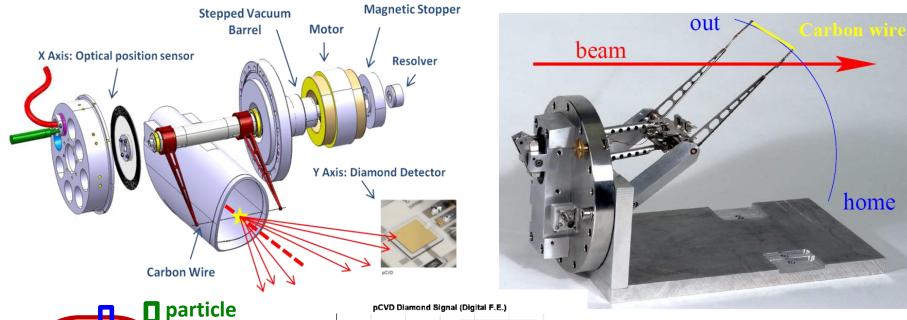
 \Rightarrow resolution down to μm can be reached

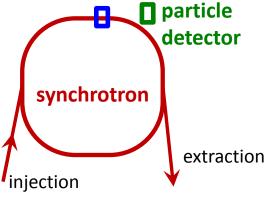
detection of beam halo.

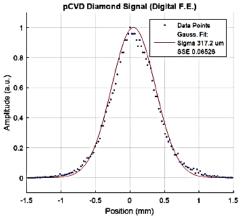


Scanners used as reference method!

The Artist's view of a Beam Scraper or Scanner




Fast, Flying Wire Scanner



In a synchrotron one wire is scanned though the beam as fast as possible.

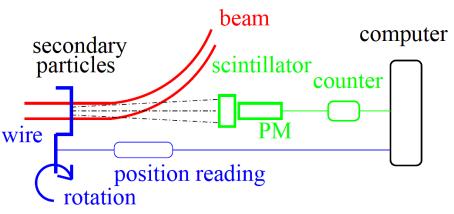
Fast pendulum scanner for synchrotrons; sometimes it is called 'flying wire':

Scanners used as reference method!

From https://twiki.cern.ch/twiki/ bin/viewauth/BWSUpgrade/

Usage of Flying Wire Scanners

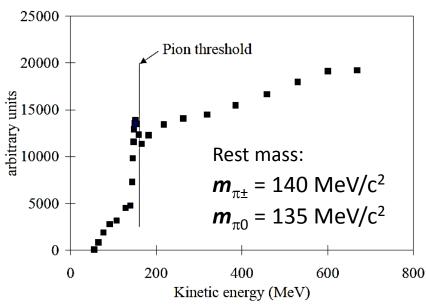
Material: carbon or SiC \rightarrow low Z-material for low energy loss and high temperature.


Thickness: down to 10 μ m \rightarrow high resolution.

Detection: High energy **secondary particles** (like beam loss monitor)

flying wire: only sec. particle detection due to induced current by movement.

Secondary particles:


Proton beam \rightarrow hadrons shower (π , n, p...) **Electron beam** \rightarrow Bremsstrahlung photons.

Kinematics of flying wire:

Velocity during passage typically 10 m/s = 36 km/h and typical beam size \varnothing 10 mm \Rightarrow time for traversing the beam $t \approx 1$ ms **Challenges:** Wire stability for fast movement with high acceleration


Example: Proton impact on scanner at CERN-PS Booster

U. Raich et al., DIPAC 2005

The Artist's View of a Wire Scanner

Comparison between SEM-Grid and slow linear Wire Scanners

Grid: Measurement at a single moment in time

Scanner: Fast variations can not be monitored

→ for pulsed LINACs precise synchronization is needed

Grid: Resolution of a grid is fixed by the wire distance (typically 1 mm)

Scanner: For slow scanners the resolution is about the wire thickness (down to 10 μm)

 \rightarrow used for e-beams having small sizes (down to 10 μ m)

Grid: Needs one electronics channel per wire

→ expensive electronics and data acquisition

Scanner: Needs a precise movable feed-through \rightarrow expensive mechanics.

Grid: Not adequate at synchrotrons for stored beam parameters

Scanner: At high energy synchrotrons: flying wire scanners are nearly non-destructive

Measurement of Beam Profile

The beam width can be changed by focusing via quadruples.

Transverse matching between ascending accelerators is done by focusing.

→ Profiles have to be controlled at many locations.

Synchrotrons: Lattice functions β (s) and D(s) are fixed \Rightarrow width σ and emittance ε are:

$$\sigma_x^2(s) = \varepsilon_x \beta_x(s) + \left(D(s) \frac{\Delta p}{p}\right)^2$$
 and $\sigma_y^2(s) = \varepsilon_y \beta_y(s)$ (no vertical bend)

LINACs: Lattice functions are 'smoothly' defined due to variable input emittance.

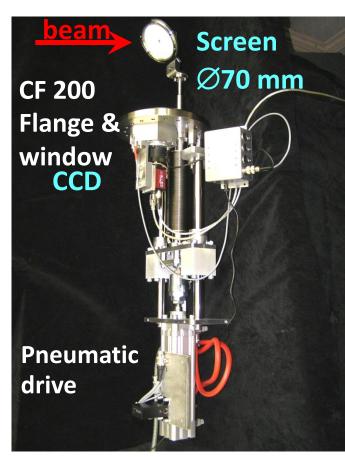
Typical beam sizes:

e-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm

A great variety of devices are used:

- Optical techniques: Scintillating screens (all beams), synchrotron light monitors (e-), optical transition radiation (e-), residual gas fluorescence monitors (protons), ionization profile monitors (protons).
- > Electronics techniques: Secondary electron emission (SEM) grids, wire scanners (all)

Material Properties for Scintillating Screens


Some materials and their basic properties:

Name	Туре	Material	Activ.	Мах. λ	Decay
Chromox	Cera- mics	Al ₂ O ₃	Cr	700nm	≈ 10ms
Alumina		Al ₂ O ₃	Non	380nm	≈ 10ns
YAG:Ce	Crystal	$Y_3AI_5O_{12}$	Ce	550nm	200ns
LYSO		Lu _{1.8} Y _{.2} SiO ₅	Ce	420nm	40ns
P43	Powder of gains Ø≈10µm on glass	Gd ₂ O ₃ S	Tb	545nm	1ms
P46		$Y_3AI_5O_{12}$	Ce	530nm	300ns
P47		Y ₃ Si ₅ O ₁₂	Ce&Tb	400nm	100ns

Properties of a good scintillator:

- > Large light output at optical wavelength
 - → standard CCD camera can be used
- \triangleright Large dynamic range \rightarrow usable for different ions
- \triangleright Short decay time \rightarrow observation of variations
- ➤ Radiation hardness → long lifetime
- \triangleright Good mechanical properties \rightarrow typ. size up to \emptyset 10 cm (Phosphor Pxx grains of $\emptyset \approx 10 \ \mu m$ on glass or metal).

Standard drive with P43 screen

Optical Transition Radiation OTR

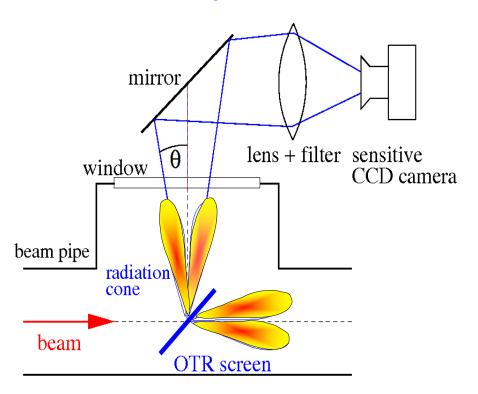
Optical transition radiation is emitted by charged particle passage through a material boundary.

Electrodynamics field configuration changes during the passage:

- → Polarization of the medium
- → emission of energy

Description by

classical electrodynamics & relativity:


$$\frac{d^2W}{d\Omega d\omega} \approx \frac{2e^2\beta^2}{\pi c} \cdot \frac{\theta^2}{\left(\gamma^{-2} + \theta^2\right)^2}$$

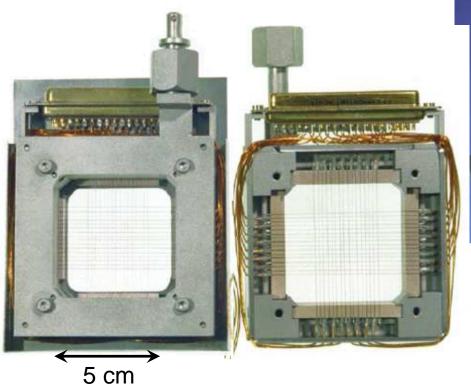
W: energy emitted in solid angle Ω

 θ : angle of emission

y: Lorentz factor

 ω : angular frequency intervall E_{ph} = $2\pi h\omega$

- ➤ Insertion of thin Al-foil under 45°
- Observation of low light by CCD.


Secondary Electron Emission Grids = SEM-Grid

Beam surface interaction: e^- emission \rightarrow measurement of current.

Example: 15 wire spaced by 1.5 mm:

Parameter	Typ. value
# wires per plane	10100
Active area	(520 cm) ²
Wire ∅	25100 μm
Spacing	0.32 mm
Material	e.g. W or Carbon
Max. beam power	1 W/mm

Slow, linear Wire Scanner

Idea: One wire is scanned through the beam! Slow, linear scanner are used for:

> low energy protons

► high resolution measurements e.g. at e^+ - e^- colliders by de-convolution $\sigma^2_{beam} = \sigma^2_{meas} - d^2_{wire}$

 \Rightarrow resolution down to μm can be reached

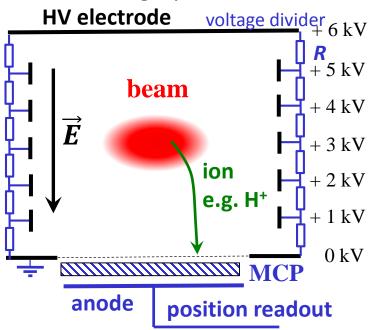
> detection of beam halo.

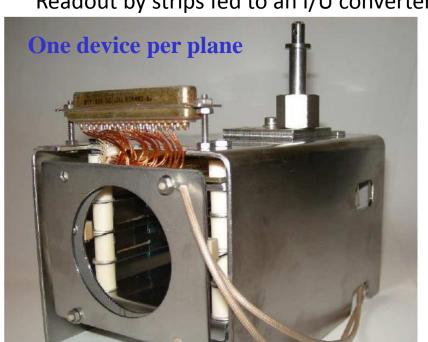
Scanners used as reference method!

Outline:

- Scintillation screens:emission of light. universal usage, limited dynamic range
- ➤ Optical Transition Radiation: crossing material boundary, for relativistic beams only
- > SEM-Grid: emission of electrons, workhorse, limited resolution
- Wire scanner: emission of electrons, workhorse, scanning method
- ➤ Ionization Profile Monitor and Beam Induced Fluorescence Monitor: secondary particle detection from interaction beam-residual gas
- > Synchrotron Light Monitors
- > Summary

Realization of Ionization Profile Monitor at GSI LINAC




Non-destructive device for proton synchrotron:

beam ionizes the residual gas by electronic stopping Vacuum p $\simeq 10^{-7}$ mbar, I $\simeq 1$ mA Readout by strips fed to an I/U converter.

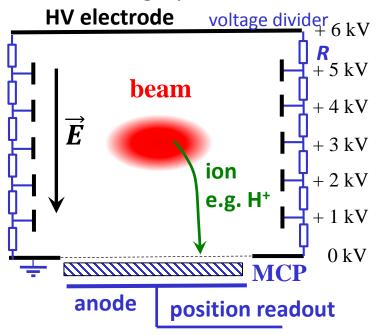
> gas ions or e⁻ accelerated by E -field ≈1 kV/cm

> spatial resolved single particle detection

IPM for the use at the GSI LINAC:

Typical vacuum pressure:

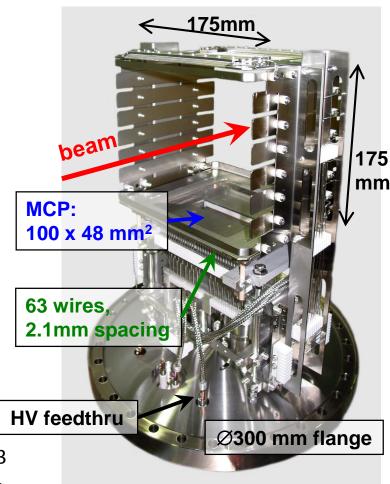
Transfer line: $N_2 \ 10^{-8} ... \ 10^{-6} \ mbar \cong \ 3 \cdot 10^8 ... \ 3 \cdot 10^{10} cm^{-3}$


Synchrotron: $H_2^{-10^{-11}}...10^{-9}$ mbar $\cong 3.10^{5}...3.10^{7}$ cm⁻³

Ionization Profile Monitor at GSI Synchrotron

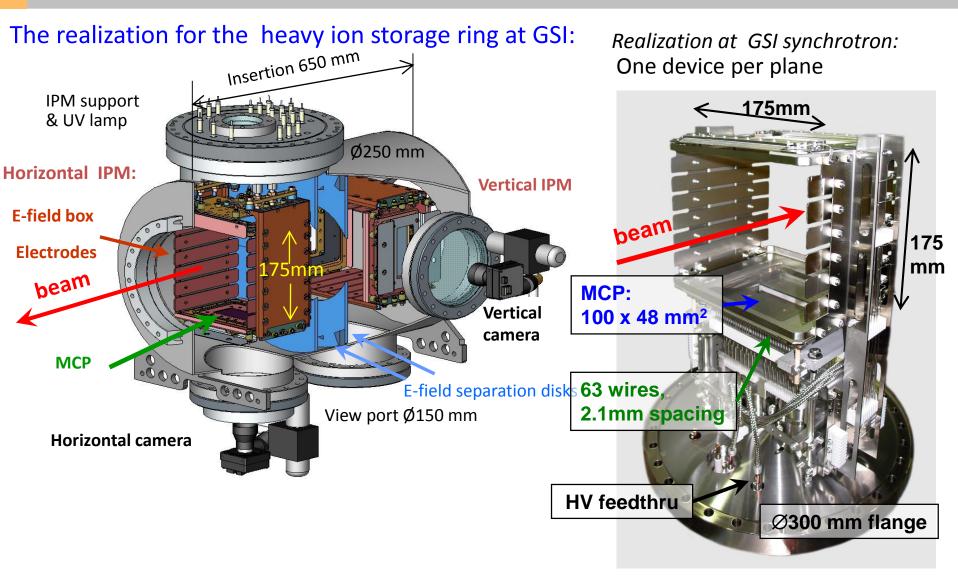
Non-destructive device for proton synchrotron:

- beam ionizes the residual gas by electronic stopping
- > gas ions or e⁻ accelerated by E -field ≈1 kV/cm
- > spatial resolved single particle detection



Typical vacuum pressure:

Transfer line: $N_2 10^{-8} ... 10^{-6} \text{ mbar} \cong 3.10^8 ... 3.10^{10} \text{ cm}^{-3}$


Synchrotron: $H_2^- 10^{-11} ... 10^{-9}$ mbar $\approx 3.10^5 ... 3.10^7$ cm⁻³

Realization at GSI synchrotron: One device per plane

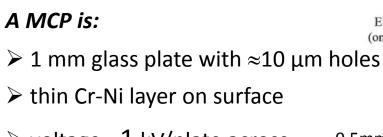
Ionization Profile Monitor Realization

43

Ionization Profile Monitor Realization

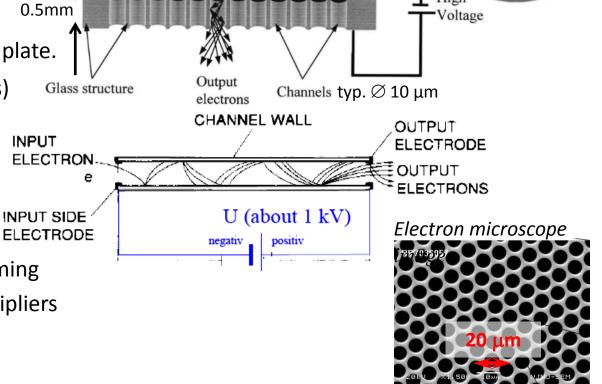
The realization for the heavy ion storage ring at GSI:

Insertion 650 mm **IPM** support & UV lamp Ø250 mm **Horizontal IPM: Vertical IPM** E-field box **Electrodes** beam **MCP** E-field sepa View port Ø150 mm Horizontal camera


Realization at GSI synchrotron: One device per plane

Excurse: Multi Channel Plate MCP

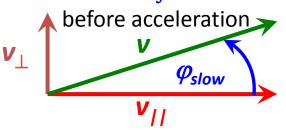
MCP are used as particle detectors with secondary electron amplification.

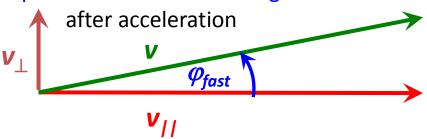

Electroding (on each face)

- \triangleright voltage ≈ 1 kV/plate across
- \rightarrow e⁻ amplification of $\approx 10^3$ per plate.
- \rightarrow resolution \approx 0.1 mm (2 MCPs)

Anode technologies:

- ➤ SEM-grid, ≈ 0.5 mm spacing
 - → fast electronics readout
- > phosphor screen + CCD
 - → high resolution, but slow timing
 - → fast readout by photo-multipliers
- > single particle detection
 - \rightarrow for low beam current.

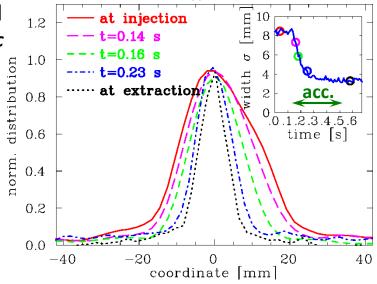

Input electron (or radiation)


High

Application: 'Adiabatic' Damping during Acceleration

The emittance $\varepsilon = \int dx dx'$ is defined via the position deviation and angle in **lab-frame**

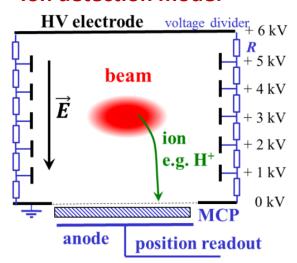
After acceleration the longitudinal velocity is increased \Rightarrow angle φ is smaller The angle is expressed in momenta: $\mathbf{x'} = \mathbf{p_{\perp}} / \mathbf{p_{||}}$ the emittance is for $\langle \mathbf{xx'} \rangle = \mathbf{0}$: $\varepsilon = \mathbf{x} \cdot \mathbf{x'} = \mathbf{x} \cdot \mathbf{p_{\perp}} / \mathbf{p_{||}} = \mathbf{const.}$

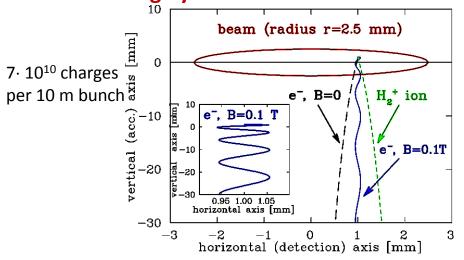

- \Rightarrow under ideal conditions the emittance can be normalized to the momentum ${m p}_{II} = {m \gamma} \cdot {m m} \cdot {m \beta} \, {m c}$
- \Rightarrow normalized emittance $\varepsilon_{norm} = \beta \gamma \cdot \varepsilon$ is preserved with the Lorentz factor $\gamma = (1-\beta^2)^{-1/2}$ and velocity $\beta = v/c$

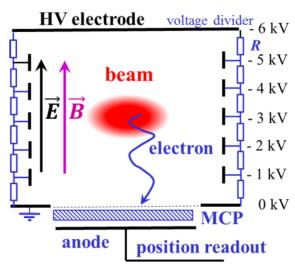
Example: Acceleration in GSI-synchrotron for C⁶⁺ from $6.7 \rightarrow 600$ MeV/u ($\beta = 12 \rightarrow 79\%$) observed by IPM

theoretical width:
$$\langle x \rangle_f = \sqrt{\frac{\beta_i \cdot \gamma_i}{\beta_f \cdot \gamma_f}} \cdot \langle x \rangle_i = 0.33 \cdot \langle x \rangle_i$$

measured width: $\langle x \rangle_f \approx 0.37 \cdot \langle x \rangle_i$


Non-intercepting ionization profile monitor is well suited for long time observations without beam disturbance → mainly used at proton synchrotrons.

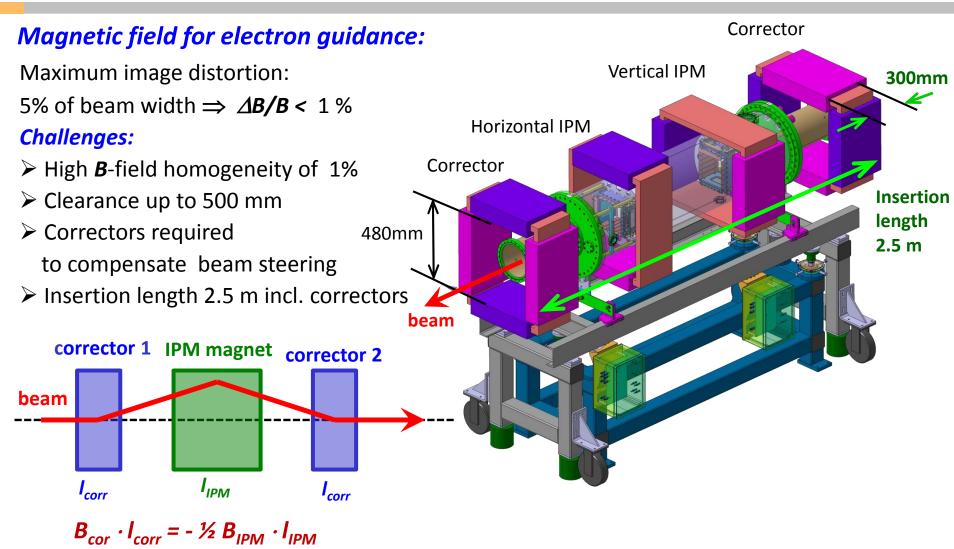

Electron Detection and Guidance by Magnetic Field


Ion detection mode:

⇒ broadening by beam's electric field

Electron detection mode:

e $^-$ detection in an external magnetic field ightarrow cyclotron radius $r_C=\frac{mv_\perp}{eB}$ for $E_{kin,\perp}=10$ eV & B=0.1 T \Rightarrow $r_c\approx 100$ μ m E_{kin} from atomic physics, $\approx \! 100$ μ m resolution of MCP


Time-of-flight: \approx 1 - 2 ns \Rightarrow 2 - 3 cycles.

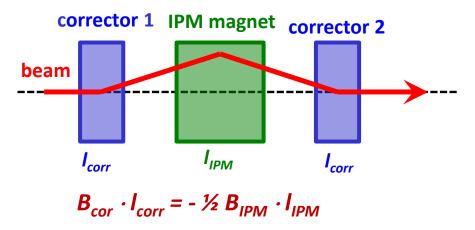
B-field: Dipole with large aperture

→ IPM is expensive & large device!

IPM: Magnet Design

Remark: For MCP wire-array readoutlower clearance required

IPM: Magnet Design


Magnetic field for electron guidance:

Maximum image distortion:

5% of beam width $\Rightarrow \Delta B/B < 1\%$

Challenges:

- ➤ High **B**-field homogeneity of 1%
- ➤ Clearance up to 500 mm
- Correctors required to compensate beam steering
- ➤ Insertion length 2.5 m incl. correctors

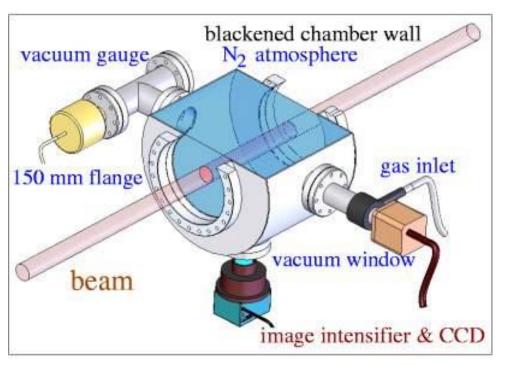
Magnet: B = 250 mT, Gap 220 mm **IPM:** Profile 32 strips, 2.5 mm width

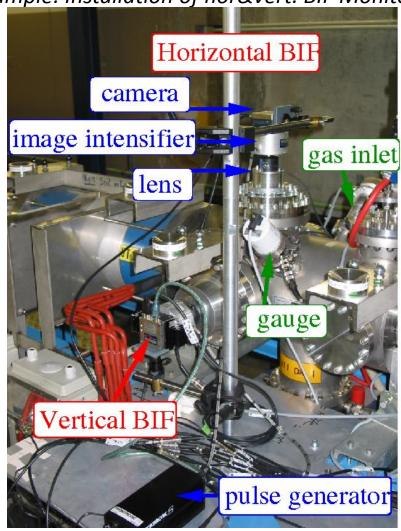
Remark for electron beams:

Resolution of 50 μm is insufficient, but sometimes used for photon beams

Remark: For MCP wire-array readout lower clearance required

Beam Induced Fluorescence for intense Profiles

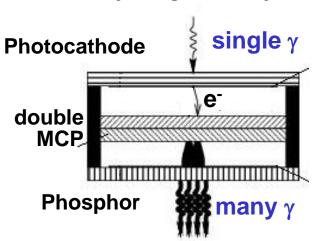

Large beam power \rightarrow Non-intercepting method: Example: Installation of hor&vert. BIF Monitor:

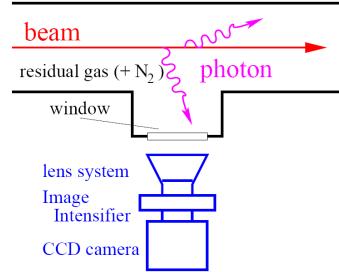

⇒ Beam Induced Fluorescence BIF

 $N_2 + Ion \rightarrow (N_2^+)^* + Ion \rightarrow N_2^+ + \gamma + Ion$ With single photon detection scheme

390 nm < λ < 470 nm

 \Rightarrow non-destructive, compact installation.

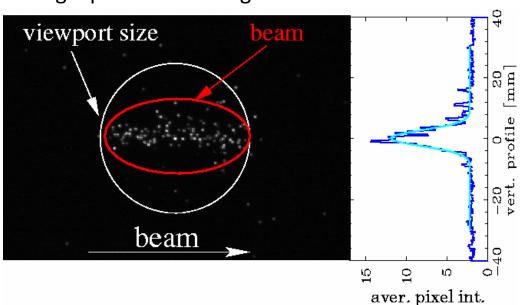


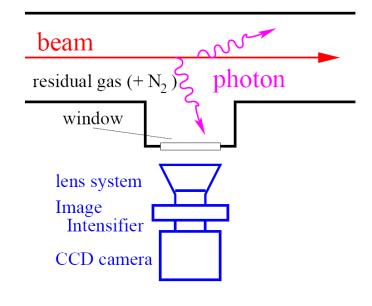

Beam Induced Fluorescence Monitor BIF: Image Intensifier

Scheme of Image intensifier:

Image intensifier:

- ▶ Photo cathode → creation of photo-e⁻
- ➤ Accelerated toward MCP for amplification
- ➤ Detection of ampl. e⁻ by phosphor screen
- > Image recorded by CCD
- ⇒ Low light amplification (commercially used for night vision devices)


A BIF monitor consists of only:


- > optics outside beam pipe
- > image intensifier + camera
- gas-inlet for pressure increase
- ⇒ nearly no installation inside vacuum. only LEDs for calibration
- \Rightarrow cheaper than IPM, but lower signal.

Beam Induced Fluorescence Monitor BIF: Image Intensifier

'Single photon counting':

Example at GSI-LINAC:

4.7 MeV/u Ar $^{10+}$ beam I=2.5 mA equals to 10^{11} particle **One single** macro pulse of 200 μ s Vacuum pressure: p= 10^{-5} mbar (N₂)

A BIF monitor consists of only:

- > optics outside beam pipe
- image intensifier + camera
- gas-inlet for pressure increase
- ⇒ nearly no installation inside vacuum. only LEDs for calibration
- \Rightarrow cheaper than IPM, but lower signal.

Comparison between IPM and BIF

Non-destructive methods preferred:

Beam is not influenced and diagnostics device is not destroyed!

IPM: Beam ionizes the residual gas

 \rightarrow measurement of all ionization products, $\Omega = 4\pi$ -geometry due to E-field

BIF: Beam ionizes and excites the residual gas

 \rightarrow measurement of photons emitted toward camera, solid angle $\Omega \approx 10^{-4}$

IPM: Higher efficiency than BIF

BIF: Low detection efficiency, only $\approx 10^{-4}$ of IPM

⇒ longer observation time or higher pressure required

IPM: Complex installation inside vacuum

BIF: Nearly no installation inside vacuum

IPM: More expensive, for some beam parameters even guiding magnetic field required

BIF: More sensitive to external parameters like radiation stray light

Outline:

- Scintillation screens:emission of light. universal usage, limited dynamic range
- ➤ Optical Transition Radiation: crossing material boundary, for relativistic beams only
- > SEM-Grid: emission of electrons, workhorse, limited resolution
- > Wire scanner: emission of electrons, workhorse, scanning method
- ➤ Ionization Profile Monitor and Beam Induced Fluorescence Monitor: secondary particle detection from interaction beam-residual gas
- Synchrotron Light Monitors photon detection of emitted synchrotron light in optical and x-ray range
- Summary

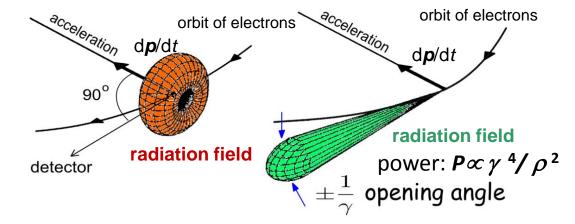
Synchrotron Light Monitor

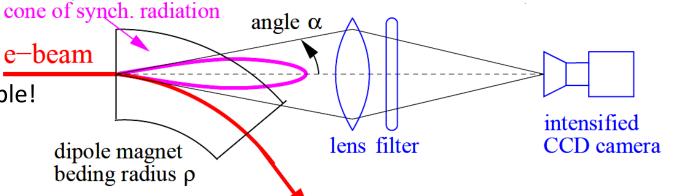
An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light.

This light is emitted into a cone of opening $2/\gamma$ in lab-frame.

⇒Well suited for rel. e⁻

For protons:

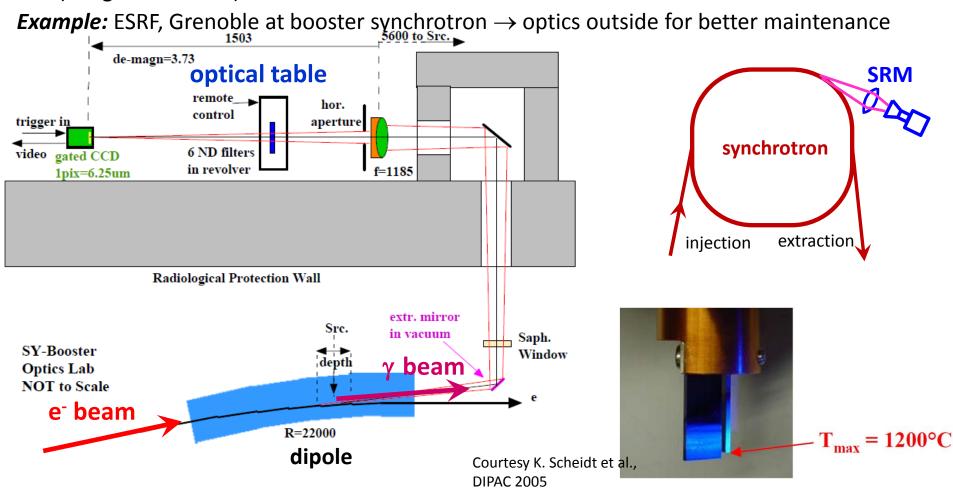

Only for energies $E_{kin} > 100 \text{ GeV}$


The light is focused to a intensified CCD.

Advantage:

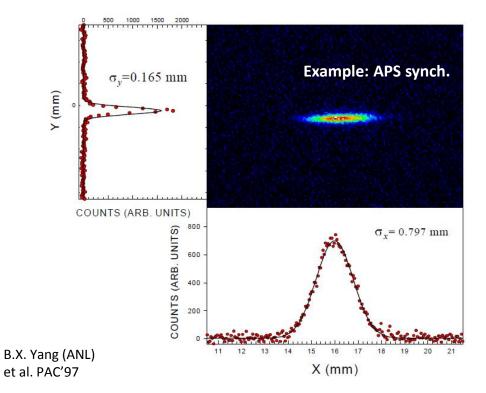
Signal anyhow available!

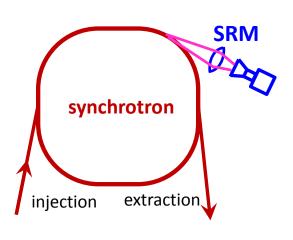
Rest frame of electron: Laboratory frame:



Realization of a Synchrotron Light Monitor

Extracting out of the beam's plane by a mirror (sometimes cooled)


- → Focus to a slit + wavelength filter for optical wavelength
- → (Image intensified) CCD camera



Result from a Synchrotron Light Monitor

Example: Synchrotron radiation facility APS accumulator ring and blue wavelength:

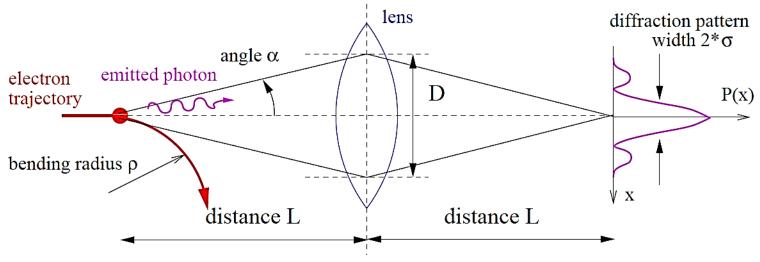
Advantage: Direct measurement of 2-dim distribution, only mirror installed in the vacuum pipe

Realization: Optics outside of vacuum pipe

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.

The Artist's View of a Synchrotron Light Monitor

Diffraction Limit for a Synchrotron Light Monitor



Use of optical wavelength and CCD: λ above critical λ_{crit} (spectrum fall-off).

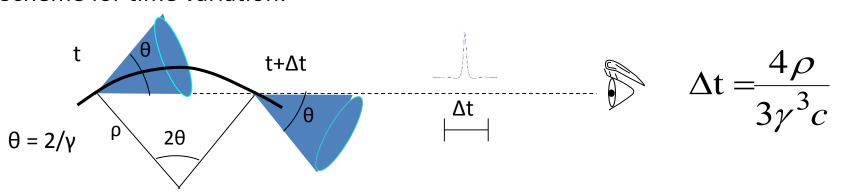
Example 1:1 image: Cone of emission for horizontally polarized light: $\alpha = 0.41 (\lambda/\rho)^{1/3}$

General Fraunhofer diffraction limit (given by emission cone): $\sigma = \frac{\lambda}{2D/L}$

Opening angle of optics: $D = 2\alpha \cdot L$ Diffraction pattern with $\Rightarrow \sigma \cong 0.6 \cdot (\lambda^2 / \rho)^{1/3}$

A good resolution for:

- > large dipole bending radius ρ, **but** fixed by the accelerator
- \triangleright short wavelength, **but** good optics only for $\lambda > 300$ nm


Resolution Limits for Synchrotron Radiation Monitor

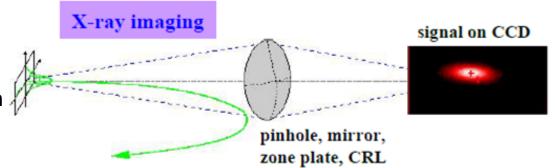
The resolution is limited by:

- Fraunhofer diffraction due to finite emission cone and finite size of optics
- Depth of field
- \triangleright Spectral width of observed light \rightarrow usage of interference filters
- \succ Time variation of light due to finite observation angle \rightarrow usage of aperture
- ➤ Light intensity and related noise → usage of sensitive CCD camera
- \Rightarrow typical value for resolution $\sigma \approx 100 \ \mu m$
- → which is comparable to the electron beam size of **modern** 3rd gen. light source

Scheme for time variation:

Courtesy of G. Kube DESY

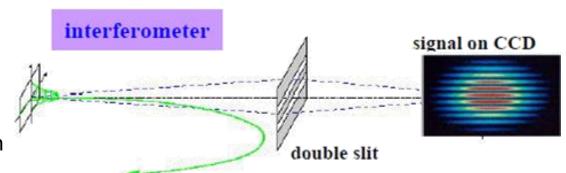
Synchrotron Light Monitor overcoming Diffraction Limit



The diffraction limit is $\Rightarrow \sigma \cong 0.6 \cdot \left(\lambda^2 / \rho\right)^{1/3} \approx 100 \ \mu \text{m}$ for typical case Possible improvements:

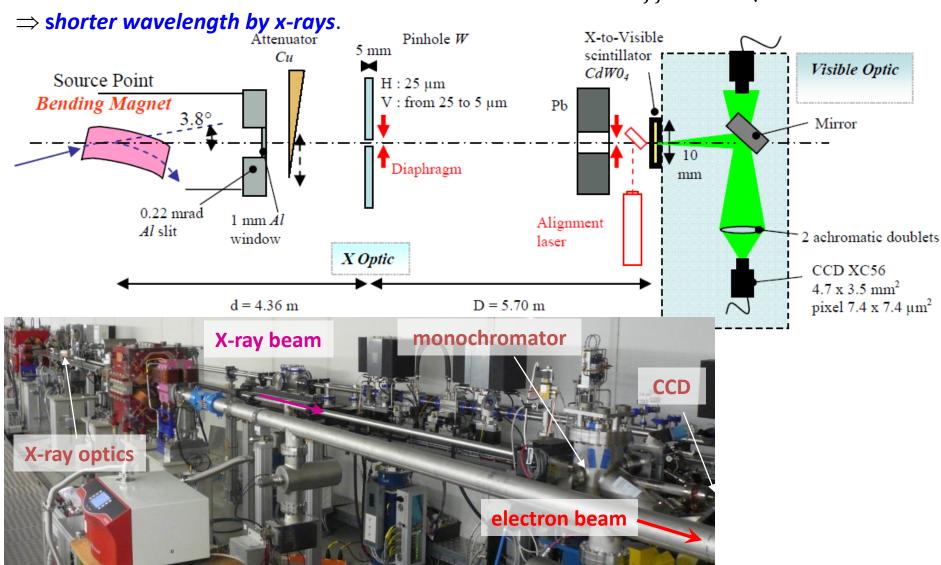
> Shorter wavelength:

Using x-rays & aperture of Ø 1mm


- → 'x-ray pin hole camera'
- \Rightarrow achievable resolution $\sigma \approx 10 \ \mu \text{m}$

> Interference technique:

At optical wavelength using a double slit


- → interference fringes
- \Rightarrow achievable resolution $\sigma \approx 1 \, \mu \text{m}$

X-ray Pin-Hole Camera: Installation

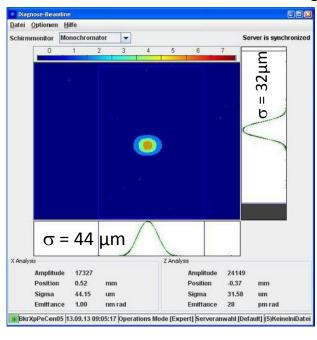
The diffraction limit is Fraunhofer Diff. with resolution $\sigma_{diff} \approx 0.6 \sqrt[3]{\lambda^2/\varrho}$

X-ray pin-hole Camera: X-ray Detector

From K. Wittenburg, DESY

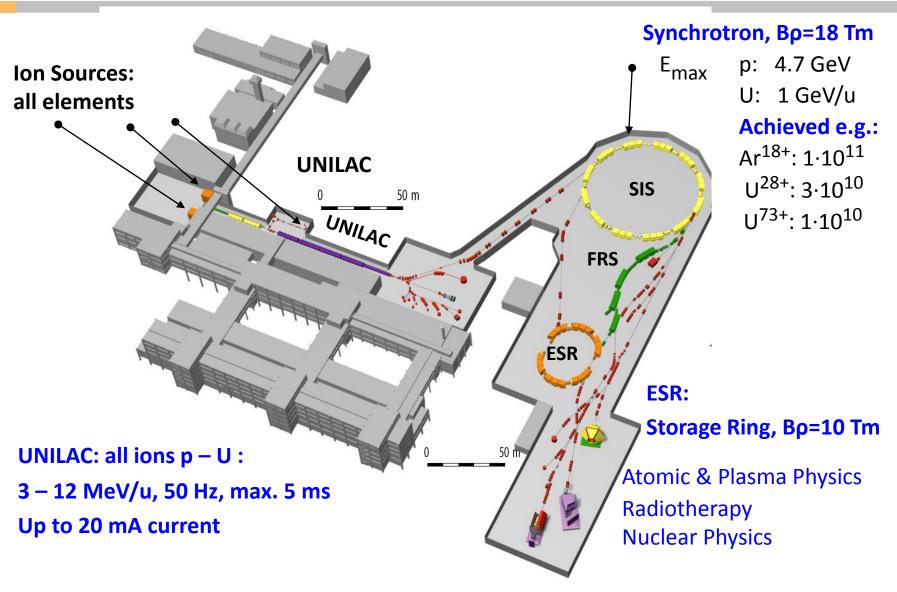
Typical result using X-ray pinhole camera:

⇒ resolution sufficient for modern, 'ultra-low emittance' light sources


Goal of 'ultra-low emttiance' storage rings:

Photons are emitted from beam of σ_{beam} < 10 μ m

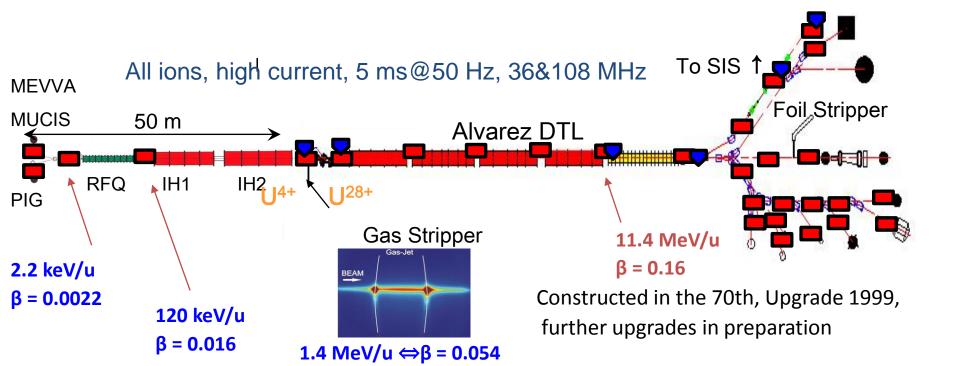
- ⇒ high brightness of photon beam
- ⇒ better focusing and poiting stability


Typical resolution for three methods:

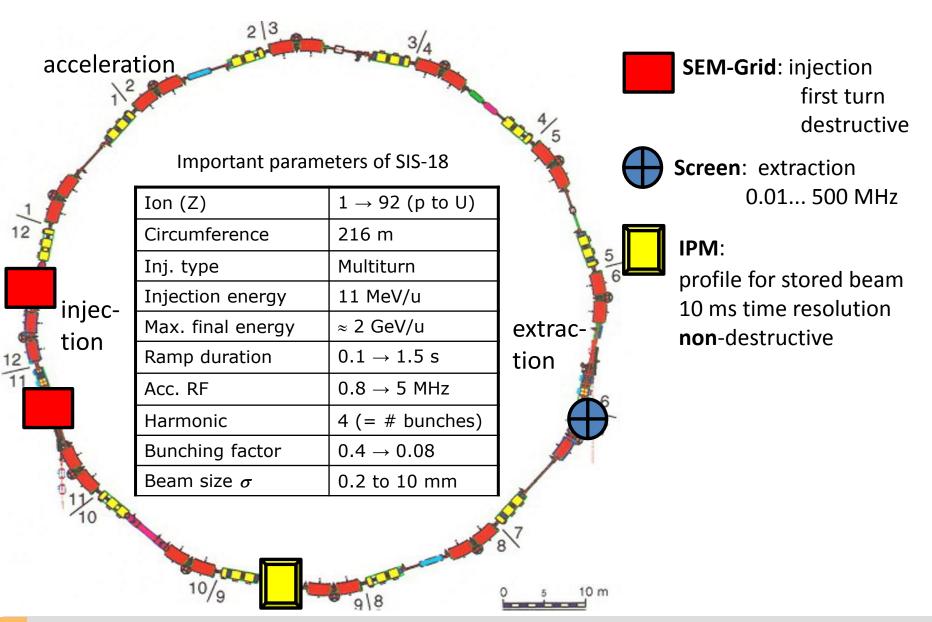
- \triangleright direct optical observation: $\sigma \approx 100 \, \mu m$
 - → relative simple installation, but resolution insufficient for modern synchr. light sources
- \triangleright interference optical observation $\sigma \approx 1 \, \mu m$
 - → complex installation, seldom installed
- ightharpoonup direct X-ray observation : $\sigma \approx 10 \, \mu m$ (installed at most Synchr..light sources)
 - → medium complex but expensive installation, installed at most synchr. light sources

Appendix: The Accelerator Facility at GSI

Appendix: GSI Heavy Ion LINAC: Profile Measurement

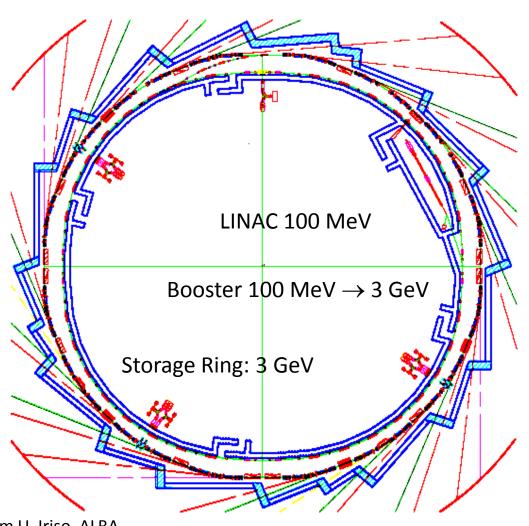

SEM-Grid: Intersecting, high dynamic range, total 81 device

Beam Induced Fluorescence: Non-destructive, for high current operation


Transfer to
total 6 device

Synchrotron

Appendix: GSI Heavy Ion Synchrotron: Profile Measurement



Appendix: The Spanish Synchrotron Light Facility ALBA: Overview

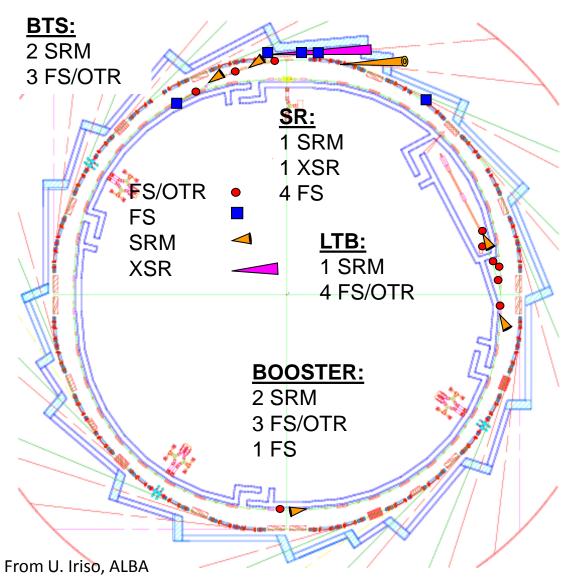
3rd generation Spanish national synchrotron light facility in Barcelona

Layout:

Beam lines: up to 30

Electron energy: 3 GeV

Top-up injection


Storage ring length: 268 m

Max. beam current: 0.4 A

Commissioning in 2011

Appendix: The Synchrotron Light Facility ALBA: Profile Measurement ivas

Transverse profile:

Many location in transport line
Single location in ring
Quite different
devices used

Abbreviation:

FS: Fluorescence Screen

OTR: Optical Trans. Radi. Screen

both destructive

SRM: Synchr. Radiation Monitor

XSR: X-ray pin hole camera

both non-destructive

Summary for Beam Profile

Different techniques are suited for different beam parameters:

e-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 3 to 30 mm

Intercepting ↔ non-intercepting methods

Direct observation of electrodynamics processes:

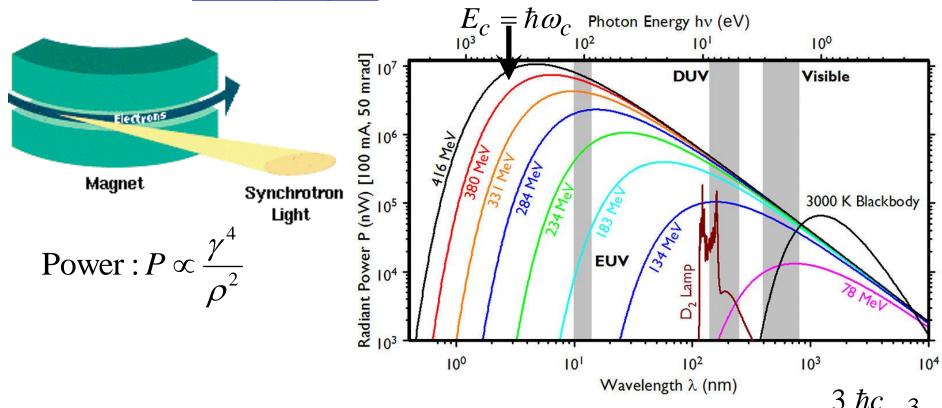
- > Optical synchrotron radiation monitor: non-destructive, for e⁻-beams, complex, limited res.
- X-ray synchrotron radiation monitor: non-destructive, for e⁻-beams, very complex
- > OTR screen: nearly non-destructive, large relativistic γ needed, e⁻-beams mainly

Detection of secondary photons, electrons or ions:

- > Scintillation screen: destructive, large signal, simple, all beams
- > Ionization profile monitor: non-destructive, expensive, limited resolution, for protons
- Residual fluorescence monitor: non-destructive, limited signal strength, for protons

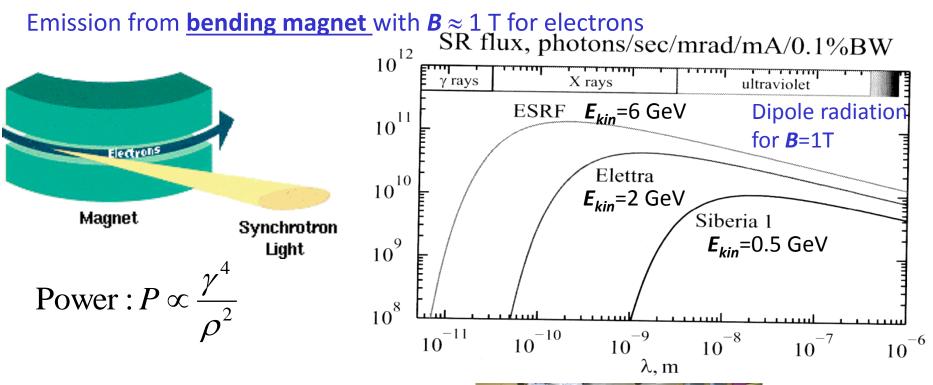
Wire based electronic methods:

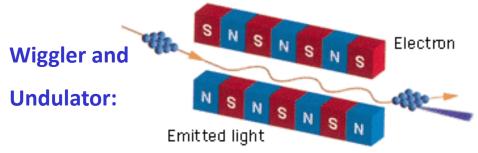
- > SEM-grid: partly destructive, large signal and dynamic range, limited resolution
- > Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.



Backup slides

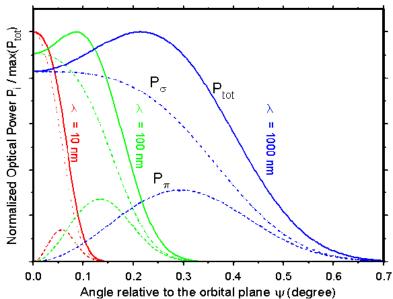
Excurse: Spectrum for Synchrotron Radiation

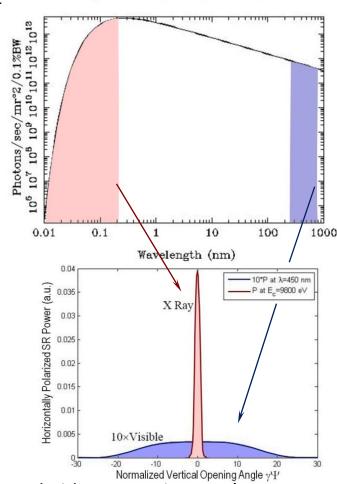

Emission from **bending magnet** with $B \approx 1$ T for electrons




Definition: critical photon energy dividing spectrum in two halves
$$E_c = \hbar \omega_c = \frac{3}{2} \frac{\hbar c}{\rho} \gamma^3$$
Scaling: $\frac{dW}{d\omega} \approx \frac{e^2}{4\pi\epsilon_0 c} \left(\frac{\omega \rho}{c}\right)^{1/3}$ for $\omega << \omega_c$ and $\frac{dW}{d\omega} \approx \sqrt{\frac{3\pi}{2}} \frac{e^2}{4\pi\epsilon_0 c} \gamma \left(\frac{\omega}{\omega_c}\right)^{1/2} e^{-\omega/\omega_c}$ for $\omega >> \omega_c$

Excurse: Spectrum for Synchrotron Radiation




Excurse: Properties of Synchrotron Radiation from Dipole

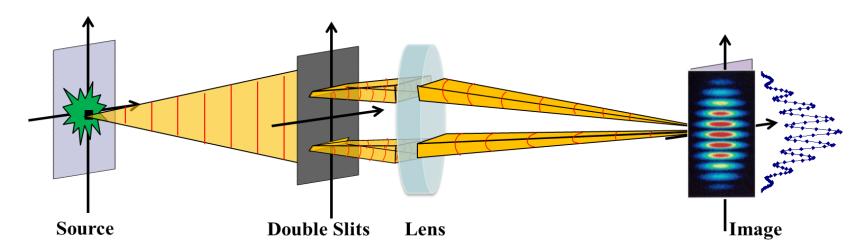
- > SR is "freely available" at light sources and always non-invasive
- SR covers visible to hard x-rays
- ➤ SR is classical process ⇒ properties & transport computable
- > SR is strongly collimated in the vertical plane
 - → but usable opening angle depends on wavelength
- SR main power (heat load) at small opening angle
 - → (hard) x-ray optical elements require water cooling
- SR is emitted with p and s polarization

Courtesy of V. Schlott PSI

Angle=0.mrad, 2.4GeV, 400.mA, 1.4T

* hard x-ray (@ I_c) opening angle: DY ~ 1/g

opening angle in visible:
$$\Delta\Psi \approx \frac{1}{\gamma} \left(\frac{\omega_c}{\omega}\right)^{\frac{1}{3}}$$


Synchrotron Light Monitor overcoming Diffraction Limit

The diffraction limit is $\Rightarrow \sigma \cong 0.6 \cdot (\lambda^2 / \rho)^{1/3}$

Possible improvements:

- > Shorter wavelength: Using x-rays and an aperture of Ø 1mm
 - → 'x-ray pin hole camera'
- > Interference technique: At optical wavelength using a double slit
 - \rightarrow interference fringes with resolution down to μm range.

