Outline:

- Time and frequency domain treatment & Fourier Transformation
- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies
- Capacitive shoe-box BPM for low frequencies
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions

> Summary

A Beam Position Monitor is an non-destructive device for bunched beams

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored The abbreviation BPM and pick-up PU are synonyms

1. It delivers information about the transverse center of the beam

- > Trajectory: Position of an individual bunch within a transfer line or synchrotron
- Closed orbit: Central orbit averaged over a period much longer than a betatron oscillation
- Single bunch position: Determination of parameters like tune, chromaticity, **B**-function
- > Bunch position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
- > Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- > Feedback: fast bunch-by-bunch damping *or* precise (and slow) closed orbit correction
- 2. Information on longitudinal bunch behavior (see next chapter)
- Bunch shape and evolution during storage and acceleration
- For proton LINACs: the beam **velocity** can be determined by two BPMs
- For electron LINACs: **Phase** measurement by Bunch Arrival Monitor
- **Relative** low current measurement down to 10 nA.

Excurse: Time Domain ↔ Frequency Domain

Time domain: Recording of a voltage as a function of time:

Care: Fourier Transformation of time domain data contains amplitude <u>and</u> phase

Fourier Transform.:
$$\tilde{f}(\omega) \equiv \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$
 Inv. F. T.: $tech. IDFT(f)$ $f(t) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(\omega)e^{i\omega t} d\omega$
 \Rightarrow a process can be described either with $f(t)$ time domain' or $\tilde{f}(\omega)$ 'frequency domain'
We assume $t, \omega, f(t) \in \mathbb{R}$ but $\tilde{f}(\omega) \in \mathbb{C}$; note: integral from $-\infty$ to ∞
FT: $\tilde{f}(\omega) \in \mathbb{C} \rightarrow$ amplitude $A(\omega) = |\tilde{f}(\omega)|$ or power $P(\omega) \propto |\tilde{f}(\omega)|^2$
 $\&$ phase $\varphi(\omega) = \arctan \frac{Im(\tilde{f})}{Re(\tilde{f})}$ tech: displayed for $|\omega| \ge 0$
No loss of information: If $\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$ exists, than $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(\omega)e^{i\omega t} d\omega$
 \rightarrow the original function $f(t)$ is 'recovered', or 'you neither gain nor lose information'
Linearity: $\int_{-\infty}^{\infty} [af_1(t) + bf_2(t)]e^{-i\omega t} dt = a\tilde{f}_1(\omega) + b\tilde{f}_2(\omega)$ for $a, b \in \mathbb{R}$
Similarity Law: For $a \ne 0$ it is for $f(at)$: $|1/a| \cdot \tilde{f}(\omega/a) = \int_{0}^{\infty} f(at)e^{-i\omega t} dt$
 \rightarrow the properties can be scaled to any frequency range; \Leftrightarrow 'show the signal has wider FT',
e.g. Gaussian $f(t) = \exp\left(-\frac{t^2}{2\sigma t^2}\right) \Rightarrow \tilde{f}(\omega) = \exp\left(-\frac{\omega^2}{2\sigma\omega^2}\right)$ with $\sigma_\omega = \frac{1}{\sigma_t}$

 $(i\omega)^n \cdot \widetilde{f}(\omega) = \int f^{(n)}(t)e^{-i\omega t}dt$ **Differentiation Law:** For **n**th derivative **f**⁽ⁿ⁾(**t**) it is: \rightarrow differentiation in time domain corresponds to multiplication with $i\omega$ in frequency domain **Frequency shift:** Modulation by ω_0 it is $\int_{-\infty}^{\infty} f(t)e^{i\omega_0 t} e^{-i\omega t} dt = \tilde{f}(\omega - \omega_0)$ **Condition for FT:** If $\int_{-\infty}^{\infty} |f(t)|^2 dt < \infty$ and convergent, than f(t) is Fourier transformable \Rightarrow e.g. $f(t) = \sin(\omega_0 t)$, polynomials $f(t) = \sum a_i t^i$ and $f(t) = e^t$ are **not** Fourier transformable ! $\varphi(\omega) \equiv 0$ window function W(t) 70 8.0 8.0 8.0 10 indow function $W(\omega)$ Windowing: Def. $\tilde{f}_W(\omega) \equiv \int_{-\infty}^{\infty} W(t) \cdot f(t) e^{-i\omega t} dt$ with a window function $W(t) \in \mathbb{R} \Rightarrow$ finite integration $\Rightarrow \tilde{f}_W(\omega) = \tilde{W}(\omega) * \tilde{f}(\omega)$ as convolution -1.5 -1.0 -0.5 0.0 0.5 1. norm. time t/t Example: $W(t) = \begin{cases} 1 \text{ for } -t_0 \le t \le t_0 \\ 0 \text{ for } |t| > 1 \end{cases} \Rightarrow \widetilde{W}(\omega) = 2 \frac{\sin(\omega t_0)}{\omega} \equiv 2t_0 \operatorname{sinc}(\omega t_0)$ Zero-crossing at: $sin(\omega t_0) = 0 \iff n\pi = \omega t_0 \iff \omega = n \cdot \frac{\pi}{t_0}$ with $n \in \mathbb{Z} \setminus \{0\}$ Scaling of maxima: $\max(\omega) = \frac{2}{\omega} \iff \sin(\omega t_0) = 1 \iff \omega = \frac{2n+1}{2} \cdot \frac{\pi}{t_0}$ with $n \in \mathbb{Z} \setminus \{0\}$

Excurse: Fourier Trans. \rightarrow Convolution & technical Realization

Convolution Law: For the convolution $f(t) = f_1(t) * f_2(t) \equiv \int_{-\infty}^{\infty} f_1(\tau) \cdot f_2(t-\tau) d\tau$ \Rightarrow FT can be calculated as $\widetilde{f}(\omega) = \widetilde{f}_1(\omega) \cdot \widetilde{f}_2(\omega)^{-\infty}$

 \rightarrow convolution in time domain can be expressed as multiplication of FT in frequency domain

Application: Chain of electrical elements calculated in frequency domain more easily parameters are more easy in frequency domain (bandwidth, *f*-dependent amplification.....)

Engineering formulation for <u>finite</u> number of discrete samples:

Digital Fourier Transformation DFT(f)**:** corresponds to math. FT for finite number time **Fast Fourier Transformation:** FFT(f) dedicated algorithm for **fast** calc. with 2^n increments **Transfer function** $H(\omega)$ and h(t) are used to describe electrical elements Calculation with $H(\omega)$ in frequency domain or h(t) time domain

 \rightarrow 'Finite Impulse Response' FIR filter or 'Infinite Impulse Response' IIR filter

Outline:

- > Time and frequency domain treatment & Fourier Transformation
- \blacktriangleright Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies
- Capacitive shoe-box BPM for low frequencies
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions

Summary

The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

Beam Position Monitor **BPM** equals Pick-Up **PU**

Most frequent used instrument!

For relativistic velocities, the electric field is transversal:

$$E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t')$$

The wall current is monitored by a plate or ring inserted in the beam pipe:

The image current I_{im} at the plate is given by the beam current and geometry:

$$I_{im}(t) = -\frac{dQ_{im}(t)}{dt} = \frac{-A}{2\pi al} \cdot \frac{dQ_{beam}(t)}{dt} = \frac{-A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{dI_{beam}(t)}{dt} = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot i\omega I_{beam}(\omega)$$

Using a relation for Fourier transformation: $I_{beam} = I_0 e^{-i\omega t} \Rightarrow dI_{beam}/dt = -i\omega I_{beam}$.

i**g is i** <u>juas</u>

At a resistor **R** the voltage U_{im} from the image current is measured. The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam} in frequency domain: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{heam}(\omega)$. equivalent circuit **Capacitive BPM:** The pick-up capacitance C: plate \leftrightarrow vacuum-pipe and cable. $I_{im}(t)$ \succ The amplifier with input resistor *R*. The beam is a high-impedance current source $U_{im} = \frac{\kappa}{1 + i\omega RC} \cdot I_{im}$ ground $= \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1 + i\omega RC} \cdot I_{beam} \qquad \frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC}$ $\equiv Z_t(\omega,\beta) \cdot I_{heam}$ This is a high-pass characteristic with $\omega_{cut} = 1/RC$: Amplitude: $|Z_t(\omega)| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega / \omega_{cut}}{\sqrt{1 + \omega^2 / \omega_{out}^2}}$ Phase: $\varphi(\omega) = \arctan(\omega_{cut} / \omega)$

The high-pass characteristic for typical synchrotron BPM:

Remark: For $\omega \rightarrow 0$ it is $Z_t \rightarrow 0$ i.e. **no** signal is transferred from dc-beams e.g.

- de-bunched beam inside a synchrotron
- ➢ for slow extraction through a transfer line

Depending on the frequency range *and* termination the signal looks different:

$$Figh frequency range \ \omega >> \omega_{cut} : \\ Z_t \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \rightarrow 1 \Rightarrow U_{im}(t) = \frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot I_{beam}(t)$$

 \Rightarrow direct image of the bunch. Signal strength $Z_t \propto A/C$ i.e. nearly independent on length

$\sum_{t} \sum_{t} \frac{i\omega}{\partial \omega_{cut}} \rightarrow i \frac{\omega}{\partial \omega_{cut}} \Rightarrow U_{im}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot i\omega I_{beam}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{beam}}{dt}$

 \Rightarrow derivative of bunch, single strength $Z_t \propto A$, i.e. (nearly) independent on C

> Intermediate frequency range $\omega \approx \omega_{cut}$: Calculation using Fourier transformation

Example: Synchrotron BPM with 50 Ω termination (reality at p-synchrotron : σ >>1 ns):derivativeintermediateproportional

The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function $I_{begm}(t)$ having a width of σ_t

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz BPM terminated with R= 1 M $\Omega \implies f_{acc} >> f_{cut}$:

Parameter: $R=1 \text{ M}\Omega \Rightarrow f_{cut}=2 \text{ kHz}, Z_t=5 \Omega$, all buckets filled $C = 100 \text{pF}, l = 10 \text{cm}, \beta = 50\%, \sigma_t = 100 \text{ ns} \Rightarrow \sigma_l = 15 \text{m}$

 \succ Fourier spectrum is composed of lines separated by acceleration f_{rf}

- Envelope given by single bunch Fourier transformation
- Baseline shift due to ac-coupling

Remark: 1 MHz< f_{rf} <10MHz \Rightarrow Bandwidth \approx 100MHz=10· f_{rf} for broadband observation

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz BPM terminated with **R**=50 $\Omega \Rightarrow f_{acc} << f_{cut}$:

Parameter: $R=50 \ \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, all buckets filled

C = 100pF, I = 10cm, β = 50%, σ_t = 100 ns $\Rightarrow \sigma_I$ = 15m

- Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.
- > Bandwidth up to typically $10^* f_{acc}$

Synchrotron during filling: Empty buckets, R=50 Ω :

C = 100pF, I = 10cm, β = 50%, σ_t = 100 ns $\Rightarrow \sigma_I$ = 15m

Fourier spectrum is more complex, harmonics are broader due to sidebands

Effect of filters, here bandpass:

Remark: For numerical calculations, time domain filters (FIR and IIR) are more appropriate

Peter Forck, JUAS Archamps

Proton LINAC, e⁻-LINAC&synchtrotron: 100 MHz $< f_{rf} < 1$ GHz typically R=50 Ω processing to reach bandwidth $C \approx 5$ pF $\Rightarrow f_{cut} = 1/(2\pi RC) \approx 700$ MHz Example: 36 MHz GSI ion LINAC

Proton synchtrotron:

 $1 \text{ MHz} < f_{rf} < 30 \text{ MHz}$ typically

 $R=1 \text{ M}\Omega$ for large signal i.e. large Z_t

C≈100 pF ⇒ *f_{cut}* =1/(2πRC) ≈10 kHz

Example: non-relativistic GSI synchrotron

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

Principle of Signal Generation of a BPMs: off-center Beam

The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam.

V

ig is ii <u>juas</u>

The difference voltage between plates gives the beam's center-of-mass \rightarrow **most frequent application**

'Proximity' effect leads to different voltages at the plates:

 $S(\omega,x)$ is called **position sensitivity**, sometimes the inverse is used $k(\omega,x)=1/S(\omega,x)$ **S** is a geometry dependent, non-linear function, which have to be optimized Units: **S**=[%/mm] and sometimes **S**=[dB/mm] or **k**=[mm].

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive <u>button</u> BPM for high frequencies

used at most proton LINACs and electron accelerators

- Capacitive shoe-box BPM for low frequencies
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- Summary

2-dim Model for a Button BPM

а

α

 $\theta =$

button

'Proximity effect': larger signal for closer plate

Ideal 2-dim model: Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pencil' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)$$

Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$

Peter Forck, JUAS Archamps

LINACs, e⁻-synchrotrons: 100 MHz < f_{rf} < 3 GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

Button BPM at Synchrotron Light Sources

The button BPM can be rotated by 45⁰

to avoid exposure by synchrotron light:

Frequently used at boosters for light sources

horizontal :
$$x = \frac{1}{S} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

vertical : $y = \frac{1}{S} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$

Example: Booster of ALS, Berkeley

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity

Simulations for Button BPM at Synchrotron Light Sources

Result: non-linearity and *xy*-coupling occur in dependence of button size and position

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies
 - used at most proton LINACs and electron accelerators
- Capacitive <u>shoe-box</u> BPM for low frequencies
 - used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

Frequency range: 1 MHz < f_{rf} < 10 MHz \Rightarrow bunch-length >> BPM length.

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

	Shoe-Box BPM Button BPM		
Precaution	Bunches longer than BPM	Bunch length comparable to BPM	
BPM length (typical)	10 to 20 cm length per plane	\varnothing 1 to 5 cm per button	
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation	
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz	
Coupling	1 MΩ or ≈1 kΩ (transformer)	50 Ω	
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)	
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling	
Sensitivity	Good, care: plate cross talk	Good, care: signal matching	
Usage	At proton synchrotrons, f _{rf} < 10 MHz	All electron acc., proton Linacs, f_{rf} > 100 MHz	
	vertical		

guard rings on ground potential

beam

)

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation
 - analog signal conditioning to achieve small signal processing
- BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1/S \cdot \Delta U / \Sigma U$
- 3. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$

 \Rightarrow Signal-to-noise $\Delta U_{im}/U_{eff}$ is influenced by:

- Input signal amplitude
 - \rightarrow large or matched Z_t
- > Thermal noise at **R**=50 Ω for **T**=300 K
 - (for shoe box $\mathbf{R} = 1 \text{ k}\Omega \dots 1 \text{ M}\Omega$)
- ≻ Bandwidth **Δf**

 \Rightarrow Restriction of frequency width because the power is concentrated on the harmonics of f_{rf}

Remark: Additional contribution by non-perfect electronics typically a factor 2

Moreover, pick-up by electro-magnetic interference can contribute \Rightarrow good shielding required

However: not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination.

- Hybrid or transformer close to beam pipe for analog ΔU & ΣU generation or U_{left} & U_{right}
- Attenuator/amplifier
- Filter to get the wanted harmonics and to suppress stray signals
- ightarrow ADC: digitalization ightarrow followed by calculation of of ΔU / ΣU
- Advantage: Bunch-by-bunch possible, versatile post-processing possible
- **Disadvantage:** Resolution down to \approx 100 μ m for shoe box type , i.e. \approx 0.1% of aperture,

resolution is worse than narrowband processing

Narrowband Processing for improved Signal-to-Noise

Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- Attenuator/amplifier
- \succ Mixing with accelerating frequency $f_{rf} \Rightarrow$ signal with sum and difference frequency
- Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- Rectifier: synchronous detector
- ightarrow ADC: digitalization ightarrow followed calculation of $\Delta U/\Sigma U$

Advantage: Spatial resolution about 100 time better than broadband processing

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

For non-relativistic p-synchrotron: \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

Mixer: A passive rf device with

- ➢ Input RF (radio frequency): Signal of investigation $A_{RF}(t) = A_{RF} \cos \omega_{RF} t$ ➢ Input LO (local oscillator): Fixed frequency $A_{LO}(t) = A_{LO} \cos \omega_{LO} t$
- $\begin{aligned} & \succ \text{ Output IF (intermediate frequency)} \\ & A_{IF}(t) = A_{RF} \cdot A_{LO} \cos \omega_{RF} t \cdot \cos \omega_{LO} t \\ & = A_{RF} \cdot A_{LO} \Big[\cos(\omega_{RF} \omega_{LO}) t + \cos(\omega_{RF} + \omega_{LO}) t \Big] \end{aligned}$
- \Rightarrow Multiplication of both input signals, containing the sum and difference frequency.

Synchronous detector: A phase sensitive rectifier

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of super heterodyne receiver

- Basic functionality is preserved but implementation is very different
- Digital transition just after the amplifier & filter or mixing unit
- Signal conditioning (filter, decimation, averaging) on digital electronics e.g. FPGA

Advantage of DSP: Versatile operation, flexible adoption without hardware modification Disadvantage of DSP: <u>non</u>, good engineering skill requires for development, expensive

Туре	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for fast feedback	Resolution limited by noise
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Digital Signal Processing	all	Several bunches ADC 125 MS/s	Very flexible High resolution Trendsetting technology for future demands	Limited time resolution by ADC → under-sampling complex and expensive

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation

analog signal conditioning to achieve small signal processing

- BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
- Summary

Trajectory:

The position delivered by an **individual bunch** within a transfer line or a synchrotron.

Main task: Control of matching (center and angle), first-turn diagnostics

Example: LHC injection 10/09/08 i.e. first day of operation !

luas

Single bunch position averaged over 1000 bunches \rightarrow closed orbit with ms time steps. It differs from ideal orbit by misalignments of the beam or components. Example: GSI-synchrotron at two BPM locations, 1000 turn average during acceleration:

Closed orbit:

Beam position averaged over many turns (i.e. betatron oscillations). The result is the basic tool for alignment & stabilization

Remark as a role of thumb:

Number of BPMs within a synchrotron: $N_{BPM} \approx 4 \cdot Q$ Relation BPMs \leftrightarrow tune due to close orbit stabilization feedback

(justification outside of the scope of this lecture)

Closed Orbit Feedback: Typical Noise Sources

From M. Böge, PSI, N. Hubert, Soleil

Orbit feedback: Synchrotron light source \rightarrow spatial stability of light beam

Example from SLS-Synchrotron at Villigen, Swiss:

Corrected orbit: $\langle x ^{2} \rangle_{rms} \approx 1 \ \mu m$ up to 100 Hz bandwidth!

Orbit feedback:

Example: 12 beam positions at GSI-SIS during ramping from 8.6 to 500 MeV/u for Ar¹⁸⁺

1. Position from all 12 BPMs

- 2. Calculation of corrector setting on fast (FPGA-based) electronics
- 3. Submission to corrector magnets
- 4. New position measurement
- \Rightarrow regulation time down to 10 ms
- **Role of thumb:**

Movement related to tune i.e. 'natural oscillations by periodic focusing

To determine the 'sine-like' oscillation 4 BPMs per oscillation are required

 \Rightarrow 4 BPMs per tune value (but detailed investigation required to determine the # of BPMs

IUas

Coherent excitations are required for the detection by a BPM Beam particle's *in-coherent* motion \Rightarrow center-of-mass stays constant Excitation of **all** particles by rf \Rightarrow *coherent* motion \Rightarrow center-of-mass variation turn-by-turn

The tune Q is the number of betatron oscillations per turn.

The betatron frequency is $f_{\theta} = Q \cdot f_{0}$.

Measurement: excitation of *coherent* betatron oscillations + position from one BPM.

From a measurement one gets only the non-integer part q of Q with $Q = n \pm q$. Moreover, only 0 < q < 0.5 is the unique result.

Example: Tune measurement for six turns with the three lowest frequency fits:

To distinguish for **q** < 0.5 or **q** > 0.5:

Changing the tune slightly, the direction of **q** shift differs.

Tune Measurement: The Kick-Method in Time Domain

The beam is excited to coherent betatron oscillation → the beam position measured each revolution ('turn-by-turn') → Fourier Trans. gives the non-integer tune **q**. Short kick compared to revolution.

The de-coherence time limits the **resolution**:

N non-zero samples

 \Rightarrow General limit of discrete FFT:

$$\Delta q > \frac{1}{2N}$$

 $N = 200 \text{ turn} \Rightarrow \Delta q > 0.003 \text{ as resolution}$ (tune spreads are typically $\Delta q \approx 0.001$!)

The particles are excited to betatron oscillations, but due to the spread in the betatron frequency, they getting out of phase ('Landau damping'):

Scheme of the individual trajectories of four particles after a kick (top) and the resulting *coherent* signal as measured by a pick-up (bottom). ⇒ Kick excitation leads to limited resolution

Remark: The tune spread is much lower for a real machine.

Instead of one kick, the beam can be excited by a sweep of a sine wave, called 'chirp'

→ Beam Transfer Function (BTF) Measurement as the velocity response to a kick

Prinziple:

Beam acts like a driven oscillator!

Using a network analyzer:

- RF OUT is feed to the beam by a kicker (reversed powered as a BPM)
- The position is measured at one BPM
- Network analyzer: amplitude and phase of the response
- Sweep time up to seconds due to de-coherence time per band
- \succ resolution in tune: up to 10^{-4}

Tune Measurement: Result for BTF Measurement

From the position of the sidebands $\boldsymbol{q} = 0.306$ is determined. From the width $\Delta f/f \approx 5 \cdot 10^{-4}$ the tune spread can be calculated via $\Delta f_h^- = \eta \frac{\Delta p}{p} \cdot hf_0 \left(h - q + \frac{\xi}{\eta} Q \right)$

Advantage: High resolution for tune and tune spread (also for de-bunched beams) Disadvantage: Long sweep time (up to several seconds).

Instead of a sine wave, noise with adequate bandwidth can be applied → beam picks out its resonance frequency: *Example:* Vertical tune within 4096 turn duration $\simeq 15$ ms >broadband excitation with white noise of ≈ 10 kHz bandwidth vertical tune versus time turn-by-turn position measurement by fast ADC Fourier transformation of the recorded data

 \Rightarrow Continues monitoring with low disturbance vertical tune at fixed time \approx 15ms

Advantage:

Fast scan with good time resolution **Disadvantage:** Lower precision

at GSI synchrotron $11 \rightarrow 300 \text{ MeV/u}$ in 0.7 s

Excurse: Example of Lattice Functions

Excitation of **coherent** betatron oscillations: From the position deviation x_{ik} at the BPM *i* and turn *k* the β -function $\beta(s_i)$ can be evaluated.

The position reading is: $(\hat{x}_i \text{ amplitude}, \mu_i \text{ phase at } i, Q \text{ tune}, s_0 \text{ reference location})$

$$x_{ik} = \hat{x}_i \cdot \cos\left(2\pi Qk + \mu_i\right) = \hat{x}_0 \cdot \sqrt{\beta(s_i)/\beta(s_0)} \cdot \cos\left(2\pi Qk + \mu_i\right)$$

 \rightarrow a turn-by-turn position reading at many location (4 per unit of tune) is required. The ratio of β -functions at different location:

$$\frac{\beta(s_i)}{\beta(s_0)} = \left(\frac{\hat{x}_i}{\hat{x}_0}\right)^2$$

The phase advance is:

$$\Delta \mu = \mu_i - \mu_0$$

Without absolute calibration,

 β -function is more precise:

$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$

Excitation of **coherent** betatron oscillations: From the position deviation \mathbf{x}_{ik} at the BPM *i* and turn *k* the betatron phase is measured. $\Delta \mu(s_i) = \int_{s_0}^{s_i} \frac{ds}{\beta(s)}$

Example: Phase advance $\mu(s)$ compared to the expected $\mu_0(s)$ by optics calculation e.g. MADX at each BPM at CERN's at LEP (e⁺ - e⁻ collider with 27 km, previously in LHC tunnel)

Result:

From J. Borer et al, EPAC'92

- Model does not describes the reality completely, corrections required
- > At interaction point IP (detector location) an additional phase shift is originated
- > Alignment by correction dipoles (steerer), quadrupoles or sextupoles.

Excitation of **coherent** betatron oscillations: From the position deviation \mathbf{x}_{ik} at the BPM *i* and turn *k* the beta-function can be determined $\mu(s_i) = \int_{s_0}^{s_i} \frac{ds}{\beta(s_i)}$

Example: Measured $\beta(s)$ compared to the expected $\beta_0(s)$ and normalized for each BPM at BNL for RHIC (proton-proton or ions circular collider with 3.8 km length)

Result:

- Model does not describes the reality completely
- Corrections executed
- Increase of the luminosity

Remark:

Measurement accuracy depends on

- BPM accuracy
- Numerical evaluation method See e.g.:
- R. Tomas et al., Phys. Rev. Acc. Beams 20, 054801 (2017)
- A. Wegscheider et al., Phys. Rev. Acc. Beams 20, 111002 (2017)

Dispersion D(s_i): Change of momentum **p** by detuned rf-cavity

- \rightarrow Position reading at one location $x_i = D(s_i) \cdot \frac{\Delta p}{p}$:
- \rightarrow Result from plot of x_i as a function of $\Delta p/p \Rightarrow$ slope is local dispersion $D(s_i)$

at BPMs at CERN SPS

Theory-experiment correspondence after correction of

- **BPM** calibration \geq
- quadrupole calibration

From J. Wenninger: CAS on BD, CERN-2009-005 & J. Wenninger CERN-AB-2004-009

Dispersion $D(s_i)$ **:** Excitation of coherent betatron oscillations and change of momentum **p** by detuned rf-cavity: \rightarrow Position reading at one location: $x_i = D(s_i) \cdot \frac{\Delta p}{r}$

 \rightarrow Result from plot of x_i as a function of $\Delta p/p \Rightarrow$ slope is local dispersion $D(s_i)$.

Chromaticity ξ: Excitation of coherent betatron oscillations and change of momentum *p* by detuned rf-cavity:

 \rightarrow Tune measurement

(kick-method, BTF, noise excitation):

$$\frac{\Delta Q}{Q} = \xi \cdot \frac{\Delta p}{p}$$

Plot of $\Delta Q/Q$ as a function of $\Delta p/p$ \Rightarrow slope is dispersion ξ .

Appendix GSI Ion Synchrotron: Position, tune etc. Measurement

Beam position:

Center of mass
➢ Many locations!
➢ Frequent operating tool
➢ For position stabilization i.e. closed orbit feedback

Abbreviation:

Meas. Stripline \rightarrow SMES Exc. Stripline \rightarrow SEXC Button BPMs \rightarrow BPM •

The electric field is monitored for bunched beams using rf-technologies ('frequency domain'). Beside transfromers they are the most often used instruments! Differentiated or proportional signal: rf-bandwidth \leftrightarrow beam parameters Proton synchrotron: 1 to 100 MHz, mostly 1 M $\Omega \rightarrow$ proportional shape LINAC, e--synchrotron: 0.1 to 3 GHz, 50 $\Omega \rightarrow$ differentiated shape Important quantity: transfer impedance $Z_t(\omega, \beta)$.

Types of capacitive pick-ups:

Shoe-box (p-synch.), button (p-LINAC, e--LINAC and synch.)

Remark: Stripline BPM as traveling wave devices are frequently used

Position reading: difference signal of four pick-up plates (BPM):

- ➢ Non-intercepting reading of center-of-mass → online measurement and control slow reading → closed orbit, fast bunch-by-bunch→ trajectory
- ➢ Excitation of *coherent betatron oscillations* and response measurement excitation by short kick, white noise or sine-wave (BTF)
 → tune q, chromaticity ξ , dispersion D etc.

Backup slides

Orbit feedback: Compensating variations of different kind, goal: $\Delta x \approx 0.1 \cdot \sigma_x$ Synchrotron light source \rightarrow spatial stability of light beam Example from SLS-Synchrotron at Villigen, Swiss:

Uncorrected orbit:

Beam offset and oscillation here $\langle x^2 \rangle_{rms} = 2.3 \text{ mm}$

From M. Böge, PSI